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This paper considers attenuation of cycles generated by periodic difference equations for population
dynamics. This study concerns the second conjecture of Cushing and Henson [A periodically forced
Beverton-Holt equation, Journal of Difference Equations and Applications, 8, 2002, pp. 1119–1120],
which was recently resolved affirmatively by Elaydi and Sacker [Global stability of periodic orbits of
nonautonomous difference equations in population biology and the Cushing-Henson conjectures,
Proceedings of the 8th International Conference on Difference Equations and Applications, Brno, Czech
Republic (in press)]. We extend their result and obtain a sufficient condition for attenuation of cycles in
population models. This sufficient condition is applicable to a wide class of periodic difference equations
with arbitrary period. For an illustration, the result is applied to the Beverton-Holt equation and other
specific population models.
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1. Introduction

In this paper, we consider the following non-autonomous difference equation:

xnþ1 ¼ g
xn

Kn

� �
xn;

x0 [ Rþ U ½0;þ1Þ;

n [ Zþ U {0; 1; 2; . . .};

ð1Þ

where g : Rþ ! Rþ is a continuous function which satisfies

gð1Þ ¼ 1

gðxÞ . 1 for all x [ ð0; 1Þ

gðxÞ , 1 for all x [ ð1;1Þ;

and {Kn} is a periodic sequence such that Kn . 0 for all n [ Zþ and Knþk ¼ Kn for all

n [ Zþ (not necessarily Knþi – Kn for all i; 0 , i , k). This is a difference equation that
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appears as application in population dynamics. The variable xn represents a population

density at time n and the time dependent parameter Kn is a carrying capacity at time n.

Therefore, equation (1) is a population model only with Kn as a periodically fluctuating

parameter. By the assumptions of the function g, we see that Kn is a unique positive fixed

point of the map f nðxÞ U gðx=KnÞx:

The following (non-autonomous) Beverton-Holt equation is an example of equation (1):

xnþ1 ¼
lxn

1þ ðl2 1Þðxn=KnÞ
; l . 1; Kn . 0; ð2Þ

where Kn fluctuates with a period k. It is well known that if Kn is constant (i.e.

K1 ¼ · · · ¼ Kk ¼ Kc), then the positive fixed point Kc of this equation is globally

asymptotically stable (i.e. Kc is stable and every solution {xn} with x0 . 0 satisfies

limn!1jxn 2 Kcj ¼ 0). It is also known that if Kn fluctuates periodically, then equation (2)

can have a periodic solution. By the recent study of Elaydi and Sacker [4], it was shown that

for every k $ 1 equation (2) has a unique periodic solution which is globally asymptotically

stable (see the next section, and also Cushing and Henson [2] for the case k ¼ 2). This result

was conjectured by Cushing and Henson [3].

The globally asymptotically stable periodic solution of equation (2) has an ecologically

interesting property. Cushing and Henson [2] studied this property, and showed that if k ¼ 2 and

K1 – K2; then the periodic solution {p1, p2} of equation (2) satisfies the following inequality:

p1 þ p2

2
,

K1 þ K2

2
:

Since the periodic solution {p1, p2} is globally asymptotically stable, this inequality implies that

the time average of the population density is eventually less than that of the carrying capacity, i.e.

lim
n!1

1

n

Xn21

i¼0

xi ,
K1 þ K2

2
:

This result is of ecological interest because it implies that the environmental fluctuation is

deleterious to a population in the sense that its time average of the population density in a

fluctuating environment is less than that in a constant environment with the same average.

An interesting problem,which is proposed byCushing andHenson [3], is to investigate whether

the Beverton-Holt equation (2) still has this property even if k $ 3: This problem was resolved

affirmatively by the recent work of Elaydi and Sacker [5]. The purpose of this paper is to extend

their result by analyzing equation (1) which includes the Beverton-Holt equation (2) as a special

case.

This paper is organized as follows. In section 2, we introduce the result of global

asymptotic stability given by Elaydi and Sacker [4]. In section 3, we investigate the

relationship between the time averages of a periodic solution and a carrying capacity of

equation (1). In section 4, we apply the results obtained in sections 2 and 3 to the Beverton-

Holt equation (2) and other specific population models. The final section includes discussion.

2. Global asymptotic stability

Let {xn} be a solution of equation (1). {xn} is said to be positive if xn . 0 for all n [ Zþ:

{xn} is said to be periodic with a period m (or an m-cycle) if xnþm ¼ xn for all n [ Zþ

(not necessarily xnþi – xn for all i; 0 , i , m). An m-cycle {pn} is said to be globally
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asymptotically stable if it is stable and for every solution {xn} of equation (1) with x0 . 0;

there exists an integer l, “asymptotic phase”, 0 # l , k such that limn!1jxn 2 pnþlj ¼ 0:

Elaydi and Sacker [4] investigated global asymptotic stability of the following k-periodic

difference equation, which includes equation (1) as a special case:

xnþ1 ¼ f nðxnÞ; x0 [ Rþ; ð3Þ

where the function fn(x) is periodic with a period k, i.e. f nþkðxÞ ¼ f nðxÞ for all n [ Zþ and

x [ Rþ: By introducing the class K of a function, Elaydi and Sacker [4] obtained a result of

global asymptotic stability of equation (3) as follows:

Definition 1 A function h belongs to the class K if the following conditions hold:

. h : Rþ ! Rþ is continuous,

. h is increasing and concave,

. There exist a and b such that hðaÞ . a and hðbÞ , b:

Theorem 2 (Elaydi and Sacker [4]). If f n [ K for all n [ Zþ; then equation (3) has a

positive cycle {pn} which is globally asymptotically stable.

Since the Beverton-Holt equation (2) satisfies the assumptions of this theorem, it has a

positive cycle which is globally asymptotically stable (Elaydi and Sacker [4]).

3. Attenuant cycles

In this section, we consider the relationship between the time averages of a cycle {pn} and the

carrying capacities {Kn} of the non-autonomous difference equation (1). An m-cycle {pn} of

equation (1) is said to be attenuant if p , K; where p ¼ ðp1 þ p2 þ · · ·þ pmÞ=m and K ¼

ðK1 þ K2 þ · · ·þ KkÞ=k: The theorem which gives a sufficient condition for attenuation of

cycles of equation (1) is obtained below (Theorem 5). Before giving the main theorem,

we obtain some lemmas which are used to prove the main theorem.

Lemma 3 If g(z)z is concave on some interval (a, b), 0 , a , b; then f ðx; yÞ U gðx=yÞx is

concave on the convex set {ðx; yÞ [ R2
þ : ay , x , by}:

Proof Since g(z)z is concave, we have

gðsz1 þ ð12 sÞz2Þ ðsz1 þ ð12 sÞz2Þ $ sgðz1Þz1 þ ð12 sÞgðz2Þ z2

for every s [ ð0; 1Þ and z1, z2 [ ða; bÞ: Then, for every s [ ð0; 1Þ and ðx1; y1Þ; ðx2; y2Þ [

{ðx; yÞ [ R2
þ : ay , x , by}; we have

g
sx1 þ ð12 sÞx2

sy1 þ ð12 sÞy2

� �
ðsx1 þ ð12 sÞx2Þ

¼ g t
x1

y1
þ ð12 tÞ

x2

y2

� �
t
x1

y1
þ ð12 tÞ

x2

y2

� �
ðsy1 þ ð12 sÞy2Þ

$ tg
x1

y1

� �
x1

y1
þ ð12 tÞg

x2

y2

� �
x2

y2

� �
ðsy1 þ ð12 sÞy2Þ

¼ sg
x1

y1

� �
x1 þ ð12 sÞg

x2

y2

� �
x2;
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where

t ¼
sy1

sy1 þ ð12 sÞy2
:

Note that x1/y1 and x2/y2 may be identical. This inequality implies that f ðx; yÞ ¼ gðx=yÞx is

concave. A

Remark We notice that if g(z)z is concave on some interval (a, b), 0 , a , b; then

f nðxÞ ¼ gðx=KnÞx is concave on (aKn, bKn).

Lemma 4 Let {pn} be a positive m-cycle of equation (1). Suppose that Ks – Ksþ1 for some

s [ {1; 2; . . .; k}: Then pi=Ki – pj=Kj for some i; j [ {1; 2; . . .;mk}:

Proof Suppose that

p1

K1

¼
p2

K2

¼ · · · ¼
pmk

Kmk

: ð4Þ

Then we have

g
p1

K1

� �
¼ g

p2

K2

� �
¼ · · · ¼ g

pmk

Kmk

� �
:

By equation (1), this implies

p2

p1
¼

p3

p2
¼ · · · ¼

p1

pmk
: ð5Þ

Since we have Ks – Ksþ1; equation (4) implies ps – psþ1: Therefore, equation (5) implies

that either p1 , p2 , · · · , pmk , p1 or p1 . p2 . · · · . pmk . p1 holds. This is a

contradiction. A

Theorem 5 Let {pn} be a positive m-cycle of equation (1). Suppose that Ks – Ksþ1 for

some s [ {1; 2; . . .; k}: Assume that g(z)z is strictly concave on an interval (a,b), 0 , a , b

containing all points pi=Ki [ ða; bÞ; i [ {1; 2; . . .;mk}: Then the cycle {pn} is attenuant.

Proof By Lemma 4, there exist i; j [ {1; 2; . . .;mk} such that pi=Ki – pj=Kj: Then, by the

same argument in the proof of Lemma 3, we see that the strict concavity of g(z)z implies the

following strict inequality:

g
ðpi=2Þ þ ðpj=2Þ

ðKi=2Þ þ ðKj=2Þ

� �
pi

2
þ

pj

2

� �
.

1

2
g

pi

Ki

� �
pi þ

1

2
g

pj

Kj

� �
pj:

Hence,

1

2
f ðpi;KiÞ þ

1

2
f ðpj;KjÞ , f

1

2
ðpi þ pjÞ;

1

2
ðKi þ KjÞ

� �
: ð6Þ

By Lemma 3, we see that f ðx; yÞ ¼ gðx=yÞx is concave on {ðx; yÞ [ R2
þ : ay , x , by}:

Since {pn} is a solution of System (1), the following equation holds for all n [ Zþ :

pnþ1 ¼ f ðpn;KnÞ:

R. Kon426



Hence, by the concavity of f(x, y) and equation (6), we have

1

mk

Xmk
n¼1

pnþ1 ¼
1

mk

Xmk
n¼1

f ðpn;KnÞ

¼
1

mk

Xmk
n¼1
n–i;j

f ðpn;KnÞ þ 2
1

2
f ðpi;KiÞ þ

1

2
f ðpj;KjÞ

� �8>><
>>:

9>>=
>>;

,
1

mk

Xmk
n¼1
n–i;j

f ðpn;KnÞ þ 2f
1

2
ðpi þ pjÞ;

1

2
ðKi þ KjÞ

� �8>><
>>:

9>>=
>>;

# f
1

mk

Xmk
n¼1

pn;
1

mk

Xmk
n¼1

Kn

 !
:

Furthermore, since {pn} and {Kn} are periodic with periods m and k, respectively, we have

p , f ðp;KÞ;

where

p ¼
1

m

Xm
n¼1

pn; K ¼
1

k

Xk
n¼1

Kn:

Since f ðx;KÞ ¼ gðx=KÞx; the assumptions of g implies that f ðx;KÞ . x for all x [ ð0;KÞ and

f ðx;KÞ , x for all x [ ðK;1Þ: Hence, we have p , K: A

4. Specific examples

In this section, we apply the results in the previous sections to two types of specific

population models.

4.1 Monotone models

Let us consider examples of equation (2) with the assumption that each f nðxÞ ¼ gðx=KnÞxn is

monotone. The Beverton-Holt equation (2) and the following equation are of this type:

xnþ1 ¼
xn

Kn

� �a21

xn; 0 , a , 1; ð7Þ

where {Kn} is periodic with a period k and Ks – Ksþ1 for some s [ Zþ: By Theorem 2, both

equations (2) and (7) have a positive cycle {pn} which is globally asymptotically stable, since

the functions f 1;nðxÞ ¼ g1ðx=KnÞx and f 2;nðxÞ ¼ g2ðx=KnÞx are functions of the class K for all

n [ Zþ: By Theorem 5, we see that for every k $ 2 the cycle is attenuant. In fact, defining

g1ðzÞ ¼ l=ð1þ ðl2 1ÞzÞ and g2ðzÞ ¼ za21; we have

d2

dz2
ðg1ðzÞzÞ ¼ 2

2ðl2 1Þl

ð1þ ðl2 1ÞzÞ3
, 0
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and

d2

dz2
ðg2ðzÞzÞ ¼ ða2 1Þ aza22 , 0:

These inequalities imply that both g1(z)z and g2(z)z are strictly concave on (0, þ1).

Therefore, for every x0 . 0 we have

lim
n!1

1

n

Xn21

i¼0

xi ¼
1

m

Xm21

i¼0

pi ,
1

k

Xk21

i¼0

Ki: ð8Þ

4.2 Non-monotone models

Consider the following (non-autonomous) Ricker equation:

xnþ1 ¼ exp r 12
xn

Kn

� �� �
xn; r . 0; ð9Þ

where {Kn} is periodic with a period k and Ks – Ksþ1 for some s [ Zþ: The feature of this

equation is different from the other two equations above in the sense that the equation is not

monotone, i.e. f 3;n ¼ expðrð12 ðx=KnÞÞÞx is not monotone for every n [ Zþ: Hence, we

cannot apply Theorem 2 to this equation to obtain a sufficient condition for global

asymptotical stability of cycles. However, by using the result of Zhou and Zou [10], we see

that if the following inequality holds:

KM

Km

expðr 2 1Þ # 2; ð10Þ

where KM ¼ maxn[{1;2;...;k}{Kn} and Km ¼ minn[{1;2;...;k}{Kn}; then equation (9) has a

positive cycle {pn} which is globally attractive, i.e. for every solution {xn} with x0 . 0; there

exists an integer l; 0 # l , k such that limn!1jxn 2 pnþlj ¼ 0: Under the condition (10),

we shall show that the cycle {pn} is attenuant. Defining g3ðzÞ ¼ expðrð12 zÞÞ; we have

d2

dz2
ðg3ðzÞzÞ ¼ r ðrz2 2Þ exp ðrð12 zÞÞ:

Hence, g3(z)z is strictly concave on (0, 2/r). By equation (9), we see that each f 3;nðxÞ ¼

expðrð12 ðx=KnÞÞx ðn ¼ 1; . . .; kÞ has a maximum at x ¼ Kn=r; and f 3;nðKn=rÞ ¼ expðr 2 1Þ

Kn=r: Hence, the cycle {pn} satisfies

pn # expðr 2 1Þ
KM

r

for all n $ 0: Therefore,

max
i[{1;2;...;mk}

pi

Ki

� �
#

expðr 2 1ÞKM

rKm

:

By this inequality, we see that if equation (10) holds, then the positive cycle {pn} satisfies

pn=Kn [ ð0; 2=rÞ for all n [ Zþ: This implies that if equation (10) holds, then the interval

(0, 2/r) containing all points pi=Ki; i ¼ 1; . . .;mk; and the cycle {pn} is attenuant. Hence, we see

that equation (8) holds for every x0 . 0:
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5. Discussion

In this paper, we investigated attenuation of periodic solutions of equation (1), and obtained

its sufficient condition (see Theorem 5). This sufficient condition was applied to some

specific population models. In particular, this application reconfirmed that a periodic solution

of the Beverton-Holt equation (2) is always attenuant as long as the carrying capacity is

strictly periodic (i.e. Ks – Ksþ1 for some s [ Zþ) (see [5] for a different technique to show

this result). Furthermore, it was shown that the result of this paper is applicable not only to

the Beverton-Holt equation (2) but also to the other population models. Therefore, our result

extends the result of Elaydi and Sacker [5].

We can find some studies on attenuation of periodic solution generated by one

dimensional difference equations such as equation (1) (see [2,6]). For example, Cushing and

Henson [2] gave a sufficient condition for attenuation under the assumption that each

f nðxÞ ¼ gðx=KnÞx; ði ¼ 1; . . .; kÞ is increasing. However, Theorem 5 implies that the

monotonicity of fn is not necessary for the attenuation as long as it is concave on some

relevant interval. By using the Ricker equation (9), this point was illustrated. One

dimensional difference equations for population dynamics are usually characterized by two

parameters: the carrying capacity and the intrinsic growth rate. Equation (1) assumes that the

intrinsic growth rate does not fluctuate in time. It is a future work to investigate attenuation

of cycles of such equations (see [1] and [6] for the results of attenuation of cycles with small

amplitude generated by a general class of differential equations and difference equations,

respectively).

It is well known that if fn is not increasing, equation (1) can have periodic solution even if

Kn is constant. This means that the fluctuation of population densities can arise from internal

biological factors of a population. For example, the Ricker equation (9) with constant Kn

ðK1 ¼ · · · ¼ Kk ¼ KcÞ has periodic solutions if r . 2 (e.g. see May and Oster [9]). All of

these periodic solutions {pn} satisfy p ¼ Kc (see [7]). Therefore, in this sense they are not

attenuant. An interesting problem is to consider the relationship between the time averages of

fluctuating population densities determined by environmental and biological factors (e.g. see

[8] for example of attenuant cycles generated by autonomous difference equations).
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