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A bistable Duffing oscillator subjected to additive and multiplica-
tive Ornstein–Uhlenbeck (OU) colored excitations is examined. It
is modeled through a set of four first-order stochastic differential
equations by representing the OU excitations as filtered Gaussian
white noise excitations. Enlargement in the state-space vector
leads to four-dimensional (4D) Fokker–Planck–Kolmogorov
(FPK) equation. The exponential-polynomial closure (EPC)
method, proposed previously for the case of white noise excita-
tions, is further improved and developed to solve colored noise
case, resulting in much more polynomial terms included in the
approximate solution. Numerical results show that approximate
solutions from the EPC method compare well with the predictions
obtained via Monte Carlo simulation (MCS) method. Investigation
is also carried out to examine the influence of intensity level on
the probability distribution solutions of system responses.
[DOI: 10.1115/1.4035308]

1 Introduction

Since colored random excitations can be found widely in the
scientific and engineering fields, e.g., ecology [1], earthquake
modeling and engineering [2,3], wind engineering [4], and ship
dynamics [5], there has been a growing interest in studying
dynamical systems disturbed by colored random excitations
[1–10].

General approach to dealing with non-Markovian systems’
responses in the case of colored excitations is filtering approach.
This method is to implement the original dynamical system with an
auxiliary system excited by a delta-correlated process whose output
is modeled as colored excitation [11–14]. Probability distribution
solutions of system responses in multidimensional spaces result in.
Traditionally, a straightforward way to obtain probability distribu-
tions is by solving FPK equation. In recent years, a number of tech-
niques have been proposed to deal with FPK equation. In the case
of colored noise excitations, one of the most successful approaches
appears to be stochastic-averaging method, which is for dynamical
systems with weak damping under colored excitations of small
intensities [15–17]. In this paper, the EPC approximate method,
which was proposed previously for the general case of white noise
excitations [18,19], is further improved and developed to suit the

case of colored noise excitations [20,21]. State variables involved
are enlarged, causing much more polynomial terms to be produced
in the approximate solutions. As a result, solution procedure
becomes more complicated and requires more computational time.
The efficiency of the developed EPC method is examined by an
example of a bistable Duffing oscillator to OU colored excitations.
The influence of intensity level on the probability distribution
solutions of system response is considered.

2 Analysis of Stochastic Oscillator to Colored

Noise Excitations

2.1 Gaussian Colored Noise. As is well known, real physi-
cal processes are generally characterized by correlated functions
with finite correlation lengths. One of the most commonly used
correlation functions is exponential function. The simplest
example for an exponentially correlated noise is OU process
gi(t)

E gi tð Þgi sð Þ
� �

¼ Di

si
exp � jt� sj

si

� �
¼ 2Di si ! 0

(1)

where si denote the correlation time, and Di express the intensity.
Higher Di correspond to stronger excitations, while smaller si

result in broader band widths. And when the correlation time si

approach zero, the OU process evolves to Gaussian white noise
process. The level of the noise color can be measured directly by
the bandwidth parameter si.

Such exponentially correlated Gaussian processes, gi(t), can be
obtained by passing Gaussian white noise Wi(t) through first-order
filters of the following form:

gi

:
tð Þ ¼ � 1

si
gi þ

1

si
Wi tð Þ (2)

where Wi(t) are the Gaussian white noise. Due to the linearity, the
filtered white noise OU process is also Gaussian but with power
spectral density of finite bandwidth. This simple linear filter can
generate colored noises with any required bandwidth, but it
usually distributes too much energy in the low frequency range.

2.2 Formulation of the Four-Dimensional Fokker–Planck–
Kolmogorov Equation. Hereinafter, a bistable Duffing oscillator
to additive and multiplicative colored OU excitations is
considered

€X þ a _X � X þ eX3 ¼ c1Xg1ðtÞ þ g2ðtÞ (3)

where e represents the degree of nonlinearity, and gi are the col-
ored OU excitations with band limited power spectral density
functions, which can be obtained as filtered white noises in
Eq. (2). Then, Duffing oscillator combined with filtered systems
can be written concisely by first-order differential equations of Ito
form

_x1 ¼ x2

_x2 ¼ �ax2 þ x1 � ex3
1 þ c1x1x4 þ x3

_x3 ¼ �
1

s3

x3 þ
1

s3

W3 tð Þ

_x4 ¼ �
1

s4

x4 þ
1

s4

W4 tð Þ

(4)

where Gaussian white noise excitations are with E½W3ðtÞW3

ðtþ sÞ� ¼ S3dðsÞ and E½W4ðtÞW4ðtþ sÞ� ¼ S4dðsÞ. Enlarged sys-
tem response X ¼ ½x1ðtÞ; x2ðtÞ; x3ðtÞ; x4ðtÞ� is the 4D state-
space vector and leads to 4D FPK equation, which is
expressed as
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Proceeding with the FPK equation, we found that the exact solu-
tion to the 4D FPK equation in Eq. (5) is not available. Approxi-
mate methods have to be adopted and herein EPC method is
considered.

2.3 Solution Procedure of the Developed Exponential-
Polynomial Closure Method. The EPC method is previously
proposed for general single degree-of-freedom systems under
white noise excitations. In the case of colored noise, it is noticed
that state variables involved in Eq. (5) are increased to four.
The EPC method has to be improved and developed to suit such
case. Consequently, much more polynomial terms are produced
in the approximate solution

~pða; xÞ ¼ exp½Qnðaijkm; x1; x2; x3; x4Þ� (6)

where Qn are the polynomial functions of four state variables

Qnðaijkm; x1; x2; x3; x4Þ

¼
Xn

i¼0

Xn
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Xn

k¼0

Xn

m¼0

aijkmxi
1xj

2xk
3xm

4 iþ jþ k þ m ¼ 0; 1; 2;…; n

(7)

It should be noticed that the number of polynomial terms goes up
to Np¼ 52 when the polynomial order n¼ 4, which is as much
as three times of the ones n(nþ 3)/2 in the case of white noise
excitation. In this sense, the procedure for coding the computer
programs becomes much complicated and requires much more
computational effort.

By substituting approximate solution (Eq. (6)) into the FPK
equation in Eq. (5), inevitable residual error results
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In order to vanish the residual error in Eq. (8), Galerkin method is
adoptedð1
�1

ð1
�1

ð1
�1

ð1
�1

dðaijkm; x1; x2; x3; x4Þwhdx1dx2dx3dx4 ¼ 0;

ðh ¼ 1; 2;…;NpÞ (9)

where wh are the weighting functions. Numerical analysis eviden-
ces that effective choice for weighting functions is

wh ¼ xi
1xj

2xk
3xm

4 f ðxi; mi; rijÞ; ðiþ jþ k þ m ¼ 1; 2;…; nÞ (10)

where f ðxi; mi;rijÞ are the multivariate Gaussian probability distri-
bution functions (PDFs) with parameters statistical means mi and
statistical variances rij obtained from moment equations
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where Mk are the kth-order moment equations, and E[�] is the
statistical mean of variable [�]. Multivariable Gaussian moments
of different orders needed in the multifold integration procedure
of Eq. (9) can be computed by the statistical variables (mi, rij)
obtained from Eq. (11). As a result, Eq. (9) is transformed to Np

nonlinear algebraic equations, which can be solved by numerical
methods.

Besides, since there is no exact PDF solution, MCS with a sam-
ple size of 2� 107 is performed to verify the efficiency of the
EPC method.

3 Numerical Analysis and Discussion

It is discussed earlier that approximate PDF of the system
response in the case of colored noise excitation is not accurate for
all the values of the parameters used. Fronzoni et al. reported that
the approximation is only good near the white noise limit
and retains accuracy for large correlation time at small noise
intensity [22].

In this example, system parameters are set as a¼ 0.2, e¼ 1.0,
and c1¼ 0.1. Then, the corresponding relaxation time for the
Duffing system is srel¼ 2/a¼ 10. Important parameter correlated
time si, which are measured by comparison to the relaxation time
srel, with small values s3¼ s4¼ 0.5 are considered. But strong
intensity levels D3¼D4¼ 2S3¼ 2S4¼ (1, 2) are involved. The
EPC method and MCS method are employed separately to analyze
such system. The results are shown in Figs. 1–4. It is explicitly
found that the results from the EPC method agree well with the
ones from the MCS method, especially those at the tail regions. It
is further observed that the shape of the PDFs for displacement is
obviously changed. It becomes more spread as the intensity of OU
excitation increases.

Numerical results for cases with s3¼ s4¼ 1.0 are also com-
puted, and the results are shown in Figs. 5 and 6. It is seen that the
results from the EPC method still agree well with the ones from

Fig. 1 PDF of displacement for Duffing system under OU proc-
esses with s3 5 s4 5 0.5 and D3 5 D4 5 1
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the MCS method. As the correlated time becomes larger, the PDF
of displacement becomes narrower. For the case of more colored
noise with larger correlated time, it is found that unstable approxi-
mate solutions are obtained with the developed EPC method.

4 Conclusions

The behavior of a bistable Duffing oscillator driven by additive
and multiplicative OU excitations is examined. The developed
EPC method involves much more polynomial terms in the approx-
imate solutions to solve such case associated with 4D FPK equa-
tions. Numerical results show that approximate solutions from the
EPC method compare well with the numerical ones in the case of
OU excitations with small correlated time at strong noise inten-
sity. As the correlated time becomes large, the PDF distribution
becomes narrow. For the case of more colored noise with larger
correlated time, nonlinear algebraic equations in Eq. (9) for the
vanishing of numerical errors associated with the FPK equation
by the EPC method cannot be solved closely. Adjusted convergent
condition may improve such situation or the EPC method may be
not suitable for such case. The influence of OU excitation inten-
sity level is also investigated. It alters the shape of PDF of

Fig. 3 PDF of displacement for Duffing system under OU proc-
esses with s3 5 s4 5 0.5 and D3 5 D4 5 2

Fig. 2 Log(PDF) of displacement for Duffing system under OU
processes with s3 5 s4 5 0.5 and D3 5 D4 5 1

Fig. 4 Log(PDF) of displacement for Duffing system under OU
processes with s3 5 s4 5 0.5 and D3 5 D4 5 2

Fig. 5 PDF of displacement for Duffing system under OU proc-
esses with s3 5 s4 5 1 and D3 5 D4 5 2

Fig. 6 Log(PDF) of displacement for Duffing system under OU
processes with s3 5 s4 5 1 and D3 5 D4 5 2
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displacement and makes the PDF more distributed. The developed
EPC method can also be extended to the cases of nonlinear
systems subjected to excitations in polynomial forms of filtered
normal or non-normal delta-correlated processes.
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quake Ground Motion,” Phys. A: Stat. Mech. Appl., 392(18), pp. 4134–4145.
[4] Wang, L., McCullough, M., and Kareem, A., 2013, “A Data-Driven Approach

for Simulation of Fullscale Downburst Wind Speeds,” J. Wind Eng. Ind. Aero-
dyn., 123(Pt. A), pp. 171–190.

[5] Francescutto, A., and Naito, S., 2004, “Large Amplitude Rolling in a Realistic
Sea,” Int. Shipbuild. Prog., 51(2–3), pp. 221–235.

[6] Athanassoulis, G. A., Tsantili, I. C., and Kapelonis, Z. G., 2015, “Beyond the
Markovian Assumption: Response-Excitation Probabilistic Solution to Random
Nonlinear Differential Equations in the Long Time,” Proc. R. Soc. London A,
471(2183), p. 20150501.

[7] Daqaq, M. F., 2011, “Transduction of a Bistable Inductive Generator Driven by
White and Exponentially Correlated Gaussian Noise,” J. Sound Vib., 330(11),
pp. 2554–2564.

[8] Rahman, M., 1996, “Stationary Solution for the Color-Driven Duffing
Oscillator,” Phys. Rev. E, 53(6), pp. 6547–6550.

[9] Floris, C., 2015, “Mean Square Stability of a Second-Order Parametric Linear
System Excited by a Colored Gaussian Noise,” J. Sound Vib., 336, pp. 82–95.

[10] Patil, N. S., and Sharma, S. N., 2014, “A Prediction Theory for a Coloured
Noise-Driven Stochastic Differential System,” Syst. Sci. Control Eng., 2(1),
pp. 342–350.

[11] Muscolino, G., 1995, “Linear Systems Excited by Polynomial Forms of Non-
Gaussian Filtered Processes,” Probab. Eng. Mech., 10(1), pp. 35–44.

[12] Grigoriu, M., and Waisman, F., 1997, “Linear Systems With Polynomials of
Filtered Poisson Processes,” Probab. Eng. Mech., 12(2), pp. 97–103.

[13] Er, G. K., 2013, “The Probabilistic Solutions of Some Nonlinear Stretched
Beams Excited by Filtered White Noise,” Procedia IUTAM, 6, pp. 141–150.

[14] Kumar, P., Narayanan, S., and Gupta, S., 2014, “Finite Element Solution of
Fokker-Planck Equation of Nonlinear Oscillators Subjected to Colored Non-
Gaussian Noise,” Probab. Eng. Mech., 38, pp. 143–155.

[15] Koliopulos, P. K., and Bishop, S. R., 1993, “Quasi-Harmonic Analysis of the
Behavior of a Hardening Duffing Oscillator Subjected to Filtered White Noise,”
Nonlinear Dyn., 4, pp. 279–288.

[16] Roy, R. V., 1994, “Stochastic Averaging of Oscillator Excited by Colored
Gaussian Processes,” Int. J. Non-Linear Mech., 29(4), pp. 463–475.

[17] Xu, W., Li, C., Yue, X. L., and Rong, H. W., 2014, “Stochastic Response of a
Vibro-Impact System With Additive and Multiplicative Colored Noise
Excitations,” Int. J. Dyn. Control, 4(4), pp. 393–399.

[18] Er, G. K., Guo, S. S., and Iu, V. P., 2012, “Probabilistic Solutions of the Sto-
chastic Oscillators With Even Nonlinearity in Displacement,” ASME J. Vib.
Acoust., 134(5), p. 054501.

[19] Guo, S. S., 2014, “Probabilistic Solutions of Stochastic Oscillators Excited by
Correlated External and Parametric White Noises,” ASME J. Vib. Acoust.,
136(3), p. 031003.

[20] Guo, S. S., and Shi, Q. X., 2016, “Probabilistic Solutions of Nonlinear Oscilla-
tors to Random Colored Noise Excitations,” Acta Mech., 32, p. 1.

[21] Guo, S. S., and Shi, Q. X., 2017, “Probabilistic Solutions of Nonlinear Oscilla-
tors Excited by Combined Colored and White Noise Excitations,” Commun.
Nonlinear Sci. Numer. Simul., 44, pp. 414–423.

[22] Fronzoni, L., Grigolini, P., Hanggi, P., Moss, F., Mannella, R., and McClintock,
P., 1986, “Bistable Oscillator Driven by Nonwhite Noise,” Phys. Rev. A, 33(5),
pp. 3320–3327.

024502-4 / Vol. 139, APRIL 2017 Transactions of the ASME

Downloaded From: https://vibrationacoustics.asmedigitalcollection.asme.org on 06/29/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use

http://dx.doi.org/10.1007/s11071-013-0801-3
http://dx.doi.org/10.1007/PL00012553
http://dx.doi.org/10.1016/j.physa.2013.04.045
http://dx.doi.org/10.1016/j.jweia.2013.08.010
http://dx.doi.org/10.1016/j.jweia.2013.08.010
http://content.iospress.com/articles/international-shipbuilding-progress/51-2-3-7
http://dx.doi.org/10.1098/rspa.2011.0186
http://dx.doi.org/10.1016/j.jsv.2010.12.005
http://dx.doi.org/10.1103/PhysRevE.53.6547
http://dx.doi.org/10.1016/j.jsv.2014.09.023
http://dx.doi.org/10.1080/21642583.2014.906004
http://dx.doi.org/10.1016/0266-8920(94)00006-7
http://dx.doi.org/10.1016/S0266-8920(96)00029-X
http://dx.doi.org/10.1016/j.piutam.2013.01.016
http://dx.doi.org/10.1016/j.probengmech.2014.07.002
http://dx.doi.org/10.1007/BF00046325
http://dx.doi.org/10.1016/0020-7462(94)90015-9
http://dx.doi.org/10.1007/s40435-014-0143-0
http://dx.doi.org/10.1115/1.4006230
http://dx.doi.org/10.1115/1.4006230
http://dx.doi.org/10.1115/1.4026594
http://dx.doi.org/10.1007/s10409-015-0528-0
http://dx.doi.org/10.1016/j.cnsns.2016.09.003
http://dx.doi.org/10.1016/j.cnsns.2016.09.003
http://dx.doi.org/10.1103/PhysRevA.33.3320

	s1
	s2
	s2A
	FD1
	FD2
	s2B
	FD3
	FD4
	FD5
	aff1
	l
	s2C
	FD6
	FD7
	FD8
	FD9
	FD10
	FD11
	s3
	1
	s4
	3
	2
	4
	5
	6
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22

