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Nonlinear Analysis of
Rayleigh–Taylor Instability
of Cylindrical Flow With
Heat and Mass Transfer
We study the nonlinear Rayleigh–Taylor instability of the interface between two viscous
fluids, when the phases are enclosed between two horizontal cylindrical surfaces coaxial
with the interface, and when there is mass and heat transfer across the interface. The
fluids are considered to be viscous and incompressible with different kinematic viscos-
ities. The method of multiple expansions has been used for the investigation. In the non-
linear theory, it is shown that the evolution of the amplitude is governed by a
Ginzburg–Landau equation. The various stability criteria are discussed both analytically
and numerically and stability diagrams are obtained. It has been observed that the heat
and mass transfer has stabilizing effect on the stability of the system in the nonlinear
analysis. [DOI: 10.1115/1.4024001]
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1 Introduction

The study of heat and mass transfer across the interface is very
important in many situations such as boiling heat transfer in chemi-
cal engineering and in geophysical problems. The general formula-
tion of the interfacial flow problem of two inviscid incompressible
fluids with heat and mass transfer for Rayleigh–Taylor and
Kelvin–Helmholtz instabilities in plane geometry was established
by Hsieh [1,2]. Ho [3] studied the linear analysis of Rayleigh–
Taylor instability of two viscous fluids of the same kinematic vis-
cosities with heat and mass transfer and observed that heat transfer
has a stabilizing effect on the stability of the system. Khodaparast
et al. [4] studied the Rayleigh–Taylor and Kelvin–Helmholtz stabil-
ity of a liquid–vapor interface and considered liquid as viscous
and motionless and vapor as inviscid, moving with a horizontal
velocity. They observed that coupled viscosity-phase change has
a stabilizing effect on Rayleigh– Taylor stability whereas it has a
destabilizing effect on Kelvin– Helmholtz instability.

Cylindrical geometry is very important while studying stability
problems related to liquid jets and cooling of fuel rods by liquid
coolants in the nuclear reactor. Nayak and Chakraborty [5] con-
sidered Kelvin–Helmholtz instability of the horizontal cylindrical
interface with heat and mass transfer and observed that the plane
geometry configuration is more stable than the cylindrical one.
The Kelvin–Helmholtz instability of a cylindrical flow with a
shear layer has been considered by Wu and Wang [6]. Elhefnawy
and Radwan [7] studied the Kelvin–Helmholtz instability of a hor-
izontal cylindrical flow in magnetic fluids in the presence of mass
and heat transfer and concluded that the axial magnetic field has a
stabilizing effect on the interface, while the effect of a radial mag-
netic field depends on the choice of some physical parameters
present in the system.

In the linear theory, second and higher order terms of perturbed
quantities are neglected. Thus, it is clear that such a uniform model
based on the linear theory is inadequate to explain the mechanism
involved, and hence, the nonlinear theory is needed to reveal the

effect of heat and mass transfer on the stability of the system. Hsieh
[8] studied the nonlinear Rayleigh–Taylor instability of inviscid flu-
ids in plane geometry taking heat and mass transfer into the account
and concluded that nonlinearity increases the stability range when
there is heat and mass transfer across the interface. Lee [9] investi-
gated the effect of heat and mass transfer on the Rayleigh–Taylor
instability of inviscid fluids in a cylindrical geometry. He observed
that in the linear inviscid analysis, heat and mass transfer has no
effect on stability criterion; however, it plays an important role in
the nonlinear analysis. In the above studies, the stability of two
inviscid fluids with heat and mass transfer was discussed.

In viscous potential flow, we consider irrotational flow, so the
viscous term, i.e., lr2u in the Navier–Stokes equation is identi-
cally zero when the vorticity is zero but the viscous stresses are
not zero, where l denotes the viscosity and u denotes the velocity
of the fluid flow. There exists a pressure difference across the
interface. We include normal stress for calculating this pressure
difference and the viscosity enters through the normal stress
balance (Joseph and Liao [10]). Tangential stresses are not consid-
ered in the viscous potential flow theory. As such, we cannot
enforce a no-slip condition on the boundary. Joseph et al. [11]
applied viscous potential flow analysis to study the Rayleigh–
Taylor instability in plane geometry and found that the most dan-
gerous wave is one whose length gives the maximum growth rate.
Joseph et al. [12] extended the study of Rayleigh–Taylor instabil-
ity to the viscoelastic fluids at high Weber numbers and concluded
that the most unstable wave is sensitive function of the retardation
time. Asthana et al. [13] studied the viscous potential flow analy-
sis of Rayleigh–Taylor instability in the cylindrical geometry and
observed that viscous normal stresses stabilize the system.

Viscous potential flow analysis of Kelvin–Helmholtz instability
with heat and mass transfer in plane geometry was carried out by
Asthana and Agrawal [14]. They observed that heat and mass
transfer has a strong stabilizing effect when the lower fluid is
highly viscous, and a weak destabilizing effect when the fluid’s
viscosity is low. Awasthi and Agrawal [15] studied the effect of
heat and mass transfer on the Rayleigh–Taylor instability in plane
geometry when there is heat and mass transfer across the interface
and observed that heat and mass transfer has a stabilizing effect.
Viscous potential flow analysis of capillary instability with heat
and mass transfer has been considered by Kim et al. [16]. They
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observed that heat and mass transfer is stabilizing the interface
against capillary effects for the irrotational motion of two viscous
fluids. Awasthi and Agrawal [17] studied the nonlinear capillary
instability using viscous potential flow theory when there is heat
and mass transfer across the interface, finding that the heat and
mass transfer is stabilizing the interface.

In view of the above investigations and keeping in mind the
importance of heat and mass transfer in various applications such
as boilers, condensers, reactors, and other industrial processes, a
study of the nonlinear Rayleigh–Taylor instability of cylindrical
interface when there is heat and mass transfer across the interface
is attempted. Both fluids are taken as incompressible and viscous
with different kinematic viscosities, which were not considered
earlier. We used the method of multiple expansions for the inves-
tigation and the evolution of amplitude is shown to be governed
by a nonlinear Ginzburg–Landau equation. Stability is discussed
theoretically as well as numerically, and the stability region has
been displayed graphically. In addition, a comparative analysis
has been made between the results obtained in the inviscid flow
analysis (Ref. [9]) and present viscous flow analysis. The paper is
structured as follows: in Sec. 2 mathematical formulation of the
problem has been given. The first order theory and linear disper-
sion relation was obtained in Sec. 3. In Sec. 4, the second order
solution is derived. A Ginzburg–Landau equation is obtained in
Sec. 5. In Sec. 6, we compared our results with available results in
the literature. The numerical discussion along with the graphic
forms is given in Sec. 7. Finally, a summary of our findings is
given in Sec. 8.

2 Problem Formulation

A system of two incompressible and viscous fluids, separated
by a cylindrical interface, is considered in an annular configura-
tion as shown in Fig. 1. A cylindrical system of coordinates
ðr; h; zÞ is assumed so that in the equilibrium state, the z-axis is
the axis of symmetry of the system. The undisturbed cylindrical
interface is taken at radius R. In the formulation, the superscripts
1 and 2 denote the variables associated with the fluid inside and
outside the interface, respectively. Both fluid phases are assumed
to be incompressible and irrotational. In the undisturbed state,
viscous fluid of thickness h1, density qð1Þ and viscosity lð1Þ occu-
pies the inner region r1 < r < R and viscous fluid of thickness h2,
density qð2Þ, and viscosity lð2Þ occupies the outer region
R < r < r2. Surface tension at the interface is taken as r. The
bounding surfaces r ¼ r1 and r ¼ r2 are considered to be rigid.
The temperatures at r ¼ r1; r ¼ R; and r ¼ r2 are T1;T0; and T2,
respectively.

On applying the small axisymmetric disturbances to the equilib-
rium state, the interface can be expressed as:

F r; z; tð Þ ¼ r � R� g z; tð Þ ¼ 0 (2.1)

where g is the perturbation in the radius of the interface from the
equilibrium value R, and for which the outward unit normal vector
is given by

n¼ rF

rFj j ¼ 1þ @g
@z

� �2
( )�1=2

er �
@g
@z

ez

� �
(2.2)

where er and ez are unit vectors along the r and z directions,
respectively.

The velocity is expressed as the gradient of a potential function
and the potential functions satisfy the Laplace equation as a con-
sequence of the incompressibility constraint. That is,

r2/ðjÞ ¼ 0 ðj ¼ 1; 2Þ (2.3)

At the walls normal velocity vanishes; hence,

@/ðjÞ

@r
¼ 0 at r ¼ rj for ðj ¼ 1; 2Þ (2.4)

It is assumed that phase-change takes place locally in such a way
that the net phase-change rate at the interface is equal to zero. Lee
[9] derived the interfacial mass and heat transfer conditions for
Rayleigh–Taylor instability of cylindrical flow. The interfacial
condition, which expresses the conservation of mass across the
interface, is given by the equation

q
@F

@t
þr/ � rF

� �� �� �
¼ 0 (2.5)

where �½ �½ � represents the difference in a quantity across the inter-
face. Using Eqs. (2.1) and (2.5) we get

q
@/
@r
� @g
@t
� @g
@z

@/
@z

� �� �� �
¼ 0 at r ¼ Rþ g (2.6)

The interfacial condition for energy transfer proposed by Lee [9]
is expressed as

Lqð1Þ
@F

@t
þr/ð1Þ � rF

� �
¼ S gð Þ at r ¼ Rþ g (2.7)

where L is the latent heat released during phase transformation
and S(g) denotes the net heat flux from the interface. In deriving
Eq. (7), Lee [9] assumed that the amount of latent heat released
depends mainly on the instantaneous position of the interface.

In the equilibrium state, the heat fluxes in the positive r-
direction in the fluid phases 1 and 2, which are �K1 T1 � T0ð Þ=
R ln R1=Rð Þ and �K2 T0 � T2ð Þ=R ln R=R2ð Þ, respectively, where
K1 and K2 denote the heat conductivities of the two fluids. The
expression for S(g) as proposed by Nayak and Chakraborty [5] for
the cylindrical geometry is

S gð Þ ¼ K2 T0 � T2ð Þ
Rþ gð Þ ln r2 � ln Rþ gð Þð Þ �

K1 T1 � T0ð Þ
Rþ gð Þ ln Rþ gð Þ � ln r1ð Þ

(2.8)

On expanding S(g) about r¼R, i.e., at g¼ 0,

S gð Þ ¼ S 0ð Þ þ gS0 0ð Þ þ 1

2
g2S00 0ð Þ þ 1

6
g3S000 0ð Þ þ � � � (2.9)

Since S 0ð Þ ¼ 0, from Eq. (2.8) we get:

K2 T0 � T2ð Þ
R ln r2=Rð Þ ¼

K1 T1 � T0ð Þ
R ln R=r1ð Þ ¼ G;where G is a constant (2.10)

hence in the equilibrium state, heat fluxes across the interfaces are
equal.Fig. 1 Equilibrium configuration of the system
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Using Eq. (2.1), with the Eqs. (2.7)–(2.10), the equation of
energy transfer becomes:

qð1Þ
@/ð1Þ

@r
� @g
@t
� @g
@z

@/ð1Þ

@z

 !
¼ a gþ a2g

2 þ a3g
3

� �
(2.11)

where a ¼ G logðr2=r1Þ
LR logðr2=RÞ logðR=r1Þ

;

a2 ¼
1

R
� 3

2
þ 1

logðr2=RÞ �
1

logðR=r1Þ

� �

a3 ¼
1

R2

�
11

6
� 2 logðR2=r1r2Þ

logðr2=RÞ logðR=r1Þ

þ log3ðr2=RÞ þ log3ðR=r1Þ
logðr2=RÞ logðR=r1Þ½ �2 logðr2=r1Þ

�

With mass transfer across the interface, interfacial condition for
the conservation of momentum is given by

qð1Þðr/ð1Þ � rFÞ @F

@t
þr/ð1Þ � rF

� �

¼ qð2Þðr/ð2Þ � rFÞ @F

@t
þr/ð2Þ � rF

� �
þ ðp2 � p1 � 2lð2Þn � r � r/ð2Þ � n
þ 2lð1Þn � r � r/ð1Þ � nþ rr � nÞ rFj j2 (2.12)

where p represents the pressure, r denotes the surface tension
coefficient, and n is the unit normal vector at the interface. Sur-
face tension has been assumed to be a constant, neglecting its
dependence on temperature.

Eliminating the pressure term using Bernoulli’s equation,
Eq. (2.12) reduces to""

q

(
@/
@t
þ 1

2

@/
@r

� �2

þ @/
@z

� �2
" #

�
�

1þ @g
@z

� �2	�1

� @/
@r
� @g
@z

@/
@z

� �
@/
@r
� @g
@t
� @g
@z

@/
@z

� �)

þ 2l 1þ @g
@z

� �2
( )�1

@2/
@r2
� 2

@g
@z

@2/
@r@z

þ @g
@z

� �2 @2/
@z2

" ###

¼ �r

"
@2g
@z2

� �
1þ @g

@z

� �2
( )�3=2

þ r Rþ gð Þ�1

� 1þ @g
@z

� �2
( )�1=2#

(2.13)

We are using spatiotemporal multiple expansion method (Ref. [9])
to study the nonlinear stability analysis of the considered system.
Let us assume the following expansion of the variables:

g ¼
X3

n¼1

engnðz0; z1; z2; t0; t1; t2Þ þ Oðe4Þ (2.14)

/ðjÞ ¼
X3

n¼1

en/ðjÞn ðr; z0; z1; z2; t0; t1; t2Þ þ Oðe4Þ (2.15)

where e is a small parameter indicating the order of the perturba-
tion and zn ¼ enz; tn ¼ en tðn ¼ 0; 1; 2Þ. The variables g and /ðjÞ

appearing in Eqs. (2.6), (2.11), and (2.13) are expressed in
Maclaurin series around r¼R. Then we used the expression for
g and /ðjÞ from Eqs. (2.14) and (2.15) in the equation so obtained.
Finally, we equate the coefficients of equal powers in e to obtain

the linear and the successive nonlinear partial differential equa-
tions of various orders.

3 Linear Theory

The solution of Eq. (2.3) using the boundary conditions, can be
written as

g1 ¼ Aðz1; z2; t1; t2Þei# þ �Aðz1; z2; t1; t2Þe�i# (3.1)

/ð1Þ1 ¼
1

k

a

qð1Þ
� ix

� �
Aðz1; z2; t1; t2ÞEð1ÞðkrÞei# þ c:c: (3.2)

/ð2Þ1 ¼
1

k

a

qð2Þ
� ix

� �
Aðz1; z2; t1; t2ÞEð2ÞðkrÞei# þ c:c: (3.3)

where

Eð1ÞðkrÞ ¼ I0ðkrÞK1ðkr1Þ þ I1ðkr1ÞK0ðkrÞ
I1ðkRÞK1ðkr1Þ � I1ðkr1ÞK1ðkRÞ (3.4)

Eð2ÞðkrÞ ¼ I0ðkrÞK1ðkr2Þ þ I1ðkr2ÞK0ðkrÞ
I1ðkRÞK1ðkr2Þ � I1ðkr2ÞK1ðkRÞ (3.5)

# ¼ kz0 � xt0

with ImðkrÞ and KmðkrÞðm ¼ 0; 1Þ representing the modified Bes-
sel functions of the first and second kinds of order m, respectively.

Substituting Eqs. (3.1)–(3.3) into the linear form of the momen-
tum equation, we get

Dðx; kÞ ¼ a0x
2 þ ia1xþ a2 ¼ 0 (3.6)

where a0 ¼ qð1ÞEð1ÞðkRÞ � qð2ÞEð2ÞðkRÞ

a1 ¼ aðEð1ÞðkRÞ � Eð2ÞðkRÞÞ þ 2k2ðl1Fð1ÞðkRÞ � l2Fð2ÞðkRÞÞ

a2 ¼ �rkðk2 � 1

R2
Þ � 2k2a

lð1Þ

qð1Þ
Fð1ÞðkRÞ � lð2Þ

qð2Þ
Fð2ÞðkRÞ

� �

Fð1ÞðkRÞ ¼ Eð1ÞðkRÞ � 1

kR
; Fð2ÞðkRÞ ¼ Eð2ÞðkRÞ � 1

kR

when there is no heat and mass transfer (a ¼ 0) across the inter-
face, Eq. (3.6) reduces to the same expression as obtained by
Asthana et al. [13].

On applying Routh–Hurwitz criteria in Eq. (3.6), the stability
condition can be written as a0 > 0; a1 > 0; a2 > 0.

Using the properties of Modified Bessel functions, we have
a0 > 0 trivially, and since a;lð2Þ; and lð1Þ are positive, a1 > 0.

As such, the condition of stability gives rise to a2 > 0 and the
condition of marginal state is given by a2 ¼ 0

i:e:: r k2
c �

1

R2

� �
þ 2kca

lð1Þ

qð1Þ
Fð1ÞðkcRÞ � lð2Þ

qð2Þ
Fð2ÞðkcRÞ

� �
¼ 0

(3.7)

It can be concluded that if fluids are inviscid (lð1Þ ¼ lð2Þ ¼ 0),
heat transfer has no effect on the stability criteria.

4 Second-Order Solution

Using the first-order solution, the equation for second order
solution is given by

r2
0/
ðjÞ
2 ¼ �2i

a

qðjÞ
� ix

� �
EðjÞðkrÞ @A

@z1

ðj ¼ 1; 2Þ (4.1)

where

r2
0 ¼

@2

@r2
þ 1

r

@

@r
þ @2

@z2
0
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and the boundary conditions at r¼R

qðjÞ
@/ðjÞ2

@r
� @g2

@t0

( )
� ag2

¼ qðjÞ
a

qðjÞ
� ix

� 	
1

R
� 2kEðjÞðkRÞ

� 	
þ aa2

� �
A2e2i#

þ qðjÞ
@A

@t1

ei# þ c:c:þ 2a
1

R
þ a2

� �
Aj j2 ðj ¼ 1; 2Þ (4.2)

qð2Þ
@/ð2Þ2

@r
� qð1Þ

@/ð1Þ2

@r
� qð2Þ � qð1Þ
n o @g2

@t0

¼ q
a
q
� ix

� �
1

R
� 2kEðkRÞ

� �� �� �
A2e2i#

þ qð2Þ � qð1Þ
n o @A

@t1
ei# þ c:c: (4.3)

q
@/2

@t0

þ 2l
@2/2

@r2

� �� �
þ r

@2g2

@z2
þ g2

R2

� �

¼
(
� x2

2
q E2ðkRÞ � 3

 �� � 

þ a2

2q
1þ E2ðkRÞ
� � 

� iax E2ðkRÞ
� � 

� 2lk2 a
q
� ix

� �
3þ 2

k2R2
� EðkRÞ

kR

� �� �� �

þ r
2R3
ðR2k2 þ 2Þ

)
A2e2ih � q

k

a
q
� ix

� �
EðkRÞ

� �� �
@A

@t1
eih

þ c:c:þ
���

q
a2

q2
þ x2

� �
1� E2ðkRÞ

 �

þ 4lak2

q
1þ 2

k2R2
þ EðkRÞ

kR

� ���
� r

R3
ðR2k2 � 2Þ

�
Aj j2

(4.4)

The nonsecularity conditions for the existence of the uniformly
valid solutions are

@A

@t1
þ Vg

@A

@z1

¼ 0 (4.5)

and its conjugate relation. Here, Vg denotes the group velocity of
the wave and defined as

Vg ¼
dx
dk

The solution of Eqs. (4.1)–(4.4) gives rise to

g2 ¼ �2
1

R
þ a2

� �
Aj j2þA2e2i# þ �A2e�2i# (4.6)

/ðjÞ2 ¼
�
� i

k

a
qðjÞ
� ix

� 	�
rL
ðjÞ
1 ðkrÞ þ rjL

ðjÞ
2 ðkrÞ

� REðjÞðkRÞ � rjL
ðjÞ
3 ðkRÞ

h i
EðjÞðkrÞ

	
@A

@z1

þ 1

k

@A

@t1

EðjÞðkrÞ
�

ei#

þ B
ðjÞ
2 EðjÞð2krÞA2e2i# þ c:c:þ bðjÞðt0; t1; t2Þ ðj ¼ 1; 2Þ

(4.7)

where

A2 ¼ �
2k

Dð2x; 2kÞ

(""
q

ix
k

Eð2kRÞbþ q
2

E2ðkRÞ a
q
� ix

� �2

þ 3x2q2 þ a2

2q
� 4lkbFð2kRÞ � 2k2l

a
q
� ix

� �

� 3þ 2

k2R2
� EðkRÞ

kR

� �##
þ r

2R3
k2R2 þ 2
� �)

Aj j2 (4.8)

B
ðjÞ
2 ¼

1

2k
bðjÞA2 þ a

qðjÞ
� 2ix

� �
A2

� �
(4.9)

bðjÞ ¼ a

qðjÞ
� ix

� �
1

R
� 2kEðjÞðkRÞ

� �
þ aa2

qðjÞ
(4.10)

qð2Þ
@bð2Þ

@t
� qð1Þ

@bð1Þ

@t
¼
���

q
a2

q2
þ x2

� �
1� E2

nðkRÞ

 �

þ 4lak2

q

� 1þ 2

k2R2
þ EðkRÞ

kR

� ���

� r
R3
ðR2k2 � 4� 2Ra2Þ

	
Aj j2 (4.11)

L
ðjÞ
1 ðkrÞ ¼ I1ðkrÞK1ðkrjÞ � I1ðkrjÞK1ðkrÞ

I1ðkRÞK1ðkrjÞ � I1ðkrjÞK1ðkRÞ ;

L
ðjÞ
2 ¼

K0ðkrÞI0ðkrjÞ � K0ðkrjÞI0ðkrÞ
I1ðkRÞK1ðkrjÞ � I1ðkrjÞK1ðkRÞ ;

L
ðjÞ
3 ðkrÞ ¼ I0ðkrjÞK1ðkRÞ þ I1ðkRÞK0ðkrjÞ

I1ðkRÞK1ðkrjÞ � I1ðkrjÞK1ðkRÞ

Here, we assumed that Dð2x; 2kÞ 6¼ 0.

5 Third-Order Solution

For the third-order solution, we have

r2
0/
ðjÞ
3 ¼ �

@2/ðjÞ1

@z2
1

� 2
@2/ðjÞ1

@z0@z2

� 2
@2/ðjÞ2

@z0@z1

ðj ¼ 1; 2Þ (5.1)

On substituting the values of g1 and /ðjÞ1 from Eqs. (3.1)–(3.3)
and g2 and /ðjÞ2 from Eqs. (4.6)–(4.7), the expressions for /ðjÞ3 can
be written as

/ðjÞ3 ¼ �
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k
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qðjÞ
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2
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k
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where the expressions for H1 and J1 can be determined from the
boundary conditions.

The third order solution, along with the condition for third order
perturbation to be nonsecular, can be written as

i
@A

@t2

þ Vg
@A

@z2

� �
þ P

@2A

@z2
1

¼ QA2 �Aþ RA (5.3)

here

P ¼ 1

2

@Vg

@k

R ¼ �t
@D

@k

@D

@x

� ��1

where t can be defined as k ¼ kc þ te2 with kc equals to critical
wave number.

Introducing the transformations (Ref. [9])

1 ¼ e�1ðz2 � Vgt2Þ ¼ ðz1 � Vgt1Þ ¼ eðz� VgtÞ and s ¼ t2 ¼ et1

¼ e2t

Equation (5.3) becomes

i
@A

@s
þ P

@2A

@12
¼ QA2 �Aþ RA (5.4)

Equation (5.4) is a complex Ginzburg–Landau equation, i.e., P, Q,
and R are complex quantities.

The stability of the Ginzburg–Landau equation (Eq. (5.4)) has
been discussed by Lange and Newell [18]. They showed that the
stability conditions are

PrQr þ PiQi > 0 and Qi < 0 (5.5)

provided that Rr ¼ 0.
It was found that the condition Rr ¼ 0 is satisfied when x ¼ 0,

and Pr ¼ Qr ¼ 0. Using these conditions, Eq. (5.4) reduces to the
nonlinear diffusion equation,
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If fluids are inviscid (lð1Þ ¼ lð2Þ ¼ 0), the expression for Qi is
reduced in the same expression as obtained by Lee [9].

The solution of the nonlinear diffusion equation (Eq. (5.6)) is
valid near the marginal state, i.e., x ¼ 0, and therefore is used to
study the stability of the system. Near the marginal state, the
inequalities (Eq. 5.5)) reduces to

Pi < 0 and Qi < 0 (5.7)

6 Comparison With Previous Results

Lee [9] studied the nonlinear Rayleigh–Taylor instability of
inviscid fluids in a cylindrical geometry when there is heat and
mass transfer across the interface. He took the nondimensional pa-
rameter d ¼ R3a=qð1Þr and obtained the values of d for which the
system is stable. We compared our results with the results
obtained by Lee [9] to study the effect of viscosity on the consid-
ered system in Figs. 2 and 3. We took the following parametric
values as considered by Lee [9]:

q 1ð Þ ¼ 3:652� 10�4 gm=cm3; q 2ð Þ ¼ 5:97� 10�2 gm=cm3;

r ¼ 0:06 dyne=cm lð1Þ ¼ 0:00018 poise; lð2Þ ¼ 0:01 poise;

In Fig. 2, we plotted the variation of nondimensional parameter
d with respect to the vapor thickness h1 for the inviscid potential
flow analysis (Ref. [9]) and viscous potential flow analysis when
r1 ¼ 1 cm and r2 ¼ 2 cm, taking heat and mass transfer into the
account. The region above the curve is the stable region, while the
region below the curve is the region of instability. It was observed
that the marginal stability curve obtained for VPF solution is
below in comparison to the IPF solution. Viscous potential flow
analysis contains the effect of normal stresses while inviscid
potential flow ignores the contribution of viscosity at all. This
indicates that VPF solution is more stable than the IPF solution. In
other words, we can say, the effect of viscosity is stabilizing the
liquid-vapor interface in the nonlinear analysis.

Figure 3 shows a comparison between the neutral curves of
nondimensional parameter d with respect to the vapor thickness
h1 for the inviscid potential flow analysis (Ref. [9]) and viscous
potential flow analysis when r1 ¼ 1 cm and r2 ¼ 5 cm. It was
observed that, in this case, the curves shift upwards; however, the
trend is similar as in Fig. 2. It concludes that on increasing the an-
nular region, the disturbance waves grow.

7 Numerical Results and Discussion

In this section, the numerical computation has been carried out
using the stability expression (Eq. (5.7)) for a film boiling condi-
tion. Steam and water have been taken as working fluids identified
with phase 1 and phase 2, respectively, such that T1 > T0 > T2.
We treat steam as incompressible since the Mach number is
expected to be small. In film boiling, the water-steam interface is
in saturation condition and the temperature T0 is equal to the satu-
ration temperature.

qð1Þ ¼ 0:001 gm=cm
3; qð2Þ ¼ 1:0 gm=cm

3

lð1Þ ¼ 0:00001 poise; lð2Þ ¼ 0:01 poise; r ¼ 72:3 dyne=cm

Fig. 2 Comparison between the neutral stability curves
obtained for the IPF analysis as well as VPF analysis for
r1 5 1 cm and r2 5 2 cm
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The radii of the inner and outer cylinder are 1 cm and 2 cm,
respectively. At the interface, phase change is taking place. The
stable and unstable regions are shown in the following figures. ‘S’
and ‘U’ denote nonlinearly stable and unstable regions, respec-
tively. In the following paragraphs, the effect of various physical
parameters on the onset of instability is interpreted through vari-
ous figures.

The variation of wave number k with respect to vapor thickness
h1 for the different values of heat transfer coefficient a is shown in
Fig. 4. The neutral stability curves divide the plane into the unsta-
ble region above the curve and stable region below the curve. It is
also observed that, as the heat transfer coefficient increases, the
stable region increases, which shows that the heat and mass trans-
fer phenomenon is stabilizing the classically unstable system. The
effect of heat and mass transfer can be explained in terms of local
evaporation and condensation at the interface. At a perturbed
interface, crests are warmer because they are closer to the hotter
boundary on the vapor side; thus local evaporation takes place,
whereas troughs are cooler and thus condensation will take place.
The liquid is protruding to a hotter region and the evaporation will
diminish the growth of disturbance waves. It can also be seen
from Fig. 4 that, as vapor thickness increases, the stable region
decreases. In other words, we can say if the vapor layer is thinner,
the system will easily stabilize.

In Fig. 5, the neutral curves for the critical value of wave num-
ber with respect to the heat transfer coefficient a for the different

values of vapor thickness h1 is shown. It is observed that as vapor
thickness increases, the stable region decreases and so vapor
thickness plays a destabilizing role. As vapor thickness increases
at the crests, more evaporation will take place. This additional
evaporation will increase the amplitude of the disturbance waves
and the system becomes destabilized.

A comparison between the neutral curve of wave number
obtained in the linear and nonlinear analysis for both inviscid
and viscous potential flow analysis is made in Fig. 6 when
a ¼ 1:0 gm=cm

3
s. It is clear from the figure that the stable region

decreases in the nonlinear analysis as compared to the linear anal-
ysis for the same parametric values in inviscid as well as viscous
flow analysis. This concludes that the nonlinearity reduces the sta-
bility of the system. It is also observed that viscous nonlinear anal-
ysis is more stable than inviscid nonlinear analysis, while inviscid
linear analysis is more stable than nonlinear viscous analysis.

The effect of viscosity ratio of two fluids lðlð1Þ=lð2ÞÞ on the
neutral curve for wave number is studied in Fig. 7. It is observed
that as l increases, the unstable region grows, which concludes
that the viscosity ratio l is destabilizing the interface. As viscosity
ratio l is directly proportional to the lower fluid viscosity and
inversely proportional to the upper fluid viscosity, the lower fluid

Fig. 4 The neutral curves of wave number versus vapor thick-
ness h1 for the different values of heat transfer coefficient a

Fig. 5 The neutral curves of wave number versus heat transfer
coefficient a for the different values of vapor thickness h1

Fig. 6 Comparison between the linear and nonlinear stability
analysis for vapor-water system

Fig. 3 Comparison between the neutral stability curves
obtained for the IPF analysis as well as VPF analysis for
r1 5 1 cm and r2 5 5 cm
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viscosity increases the amplitudes of disturbance waves while
upper phase viscosity is stabilizing the interface in the nonlinear
analysis.

8 Conclusion

The nonlinear Rayleigh–Taylor instability of the interface of
two viscous and incompressible fluids confined in a concentric
annulus in the presence of heat and mass transfer was carried out
using viscous potential flow theory. The method of multiple
expansions was used for the investigation and it was shown that
the evolution of the amplitude is governed by a Ginzburg–Landau
equation. Nonlinearity has an important role to play on the stabil-
ity of the system in the presence of heat and mass transfer. It was
observed that when increasing vapor thickness, the interface is
destabilizing while heat and mass transfer phenomena are stabiliz-
ing the classically unstable system. The viscosity of the upper
fluid is stabilizing the interface while lower fluid viscosity desta-
bilizes the interface. Nonlinearity reduces the region of stability.
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