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ABSTRACT1

This paper proposes a multiscale mechanistic approach to 
damage in short-fiber polymer composites (SFPC). At the 
microscale, the damage mechanisms are analyzed using 
micromechanical modeling, and the associated damage 
variables are defined. The stiffness reduction law dependent on 
these variables is then established. The macroscopic response is 
determined using thermodynamics of continuous media, 
continuum damage mechanics and finite element analysis. Final 
failure resulting from saturation of matrix microcracks, 
fiber/matrix debonding, fiber pull-out and breakage is modeled 
by a vanishing element technique. The model was validated 
using the experimental data and results from literature, as well 
as those obtained from a random glass/vinyl ester system. 

 
INTRODUCTION 

The word “short-fiber composite” used in this paper is to 
exclude continuous fiber composites but not to restrict 
consideration to fiber lengths lower than some arbitrary value. 
Damage in short-fiber polymer composites is a very complex 
phenomenon. At the microscale, damage can start with the 
occurrence of matrix microcracks that propagate and weaken 
the fiber tow/matrix and fiber/matrix interfaces and lead to 
debonding of fiber tows and fibers. Also, it can begin with the 
debonding mechanism at weakened interfaces, which will in 
turn induce matrix cracking. Excessive matrix cracking and 
fiber/matrix decohesion at higher loading levels will engender 
fiber pull-out and breakage. These damage mechanisms 
strongly affect the homogenized behavior of the composite 
layer or of the composite representative volume element 
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(mesoscale). Finally, accumulation of damage leads to initiation 
and propagation of a macroscopic crack, and the composite 
structure (macroscale) will fail.  Fig. 1 gives a schematic 
descriptions of different scales considered in the analysis. 
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Figure 1.  A multiscale modeling approach to damage 
 
In this paper, a multiscale mechanistic approach to damage 

in SFPC is developed based on micromechanical and 
continuum damage mechanics descriptions to determine the 
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macroscopic response of these materials suffering from matrix 
cracking and fiber/matrix debonding. Modeling matrix cracking 
coupled with fiber/matrix debonding starts from the modified 
Eshelby-Mori-Tanaka formulation [1, 2] by Qu [3] applied to a 
three-phase composite. In this formulation, imperfect 
fiber/matrix interfaces are accounted for using the concept of a 
“spring layer” of vanishing thickness surrounding the fiber. 
Matrix microcracks parallel to each other and to the fibers are 
modeled as the second inclusion phase with zero stiffness.  
Such a composite containing aligned fibers, matrix microcracks 
and imperfectly bonded interfaces is defined as a reference 
composite. From this micromechanical analysis, two damage 
variables are defined. The first variable is the crack density 
while the second one is linked to the compliance of the spring 
layer representing the weakened interface. Next, the stiffness of 
the random fiber composite containing random matrix 
microcracks and degraded interfaces is calculated from the 
stiffness of the reference composite averaged over all possible 
orientations and weighted by an orientation distribution 
function. Since matrix cracking and fiber/matrix debonding are 
not independent mechanisms, the relationship between the 
corresponding damage variables needs to be identified 
experimentally. This relationship expresses how fiber/matrix 
debonding can evolve with matrix cracking. 

Finally, the macroscopic response is determined by means 
of a continuum damage mechanics formulation similar to that 
used by Nguyen and Khaleel [4, 5], which extends the Renard 
et al.’s [6] damage model formulation for continuous fiber 
composites to randomly oriented short-fiber composites.  In this 
formulation, the damage evolution law is obtained using a 
damage criterion and the concepts of thermodynamics of 
continuous media. Failure as a result of excessive matrix 
cracking, fiber/matrix debonding, fiber pullout and rupture 
leading to initiation and propagation of a macroscopic crack is 
modeled by a vanishing element technique. 

The model was validated using the experimental data and 
results by Meraghni and Benzeggagh [7] as well as those 
obtained from a random glass/vinyl ester system. 

PROBLEM FORMULATION 
Micromechanical modeling. Consider a short fiber 

composite in which the fiber tows and fiber-shape matrix 
microcracks are unidirectional.  In addition, this composite 
contains imperfect fiber/matrix interfaces. The as-defined 
composite serves as the reference composite. Due to 
degradation at the interface, the fiber/matrix bonding becomes 
imperfect. It is assumed that interfacial deterioration has not led 
to fiber pull-out yet so that the concept of a spring layer of 
vanishing thickness used by Qu [3] can still be applied to 
characterize the imperfect bonding. In such a case, the 
interfacial tractions are still continuous, but a displacement 
discontinuity may happen at the interface.  Qu modified the 
structure of the Mori-Tanaka solution to fully account for the 
existence of weakened interfaces. Accordingly, the stiffness of 
a composite containing n aligned ellipsoidal inclusion phases 
(of volume fractions fi) with weakened interfaces is given by: 
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where and mC ),..,1( nii =C are the stiffness tensors of the 
matrix and inclusions, respectively.  denote the fiber 
concentration matrices given by 
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with the modified Eshelby tensor defined by Qu [3] in terms of 
the Eshelby tensor S and the interface compliance H as: 
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To obtain the solution for a composite containing imperfect 
fiber/matrix interfaces and a given volume fraction of matrix 
microcracks, we consider a hybrid inclusion system in which 
the microcracks are the second inclusion phase of zero 
stiffness. Consequently, the stiffness of such a composite reads: 

)4(0
)::::(

:)::(lim

2

222211112211m

222111mm

→
++++

++=

C
ACHACHAAI

ACACCC
fffff

fff
 

Next, it is necessary to define the damage variables 
associated with the governing damage mechanisms. Prior to 
final failure, these mechanisms can be classified into two 
categories [7]. The first category is related to matrix cracking 
and subsequent growth of microcracks between fiber tows 
while the second one corresponds to decohesion between fiber 
tows and fiber/matrix debonding. In this analysis, the matrix 
microcrack volume fraction  is used as the damage variable 
describing matrix cracking, and it is renamed as α while a 
parameter governing the compliance of the fiber/matrix 
interfaces is used as the second damage variable. Before total 
failure, relative sliding between fibers and matrix without 
separation is considered. In addition, the compliance of the 
interface should be comprised between two limiting values. The 
first value is infinite and corresponds to a complete debond 
while the second one is zero, which is the case of a perfectly 
bonded interface [3].  Therefore, the interface compliance can 
be expressed in terms of the parameter β defined as: 
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where r is the fiber radius, and the matrix elastic modulus. 
β* is linked to the participation rate of fiber/matrix debonding 
in the damage process and is taken as the damage variable 
associated with this mechanism. β* varies from 0 to . The 0 
value represents a perfectly bonded interface while advanced 
stages of degradation approaching complete debonding is 
characterized by . Since matrix cracking is coupled 
with interfacial debonding, it is necessary to identify the 
relationship: β*=β*(α) experimentally. 
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The stiffness of the random fiber composite containing 
random matrix microcracks is computed from the stiffness of 
the reference composite given by Equations (4), which is 
averaged over all possible orientations and weighted by an 
orientation distribution function [4, 5]: 
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where ),( θαR  is the global stiffness matrix of the reference 
composite, which is obtained by transforming )(αC  into the 
global coordinate system. This coordinate system is defined 
such that the fibers are assumed in the layer plane 1-2 with the 
orientation angle measured relative to the 1-axis. Karcir et al.’s 
[8] orientation distribution function dependent on parameter λ is 
used in Eq. (6). The analysis presented here considers random 
orientations of fibers and microcracks; hence λ is rather small 
and tends to zero when the fibers and microcracks are 
completely random. 

Meso modeling. The damage evolution law in terms of the 
local strains iε  can be obtained using thermodynamics of 
continuous media and a continuum damage mechanics 
formulation similar to that used by Renard et al [6] for 
continuous fiber composites subject to transverse matrix 
cracking. Such a formulation was extended by Nguyen & 
Khaleel [4, 5] to random short-fiber composites containing 
random matrix microcracks. It relies on the use of a 
thermodynamic potential (which is the elastic deformation 
energy), Clausius-Duhem’s inequality (dissipation criterion) 
and a damage criterion. Only independent state variables are 
retained in the dissipation criterion, which are α and iε  in this 
analysis. Using the damage criterion and the consistency 
conditions, the damage evolution law is obtained as 
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where )(c αF  is the damage threshold function that is identified 
using the experimental data providing the crack density as a 
function of the applied stress or strain [4, 5]. Such data can be 
obtained by an amplitude analysis of acoustic emission signals 
(see e.g. [7, 9]).  

Macro modeling.  The stiffness reduction law, constitutive 
relation and damage evolution equation established at the micro 
and meso scales can be introduced into a finite element 
formulation for the analysis of a composite structure.  To this 
end, considering kinematically admissible finite elements under 
small strain assumption, the discretization of the displacement 
field allows computation of the strain increment as )(nq

                                (8)     
at each iteration n of the Newton-Raphson procedure.  and 

are the linear and nonlinear deformation matrices 
dependent on the derivatives of the interpolation functions. The 
damage increment is computed in terms of the strain increment 
using Equation (7), which can be rewritten as: 
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The equilibrium equations obtained from the virtual work 
principle leads to: 
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                                                                   (10)     

where is the tangent stiffness matrix, and is the 
global residual load vector. The iterative procedure converges if 
the norm of is smaller or equal to a prescribed precision.  
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When the damage variable α attains the maximum value 
limα corresponding to the highest crack density, total failure 

occurs, and consequently the material can no longer carry load. 
Total failure is modeled here using a vanishing element 
technique that consists of reducing the local stiffness and 
stresses to zero in a certain number of steps in order to avoid 
numerical instability [4, 5]. To create a computational tool for 
the damage analysis of SFPC structures, the damage model has 
been implemented into the ABAQUS finite element code 
(version 6.4) by means of user-subroutines. 

 
EXPERIMENTAL IDENTIFICATION OF DAMAGE 

When composite materials are subjected to continuously 
increasing loads until failure, microstructural damage occurs in 
the material releasing energy in the form of mechanical sound 
waves.  These sound waves known as acoustic emissions (AE) 
can be detected with sensors and recorded for later analysis.  
Previous work by Meraghni & Benzeggagh [7] and by Barre & 
Benzeggagh [8] revealed that the type of damage mechanisms 
occurring during loading could be correlated with the 
amplitudes of AE signals.  A test setup based on these 
references was developed for the acquisition of AE signals 
from random glass/vinyl ester specimens during tensile loading 
to failure. Amplitude information was calculated from each 
acquired waveform and was used to construct a histogram 
showing the number of events versus amplitude. This enabled 
the participation of a given mechanism to the damage process 
to be identified.  The participation rates have allowed the crack 
density and the matrix cracking/fiber-matrix debonding 
relationship β* = β*(α) to be determined. 
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Figure 2. Cumulative amplitude distribution during a tensile 
test for a random glass/vinyl ester specimen. 

 
Figure 2 shows the number of events versus the amplitude 

(dB) of AE signals obtained for a random glass/vinyl ester 
specimen, in which the fiber volume fraction is about 30%, and 
the average fiber tow aspect ratio is of 34. The data in Fig. 2 
enable the determination of the participation rates as follows. 
First, based on Refs [7, 9], AE techniques and scanning 
electron microscopy (SEM) were used to verify that the range 
of amplitudes between 30 and 55dB were attributed to matrix 
cracking and growth of microcracks between the fiber bundles. 
Second, the events recorded within this range during a tensile 
test occurred mostly uniformly over the sample volume (Fig. 3) 
used for strain measurement (extensometer gage length).  This 
reflects the random damage distribution due to matrix cracking.  
 Copyright © 2004 by ASME 
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As a consequence, this range is adopted in this paper to 
determine the participation of matrix cracking in the damage 
process.  Higher amplitude levels are associated with 
fiber/matrix debonding. However, high load levels leading to 
fiber pull-out, rupture, and damage localization were excluded 
from the final damage analysis.  Input for the computer models 
did not include participation rates for crack density calculations 
at the load levels leading to failure.   
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Figure 3. Distribution of AE events along the (glass/vinyl 
ester) specimen length between two sensors. 
 

The participation rates of matrix cracking,  and of both 

matrix cracking and fiber/matrix debonding,  at a given 
applied stress level, i, are defined respectively as: 
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where  is the area bounded by the events versus amplitude 
curve up to 50 dB for a given load level (Fig. 2) and is the  
total area under the number of events versus amplitude curve 
for a given load level.   is the total area of the distribution 
of amplitudes at the ultimate stage prior to final failure 
characterized by the onset of damage localization and 
instabilities.  Based on Ref. [7], the microcrack volume fraction 
(crack density) is given by: 
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where is the fiber tow volume fraction in the composite. bf
The damage variable β* associated with fiber/matrix 

debonding can be expressed in terms of the participation rate 
related to fiber/matrix debonding as: 
                                                                   (13) )(* m

ii PPc −=β
where c is an interface property parameter. It can be identified 
knowing the maximum participation rate of fiber/matrix 
debonding, which corresponds to . was taken to be 
equal to 1 in this analysis. Finally, the relationship between the 
damage variables α and  β* is obtained from Eqs. (12) and (13).  
Figures 4 and 5 respectively show the participation rates of the 
damage mechanisms and the evolution of β* as a function of α 
for the glass/vinyl ester samples. 
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NUMERICAL APPLICATIONS 
The damage model was implemented into the ABAQUS 

finite element code by means of user subroutines. In particular, 
the subroutine UMAT was used for the implementation of the 
constitutive relations. This section presents the simulations of 
the tensile stress/strain responses for the random 1200tex 
glass/epoxy and glass/vinyl ester systems. In the former case, 
the material properties and crack density data were taken from 
Ref. [7].  The crack density data were used to identify the 
damage threshold function in the damage model (Eq. (7)). This 
enabled the simulation of the tensile stress/strain response of 
the glass/epoxy material using the damage model. 

 
Figure 4. Participation rates of the damage mechanisms versus 
the applied stress. 

 
 
Figure 5. Evolution of the damage variable β* as a function of 
the crack density α. 
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Figure 6 shows the predicted stress/strain response 
compared with the experimental results in [7]. Due to the lack 
of information about the participation rate for fiber/matrix 
debonding, only matrix cracking was considered in the 
analysis. Taking into account of the significant scatter in the 
experimental values, the matrix cracking model provided a fair 
prediction of the experimental results. The predicted crack 
density versus applied stress curve is presented in Fig. 7 which 
shows a very good agreement with the experimental data also 
illustrated in the same figure. 

 
 
Figure 6. Tensile stress/strain responses for the random 
1200tex glass/epoxy specimens.  The values denoted by the 
symbols were extracted from the experimental curves in [7]. 

 
 
Figure 7. Applied stress versus crack density for the random 
1200tex glass/epoxy specimens. The experimental values 
denoted by the symbols were from [7]. 
 

Next, the damage model was used to compute the tensile 
stress/strain responses for the random glass/vinyl ester 
specimens. The participation rate (Fig. 4) for matrix cracking 
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obtained from the analysis of acoustic emission signals was 
converted into crack density versus applied stress data to 
determine the damage threshold function for this material. 
Also, the relationship β* = β*(α) identified through the 
participation rates (Fig. 5) was also used  in the damage model 
to account for matrix cracking coupled with fiber/matrix 
debonding. Figures 8 and 9 present the tensile stress/strain 
responses and the applied stress versus crack density for these 
specimens. On the same figures are also shown the 
experimental values.  Figure 8 shows a better agreement with 
the experimental curves when both matrix cracking and 
fiber/matrix debonding were accounted for in the analysis.  The 
evolution of the crack density with the applied stress was very 
well captured by the model both in tendency and numerical 
values (Fig. 9). 

AE events above this 
level were ignored in 
the computation 

Figure 8. Predicted and experimental tensile stress/strain 
responses for the random glass/vinyl ester specimens. 

 
 
Figure 9. Applied stress versus crack density for the random 
glass/vinyl specimens 
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CONCLUSION 

A micro-macro mechanistic approach to damage in short-
fiber polymer composites has been developed in this paper 
starting from the microscale related to the constituents, 
microcracks and interfacial defects to the scale of a 
macroscopic composite structure. Before final failure, matrix 
cracking and interfacial decohesion responsible for the 
reduction of the composite stiffness have been accounted for. 
The elastic and reduced properties of the composite have been 
obtained from micromechanical modeling based on the 
modified Mori-Tanaka model. Two damage variables have 
been defined: one variable is the crack density, and the other 
describes the deterioration of the fiber/matrix interface. The 
continuum composite obtained through this homogenization 
(mesoscale) has been used to establish the constitutive relation 
and the damage evolution law. Finally, the implementation of 
the damage model into the ABAQUS finite element code has 
enabled structural analyses (macroscale) using this model.  
Different scales in modeling have then been bridged.  
Numerical tests have shown that the model provided good 
predictions of the tensile stress/strain responses and the crack 
density versus applied stress for the random glass/epoxy and 
glass/vinyl ester specimens. The model can be used to assist the 
damage assessment for SFPC structures subjected to quasi-
static loading. 
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