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ABSTRACT 

A generalized form of the Ballistic-Diffusive Equations (BDE) 

for approximate solution of the Boltzmann Transport Equation 

(BTE) for phonons is formulated. The formulation presented 

here is new and general in the sense that, unlike previously 

published formulations of the BDE, it does not require a priori 

knowledge of the specific heat capacity of the material. 

Furthermore, it does not introduce artifacts such as media and 

ballistic temperatures. As a consequence, the boundary 

conditions have clear physical meaning. In formulating the 

BDE, the phonon intensity is split into two components: 

ballistic and diffusive. The ballistic component is traditionally 

determined using a viewfactor formulation, while the diffusive 

component is solved by invoking spherical harmonics 

expansions. Use of the viewfactor approach for the ballistic 

component is prohibitive for complex large-scale geometries. 

Instead, in this work, the ballistic equation is solved using two 

different established methods that are appropriate for use in 

complex geometries, namely the discrete ordinates method 

(DOM), and the control angle discrete ordinates method 

(CADOM). Results of each method for solving the BDE are 

compared against benchmark Monte Carlo results, as well as 

solutions of the BTE using standalone DOM and CADOM for a 

two-dimensional transient heat conduction problem at various 

Knudsen numbers. It is found that standalone CADOM (for 

BTE) and hybrid CADOM-P1 (for BDE) yield the best 

accuracy. The hybrid CADOM-P1 is found to be the best 

method in terms of computational efficiency. 

NOMENCLATURE 

f  number distribution function 

0f  equilibrium number distribution function 

G  integrated total phonon intensity [Wm
-2

] 

bG  integrated ballistic component of intensity [Wm
-2

] 

dG  integrated diffusive component of intensity [Wm
-2

] 

 Dirac constant = 1.0546 x 10
-34

 [m
2
kg.s

-1
] 

I  total phonon intensity [Wm
-2

sr
-1

] 

0I  equilibrium phonon intensity [Wm
-2

sr
-1

] 

bI  ballistic component of phonon intensity [Wm
-2

 sr
-1

] 

dI  diffusive component of phonon intensity [Wm
-2

 sr
-1

] 

0 1,J J  constants in spherical harmonics expansion [Eq. (7)] 

Bk  Boltzmann constant = 1.381 x 10
-23

 [m
2
kg.s

-2
K

-1
] 

Kn  Knudsen number 

L  characteristic length scale [m] 

n̂  inward pointing unit surface normal vector 

p  phonon polarization 

q  total heat flux [Wm
-2

] 

bq  ballistic component of heat flux [Wm
-2

] 

dq  diffusive component of heat flux [Wm
-2

] 

ŝ  unit direction vector 

t   time [s] 
*t  non-dimensional time 

T  thermodynamic temperature [K] 

Greek 

gυ  phonon group velocity vector [m/s] 

  overall scattering time scale [s] 

  angular frequency [rad/s] 

  solid angle (sr) 

p  Stefan-Boltzmann constant for phonons [Wm
-2

K
-4

] 

 
INTRODUCTION 

The efficient removal of heat from modern-day solid-state 

electronic and optoelectronic devices is a daunting task, and 

overheating is one of the most common causes of device 

failure. Modeling thermal transport in micro- and nano- scale 

crystalline materials can provide fundamental understanding of 

the mechanisms of heat conduction in semiconductor devices.  

The mean free path of the energy-carrying acoustic wave 

packets (or phonons) in silicon at room temperature is 

approximately 300 nm [1]. On the other hand, characteristic 
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dimensions of modern semiconductor devices range from a few 

tens of nanometers to a few hundreds of nanometers [2]. 

Consequently, heat conduction in such devices cannot be 

described adequately using continuum equations, namely the 

Fourier law of heat conduction. Non-equilibrium heat 

conduction has been successfully modeled in the past using the 

semi-classical Boltzmann Transport Equation (BTE) for 

phonons.  

Even if the physics of phonons were to be neglected, i.e., 

no dispersion, no polarization, frequency-independent (or gray), 

the BTE is a six-dimensional partial differential equation: 3 

spatial coordinates, 2 angular coordinates, and time. This high 

dimensionality of the BTE makes it very challenging to solve, 

even for simple one-dimensional (1D) films. Traditionally, 

stochastic methods, such as the Monte Carlo method, have 

found success in solving high-dimensional partial differential 

equations. For example, the Monte Carlo method has been 

successfully used to solve the BTE or its variants for rarefied 

gas (also known as direct simulation Monte Carlo or DSMC) 

[3], photons (or radiative transport) [4,5], electrons, and other 

charge carriers [6,7]. The advantage of the Monte Carlo method 

is that it is tractable and almost linearly scalable for large 

number of dimensions, and is amenable to addressing complex 

physics via interactions between the stochastic samples. The 

shortcoming of this method is that it is prohibitively expensive 

for practical engineering applications. In the case of phonon 

transport, for example, studies [8-10] have shown that even 

simulation of heat conduction in a 1D thin film can require 

several tens of hours of CPU time. Perhaps, the most notable 

disadvantage of using the Monte Carlo method is that the 

solution inherently contains statistical errors. While these errors 

can be reduced by using a large number of stochastic samples, 

they cannot be completely eliminated. Often, the errors are 

large enough to cause spurious oscillations and non-

convergence, if the Monte Carlo solver were to be coupled to a 

deterministic solver for some other aspect of the problem, such 

as for charge carrier transport. In light of these issues, it is fair 

to contend that the Monte Carlo method is useful for generating 

benchmark solutions for simple problems but not practical for 

simulating non-equilibrium heat conduction in large-scale 

devices, and deterministic methods for solving the BTE are 

desired. 

Deterministic solution of the BTE for phonons in multi-

dimensional geometry has been attempted and brought to the 

limelight primarily by Murthy and co-workers [11-13]. The 

algorithms used by Murthy and co-workers are directly adapted 

from existing algorithms in neutron and photon (radiation) 

transport. Most notably, this particular group has used the 

Discrete Ordinates Method (DOM) [14] based on the SN 

approximation, and its variants. Over the years, the algorithms 

have been refined to improve accuracy and efficiency. For 

example, a switch has been made from the standard DOM to 

the so-called Control Angle Discrete Ordinates Method 

(CADOM) [15,16] to eliminate so-called ―ray effects‖ and 

―false scattering‖ [17]. Also, higher-order and more robust 

discretization schemes in space, such as the SMART scheme 

[18], has been introduced [11,12] to improve accuracy and 

convergence. While the discrete ordinates method has shown 

tremendous promise for solution of the BTE for phonons, it is 

still quite expensive. In particular, in the ballistic regime (high 

Knudsen number), a large number of directions (or control 

angles) have to be used to attain acceptable accuracy, as has 

been shown in previously published results [11-13], and will 

also be shown in this article. This implies solution of a large 

number of partial differential equations. In the diffusive regime 

(low Knudsen number), on the other hand, since phonon 

transport is diffusive, use of DOM with high angular resolution 

is wasteful and, perhaps, use of a simpler diffusive 

approximation is warranted for improved efficiency. One 

method which has often been used to solve the BTE is the 

method of spherical harmonics (or PN approximation). In this 

method, the angular directions are not discretized. Rather, 

spherical harmonic basis functions, namely Legendre 

polynomials, are used to capture the angular variations in the 

intensity analytically. The lowest order spherical harmonics 

approximation, namely the P1 approximation, reduces the BTE 

to a single Helmholtz equation with Robin boundary 

conditions, making it an attractive choice for solution of the 

BTE since only one partial differential equation has to be 

solved, as opposed to several tens in the discrete ordinates 

method. Unfortunately, the P1 approximation is reasonably 

accurate only in the diffusive (low Knudsen number) regime, 

and its accuracy at intermediate or high Knudsen numbers is 

unacceptable, as conclusively demonstrated for photon 

(radiation) transport [19,20]. Therefore, the P1 approximation is 

inappropriate for solution of the BTE in truly non-equilibrium 

scenarios. Higher order PN approximations, as recently 

formulated for radiation transport [21], may be used. However, 

use of higher order PN approximations is significantly more 

cumbersome than using the P1 approximation [20,21], and the 

benefits in terms of improved accuracy is often marginal [20].  

The Modified Differential Approximation (MDA) was 

proposed to remove the shortcomings of the P1 approximation 

for intermediate and high Knudsen numbers. In this method, 

first proposed by Olfe [22] and later generalized for radiation 

transport by Modest [23], the intensity of the energy carrier is 

split into two components: ballistic and diffusive. The ballistic 

component is determined using a surface-to-surface exchange 

formulation that employs geometric viewfactors, while the 

spherical harmonics approximation is invoked for the diffusive 

component, for which it is justifiably applicable. The result is a 

hybrid approach that is expected to be efficient and accurate at 

all Knudsen numbers. In the past decade, the MDA approach 

has been adopted for solution of the BTE for phonons by Chen 

and co-workers [24-26], resulting in the so-called ballistic-

diffusive equations (BDE) of phonon transport. In the BDE 

formulation proposed by Chen and co-workers [24-26], the 

specific heat capacity of the material appears as an input. This 

makes direct comparison with results of the BTE difficult, since 

the specific heat capacity of the material is not an input in the 

BTE. Secondly, Chen and co-workers introduce artificial 

temperatures, namely ballistic and media temperatures, in their 

formulation. These temperatures do not have a physical 

meaning and are introduced as mathematical artifacts. As a 

result, they make the formulation—in particular, the boundary 

conditions—difficult to understand and interpret. A final point 
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to note is that the surface-to-surface exchange formulation 

using geometric viewfactors is prohibitive on two counts: (1) it 

is very expensive and tedious for complex multi-dimensional 

geometries in which case determination of the viewfactors itself 

is a monumental task [27], and (2) all surfaces in a heat 

conduction simulations are not necessarily diffuse, and 

therefore, the use of diffuse geometric viewfactors is limiting in 

its scope. 

In this paper, we present a new hybrid formulation (or 

BDE formulation) for solution of the BTE. The new 

formulation does not require a priori knowledge of the specific 

heat capacity of the material, and requires the exact same inputs 

as the original BTE, making direct comparison with the BTE 

possible. While the new formulation is based upon the same 

intensity splitting philosophy originally proposed by Olfe [22] 

for development of the MDA formulation, the resulting BDEs 

are solved using procedures that are general enough to be 

applicable to any arbitrary geometry with arbitrary thermal 

boundary conditions. The ballistic component is determined, in 

this case, using the Discrete Ordinates Method (DOM) and its 

variants such as the Control Angle Discrete Ordinates Method 

(CADOM), while the diffusive component is determined by 

invoking the PN approximation. The result is a hybrid SN-PN 

formulation that is flexible enough to allow any accuracy order. 

As part of this study, direct comparisons are made with 

benchmark results obtained by solving the BTE using the 

Monte Carlo method, as well as standalone DOM or CADOM 

for a transient heat conduction problems at various Knudsen 

numbers. While the results shown here are for the gray BTE, 

the formulation is applicable to the non-gray (frequency 

dependent) BTE without additional modifications. 

 

THEORY AND SOLUTION PROCEDURE 

Quantized lattice vibrations or phonons are the predominant 

carriers of thermal energy in semiconductor materials [28]. If 

the mean free path of the traveling phonons is larger than the 

characteristic dimension of the device being modeled, 

thermodynamic equilibrium ceases to exist, and thus, the 

Fourier law of heat conduction is invalid.  

The Boltzmann Transport Equation (BTE) is a semi-

classical equation, and has been successfully used to model 

particles that interact with each other via short range forces and 

follow a statistical distribution [2,28]. Phonons follow Bose-

Einstein statistics and interact with each other via scattering 

processes, and therefore, can be modeled using the BTE, which 

may be written as [2] 

g

scattering

f f
f

t t

  
      
υ             (1) 

where f  is the distribution function of an ensemble of 

phonons, and gυ  is the group velocity. The left side of Eq. (1) 

represents change of the distribution function due to motion (or 

drift), whereas the right hand side represents change in the 

distribution function due to collisions (or scattering). Drift 

causes the phonon energy distribution function to deviate from 

equilibrium, while collisions tend to restore equilibrium. 

Prior to solution of the BTE for phonons, it is necessary to 

formulate the right-hand-side of Eq. (1). This scattering term is 

complicated if all possible scattering mechanisms are 

considered rigorously. Due to the complexity of the scattering 

term, simplifications and approximations have to be made to 

the BTE before it can be solved.  The most common 

approximation used to simplify the BTE is the single relaxation 

time approximation, whereby the scattering term is expressed 

as  

0

scattering

f ff

t 

 
  

 (2) 

where 
0f  is the equilibrium distribution function (i.e., the 

Bose-Einstein distribution function), and   is the overall 

scattering time-scale of the phonon due to all scattering 

processes in combination. For an isotropic wave vector space, 

the distribution function, f , is a function of seven independent 

variables, i.e., ˆ( , , , )f f t  r s , where t  is time, and   is the 

angular frequency. The space vector r  has 3 components, 

while the direction vector ŝ  has 2 components, namely the 

polar angle  , and the azimuthal angle  . The equilibrium 

Bose-Einstein distribution, 
0f , on the other hand, is 

independent of direction, i.e., 
0 0( , , )f f t  r . The group 

velocity, gυ , is a function of direction, angular frequency and 

temperature, i.e., ˆ( , , )g g Tυ υ s , while the scattering time-

scale,  , is a function of angular frequency and temperature, 

i.e.,  ( , )T   . Equations (1) and (2) can be combined and 

written in terms of the phonon intensity as follows [25]: 

0ˆ( )g g

I II I
I I

t t 

 
     

 
υ υ s  (3) 

where ˆ
g gυ υ s , and the phonon intensity is defined as 

ˆ( , , , ) ( ) / 4gI I t f D    r s υ  (4) 

where ( )D   is the phonon density of states per unit volume 

and is the Dirac constant. 

 

Derivation of Ballistic-Diffusive Equation (BDE) 

Following, the intensity splitting philosophy of Olfe [22], the 

phonon intensity is next split into two components: 

ˆ ˆ ˆ( , , , ) ( , , , ) ( , , , )b dI t I t I t   r s r s r s  (5) 

where 
bI  and 

dI  are ballistic and diffusive components, 

respectively. The ballistic component represents phonons 

emitted from the boundaries and scattered, while the diffuse 

component represents phonons that are emitted from within the 

medium and scattered. The former component is highly 

directional in nature since phonons follow a direct line of sight 

from a hot surface to a cold surface, while the latter component 

is directionally weak since emission is inherently isotropic. 

Substitution of Eq. (5) into Eq. (3), followed by separation of 

the ballistic and diffusive components, yields: 

Ballistic: ˆ( )b b

g b

I I
I

t 


   


υ s  (6a) 
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Diffusive: 0ˆ( )d d

g d

I I I
I

t 

 
  


υ s  (6b) 

Since the diffusive intensity field is a directionally weak 

function, it is justifiable to invoke the first order PN 

approximation for directional variation in the intensity. Thus, 

using the P1 approximation, the diffusive intensity field may be 

written as [19,25] 

0 1
ˆ ˆ( , , , ) ( , , ) ( , , )dI t J t t   r s r J r s  (7) 

where 
0J  is a direction independent scalar coefficient, and 

1J is 

a direction independent vector coefficient. The dot product with 

the direction vector renders the second term in Eq. (7) a scalar. 

Substitution of Eq. (6b) into Eq. (7) yields 

0 1 0 0 1

0 1

ˆ ˆ[ ] [ ]
ˆ ˆ([ ] )g

J I J
J

t 

   
   



J s J s
υ J s s  (8) 

Integrating Eq. (8) over the entire solid angle 4 , and noting 

that 
4

ˆ 0d


  s  and 
4

4
ˆˆ

3
d




  ss  (  is the identity tensor) 

[19], we get 

0 0 0

1

1
( )
3

g

J I J

t 

 
  


υ J  (9) 

Equation (9) has two unknowns, namely 
0J  and 

1J , and cannot 

be solved. In order to derive another additional equation to 

close the system of equations, we multiply Eq. (8) by ŝ  and 

then integrate the resulting equation over the entire solid angle 

4 . After tedious algebra, this yields 

1 1

0g J
t 


   



J J
υ  (10) 

Equations (9) and (10) represent two equations with 2 

unknowns, namely 
0J  and 

1J . In principle, this equation 

system is closed, and can be solved to determine the two 

unknowns. Unfortunately, since Eq. (10) is a vector equation, it 

is quite tedious to solve. In order to eliminate 
1J  in favor of 

0J  

we first differentiate Eq. (9) with respect to time, yielding 

2

0 0 0

12

1
[ ]

3

gJ I J

t t tt 

    
        

υ
J  (11) 

Next, we take divergence of Eq. (10), resulting in 

2 1

1 0[ ] g J
t 


    



J
J υ  (12) 

Substitution of Eq. (12) into Eq. (11) yields 
2

2

20 0 0

1 02

1 1

3 3

g gJ J I
J

t tt   

  
     

 

υ υ
J  (13) 

Substitution of Eq. (9) into Eq. (13) yields 
2

2

20 0 0

0 0 02 2 2

2 1 1 1

3

gJ J I
J J I

t tt   

  
     

 

υ
 (14) 

Equation (14) can be solved to determine 
0J . In principle, once 

0J  has been determined, Eq. (10) can be solved to determine 

1J , and finally, Eq. (7) provides the diffuse component of the 

phonon intensity field. However, for heat transfer calculations, 

we are rarely interested in the intensity. More often, we are 

interested in determining the heat flux, the integrated (over all 

solid angles) intensity, and the divergence of the heat flux. 

Using the P1 approximation, the integrated diffusive intensity 

field may be written as 

0 1 0

4 4

ˆ[ ] 4d dG I d J d J
 

       J s  (15) 

since 
1J  is independent of direction, and 

4

ˆ 0d


  s . 

Substitution of Eq. (15) into Eq. (14) yields an equation for the 

directionally integrated diffusive component of the phonon 

intensity, 
dG : 

2
2

2 0

02 2 2

2 1 4 4

3

gd d

d d

G G I
G G I

t tt

 

  

  
     

 

υ
 (16) 

Equation (16) is the governing equation for the diffusive 

component of the phonon intensity. It is preferable over Eq. 

(14) since the quantity 
dG  has a physical meaning (as 

discussed above), while 
0J  is simply a mathematical quantity 

without any physical meaning. We conclude this discussion on 

derivation of the BDE by noting that the ballistic component of 

the intensity can be determined by solving Eq. (6a), while the 

diffusive component can be determined by solving Eq. (16), 

albeit in integrated form. As to why solution of the integrated 

intensity (as opposed to the directional intensity) is sufficient 

for heat transfer calculations will become clear in the next 

section. One final point to note is that solution of both Eq. (6a) 

and Eq. (16) requires boundary conditions, and the boundary 

conditions are discussed in a later section. 

 

Heat Flux, Divergence of Heat Flux, and Temperature 

The ultimate goal of any heat transfer calculation is to predict 

the normal heat flux at the boundaries and the temperature 

distribution inside the medium. The relationship between these 

engineering quantities and the phonon intensity is discussed in 

this section. 

The heat flux is related to the phonon intensity by the 

relationship [19] 

 
4

ˆI d


 q s  (17) 

which, upon application of the intensity splitting philosophy 

[Eq. (5)], becomes 

4 4 4

ˆ ˆ ˆ( )b d b d b dI I d I d I d
  

         q s s s q q  (18) 

While the solution of the BTE or the BDE provides a 

mechanism to determine the heat flux, in order to determine the 

temperature distribution, one must apply the first law of 

thermodynamics. For static media, the first law may be written 

as [29] 

gen b d gen

U
q q

t


      


q q q  (19) 

where U is the internal energy per unit volume and genq  is the 

heat generation rate per unit volume due to other mechanisms, 

such as electron-phonon or photon-phonon interactions etc. 

Equation (18) has been made use of to derive the last part of 
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Eq. (19). Invoking the P1 approximation to the diffusive 

component of the heat flux in Eq. (18), we obtain 

0 1 1

4 4

4
ˆ ˆ ˆ)

3
d dI d J d

 


      q s ( J s s J  (20) 

Taking divergence of Eq. (20) yields 

1

4

3
d


  q J  (21) 

Substitution of Eq. (9) and Eq. (15) into Eq. (21) yields 

0 0 0 044 1 d d

d

g g

I J J I G G

t t



   

    
             

q
υ υ

 (22) 

In order to derive an expression for the divergence of the 

ballistic component of the heat flux, we integrate Eq. (6a) over 

the all solid angles, yielding 

 
4 4 4

1
ˆ( )b g b bI d I d I d

t
  



   
         

    
  υ s  (23) 

Defining an integrated ballistic intensity as 
4

b bG I d


   and 

using Eq. (18), we get 

b b

g b

G G

t 


   


υ q  (24) 

Substitution of Eqs. (22) and (24) into Eq. (19) yields 

0

0

41 1

41

b b d b

gen

g g

gen

g

G G I G GU
q

t t t

I G G
q

t



  



 

     
             

 
      

υ υ

υ

 (25) 

where 
b dG G G   is the total integrated (over all solid angles) 

phonon intensity. 

The internal energy of a crystalline material is related to its 

temperature through the Bose-Einstein distribution and its 

density of state [2] 
max

min

( , )

exp[ / ] 1p B

D p
U d

k T





 






   (26) 

where the summation is over all polarization branches, and 
Bk  

is the Boltzmann constant. If Eq. (26) is substituted into Eq. 

(25), it becomes clear that determination of the temperature 

field will require solution of a non-linear equation. Under the 

assumption of a linear dispersion relationship and a single 

polarization branch, we obtain the following relationships 
4 4

0

4
;

p p

g

T T
U I

 


 

υ
 (27) 

where 
2

2 4 3/ 40p B gk  υ  is the so-called Stefan-Boltzmann 

constant for phonons [2]. It is worth noting that the expression 

for the Stefan-Boltzmann constant includes the group velocity. 

Only under the assumption of a linear dispersion relationship 

(or no dispersion) is the group velocity a constant. 

Consequently, the Stefan-Boltzmann constant for phonons, 

unlike its photon counterpart, is not a true constant, but one that 

is applicable only under the assumption of no dispersion. 

 

Boundary Conditions for the BDE 

As discussed in Section 2.1, determination of the phonon 

intensity requires solution to Eqs. (6a) and (16). Equation (6a) 

is a first-order partial differential equation in space, and 

therefore, requires only one boundary condition. Physically, the 

intensity is forward propagating, and is required only at the 

point of emission on the boundary. For sub-micron heat 

conduction simulations, two kinds of boundary conditions are 

relevant. The first kind is where the boundary is a thermalizing 

boundary, i.e., one that is analogous to a black surface for 

thermal radiation. It emits phonons based on the equilibrium 

energy distribution and absorbs any phonons that strike it. 

Mathematically, this implies 

0
ˆ( , , , ) ( , , )b w wI t I t r = r s r = r  (28) 

where 
wr  is the location of the boundary (or wall). The second 

kind is an adiabatic boundary that reflects all phonons striking 

it, and absorbs none. The reflection may be diffuse, specular, or 

partially specular. Depending on the reflection characteristics 

of the surface, the total incident radiation to the boundary is re-

distributed into specific directions. The procedure on how to 

apply reflection boundary conditions in the context of the DOM 

or the CADOM, which are the methods employed here, is 

available elsewhere [11,12], and is omitted here for the sake of 

brevity. 

The boundary conditions for the diffusive component of 

the phonon intensity are not as straightforward. Since we are 

solving the governing equation for the integrated intensity, 
dG , 

rather than the intensity itself, the boundary conditions need to 

be formulated accordingly. The most common procedure to 

develop boundary conditions for 
dG  is to apply Marshak‘s 

procedure [19]. Essentially, this amounts to satisfying flux 

conservation at the boundaries. The heat flux normal to a 

boundary is the net effect of phonons emitted from the 

boundary and the phonons absorbed by the boundary. Thus 

0

ˆ ˆ ˆ ˆ0 0

outgoing incoming

0

ˆ ˆ ˆ ˆ0 0

ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

b d

b d

I d I d

I I d I d



    

   

 

 

n s n s<

n s< n s<

q n q n q n n s n s

n s n s

 (29) 

where n̂  is the inward facing surface normal to the boundary. 

If the ballistic component of the heat flux at the boundaries is 

written as 

0

ˆ ˆ 0

ˆ ˆ ˆ
b bI I d  

n s<

q n n s  (30) 

it follows from Eqs. (29) and (30) that the diffuse component is 

ˆ ˆ 0

ˆ ˆ ˆ
d dI d  

n s<

q n n s  (31) 

Equation (30) is consistent with the intensity boundary 

conditions discussed above for the ballistic component. 

Application of the P1 approximation [Eq. (7)] to Eq. (31), 

followed by substitution of Eq. (20) yields 

0 1

ˆ ˆ 0

0 1 0

ˆ ˆ ˆ ˆ[ ]

2 1
ˆ ˆ( ) ( )

3 2

d

d

J d

J J


 

   

     


n s<

q n J s n s

J n q n

 (32) 
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Upon rearrangement of Eq. (32), we obtain 

0
ˆ 2d J q n  (33) 

Substituting Eq. (20) in Eq. (10), we obtain 

0

4
( )

3

d d

g J
t






   



q q
υ  (34) 

Performing a dot product of n̂  with Eq. (34), followed by 

substitution of Eq. (33) and Eq. (15) into the resulting equation 

yields 

2
ˆ

3

d d

g d

G G
G

t 


   


υ n  (35) 

Equation (35) represents the boundary condition for Eq. (16). It 

is a boundary condition of the third kind (Robin type) and is 

applicable to all non-adiabatic boundaries of the computational 

domain. For adiabatic boundaries or symmetry plains, the 

diffuse component of the heat flux must be set to zero, and it 

follows from Eqs. (33) and (15) that 0dG   at adiabatic 

boundaries. 

 
Solution Algorithm and Numerical Procedure 

The preceding sections outline the governing equations that 

need to be solved and the associated boundary conditions for 

the BDE. In order to attain the solution to a heat transfer 

problem using this formulation, the equations need to be solved 

in a certain sequence, which is described below: 

Step 1: Set initial conditions for temperature (internal energy), 

and the two components of the phonon intensity, namely 
bI  

and 
dG  

Step 2: Solve for the ballistic component of the phonon 

intensity, 
bI , using Eq. (6a) subject the boundary condition 

provided in Eq. (28) 

Step 3: Compute the integrated ballistic component of the 

phonon intensity using 
4

b bG I d


   

Step 4: Guess the temperature distribution within the whole 

computational domain. This provides an initial estimate for the 

equilibrium energy distribution, 
0I , through Eq. (27). 

Step 5: Determine the integrated diffusive component of the 

phonon intensity, 
dG , by solving Eq. (16) subject to the 

boundary condition given by Eq. (35). 

Step 6: Solve the overall energy balance equation [Eq. (25)]. In 

conjunction with Eq. (26) or Eq. (27), this provides the new 

temperature distribution. 

Step 7: Repeat steps 5 and 6 until convergence (i.e., 

temperature stops changing within that particular time-step). 

Step 8: Compute heat fluxes at boundaries using Eqs. (30), (33) 

and (15) 

Step 9: Proceed to next time-step and repeat Steps 2-8. 

The two most critical and time-consuming steps in the 

algorithm just described are the determination of the ballistic 

component of the phonon intensity (Step 2) and the diffusive 

component of the phonon intensity (Step 5). As mentioned 

earlier, the ballistic component is traditionally determined by 

using a surface-to-surface exchange formulation that makes use 

of geometric viewfactors between diffuse surfaces, as was done 

by Chen and co-workers [24-26]. This approach is restrictive 

because it is difficult to mix diffuse and specular surfaces, as is 

always prevalent in practical problems. Secondly, such a 

method is prohibitively expensive when the geometry is 

complex (with obstructions and 3D), as has been demonstrated 

recently for photon transport [27]. In light of these 

shortcomings of the traditional viewfactor based approach, we 

chose to use the Discrete Ordinates Method (DOM) and the 

Control Angle Discrete Ordinates Method (CADOM) for the 

solution of Eq. (6a). CADOM is preferable over DOM for 

ballistic (high Knudsen number) cases because it alleviates ray 

effects. The numerical procedures for discretization of the 

Boltzmann Transport Equation for phonons using either DOM 

or CADOM on an unstructured mesh are reported elsewhere 

[11,30], and are omitted here for the sake of brevity. In this 

work, both Eqs. (6a) and (16) are discretized on an unstructured 

mesh of arbitrary topology using the finite-volume procedure. 

The resulting algebraic equations are solved using the 

Generalized Minimum Residual (GMRES) solver [31] after 

incomplete LU (ILU) pre-conditioning. 

An important attribute of the numerical algorithm 

described above is that only Steps 5 and 6 have to be repeated. 

The ballistic equation (directional discrete ordinates equations) 

is solved only once, i.e., Step 2 is executed only once. Change 

of the medium‘s temperature requires repeated solution of only 

the diffuse component of the phonon intensity (Step 5). This 

implies that in this hybrid method, only a single partial 

differential equation [Eq. (16)] has to be solved repeatedly 

within the outer iteration loop that updates temperature of the 

medium. In contrast, if the DOM or CADOM is used directly 

for the solution of the BTE, all directional equations in the 

DOM or CADOM method have to be solved repeatedly. 

Clearly, this is a notable advantage of the hybrid method (or 

BDE) over direct solution of the BTE, in terms of 

computational efficiency. Another advantage of the hybrid 

approach is that the governing equation for the ballistic 

component, namely Eq. (6a), is source-less, as indicated by the 

lack of the 
0I -containing term. This makes it more amenable to 

numerical solution in comparison to the original BTE [Eq. (3)], 

which has this source present. 

 

Non-Dimensional Form of BDE and Knudsen Number 

The degree of non-equilibrium in any non-equilibrium coupled 

transport-scattering/collision process is dictated by the Knudsen 

number. In the context of heat conduction, the Knudsen number 

is defined as the ratio of the mean free path of the energy 

carrying phonons to the characteristic dimension. If L  is the 

characteristic length scale of the device being modeled, and   

is the mean free path, then the Knudsen number is defined as 

g
Kn

L L


 

υ
 (36) 

Under the gray (frequency independent) assumption, both the 

scattering time scale, , as well as the group velocity,  gυ , are 

constants. Consequently, the Knudsen number is a constant 

under the gray assumption. 
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Introducing the non-dimensional time and space variables, 

namely * */ ; /x x L t t    , it is easy to show that Eqs. (6a) 

and (16) can be re-written in the following form 

*

*
ˆ( )b

b b

I
Kn I I

t


   


s  (37a) 

2 2
*2 0

0*2 * *
2 4 4

3

d d

d d

G G IKn
G G I

t t t
 

  
     

  
 (37b) 

Equation (37) clearly shows that the Knudsen number is the 

only parameter that dictates the solution of the governing 

equations. 

In summary, a new set of ballistic-diffusive equations have 

been developed starting from the Boltzmann Transport 

Equation for phonons. The solution to these equations does not 

require any inputs other than the boundary conditions, initial 

conditions, and the Knudsen number. In the following section, 

a test case is presented to verify and validate the new 

formulation by comparing its results with the solutions of the 

original Boltzmann Transport Equation. 

 

RESULTS AND DISCUSSION 

In order to test the new hybrid formulation, a two-dimensional 

transient heat conduction problem was considered. The 

geometry and boundary conditions are shown in Fig.1. This 

particular problem is similar to the one considered by Yang et 

al. [26]. The heater is set to a temperature 
HT  = 200K, while 

the walls are set to a temperature of 
CT  = 100K. The overall 

size of the cavity and the phonon group velocity were fixed, 

and the scattering time scale was adjusted to vary the Knudsen 

number. For validation of the results, the BTE was solved using 

the Monte Carlo method, in addition to the various 

deterministic methods. For the Monte Carlo simulations, 4 

million stochastic samples (phonon bundles) were used. Each 

solution was time-marched until steady state was attained. A 

non-dimensional time step equal to 10
-4

 was used. Within each 

time-step, six orders of magnitude convergence was enforced. 

For most cases, this required between 5 and 10 iterations. For 

DOM, the S8 approximation (40 angles in 2D) was used, and an 

equivalent number of control angles were used for CADOM. 

 
Figure 1: Geometry and boundary conditions 

Figure 2(a) shows the time evolution of the temperature 

profiles along the centerline of the cavity (from bottom to top) 

for a Knudsen number of 0.01. The corresponding heat fluxes 

at steady state along the bottom wall are shown in Fig. 2(b). It 

is clear from this figure that all methods are fairly accurate for 

this acoustically thick (diffusive limit) case. The solution of the 

BTE by DOM or CADOM matches exactly with Monte Carlo 

results, while the solution of the BDE using the hybrid 

formulation produces slight errors. Minor differences are also 

observed in the flux predictions between the two cases. In Fig. 

2(b), results of the hybrid viewfactor based BDE, as used 

traditionally, are also shown, and they appear to be quite 

accurate, as well. 

 

(a) Temperature along centerline 

 

(b) Heat flux along bottom wall 

Figure 2: Non-dimensional temperature [=

( ) / ( )C H CT T T T  ] and heat flux [=
4 4/ ( )p H Cq T T  ] for 

Knudsen number of 0.01 (diffusive limit)  

Centerline temperature distributions for Knudsen number equal 

to unity (intermediate acoustic thickness) are shown in Fig. 3. 

In this case, the results obtained using the standard discrete 

ordinates method, either for BTE or BDE, are not very 

accurate. This is due to the ―ray effect,‖ as will be discussed in 

detail shortly. The hybrid method based on CADOM 

(CADOM-P1) matches solutions of the BTE almost exactly. A 

slight slip is observed near the walls—an indication of the onset 

of non-equilibrium transport. 

 
Figure 3: Centerline temperature distributions at Knudsen 
number of 1. 
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Results for Knudsen number of 100 (ballistic limit) are shown 

in Fig. 4. The ―ray effect‖ is very pronounced in this case for 

the standard DOM, as is evident from the oscillations in the 

temperature profiles, and more so from the heat flux 

distributions at the top wall. As evident from Fig. 3(b), 

CADOM alleviates the ray effects tremendously. For this 

particular Knudsen number, distinct slips in temperature are 

observed at the walls, indicative of strongly non-equilibrium 

transport. The results of the current hybrid approach match 

solutions of the BTE quite accurately, as long as the CADOM 

method is used to solve for the ballistic component. 

 

(a) Temperature along centerline 

 

(b) Heat flux along top wall 

Figure 4: Non-dimensional temperature [=

( ) / ( )C H CT T T T  ] and heat flux [=
4 4/ ( )p H Cq T T  ] for 

Knudsen number of 100 (ballistic limit)  

The ray effect, exhibited by the standard DOM, is more clearly 

evident in the steady state temperature distributions shown in 

Fig. 5. It is clear that in this method, the energy streaks along 

discrete directions. The effect is alleviated tremendously by the 

CADOM method, which integrates the governing equation over 

solid angles prior to solution of the equations, thereby 

smoothening out the directional variation in the intensity. 

Overall, based on the results obtained for this particular 

test case, it can be concluded that the new BDE formulation 

produces results that are quite accurate at all Knudsen numbers 

both for unsteady and steady cases. The results produced by the 

hybrid method (new BDE formulation), based on the CADOM 

method for solution of the ballistic component (CADOM-P1), 

appears to be the most accurate. However, the hybrid method 

required about one-fifth the CPU time compared to the direct 

solution of the BTE using CADOM, for reasons discussed 

earlier. Therein lies the advantage of the hybrid method. 

 

(a) Standard discrete ordinates based hybrid method 
(DOM-P1) 

 

(b) Control angle discrete ordinates based hybrid 
method (CADOM-P1) 

Figure 5: Comparison of steady state temperature 
distributions obtained using DOM and CADOM based 
hybrid methods for Knudsen number of 100. 

 
SUMMARY AND CONCLUSIONS 

A new generalized form of the ballistic-diffusive equations 

(BDE) for approximate solution of the Boltzmann Transport 

Equation (BTE) for phonons is presented and demonstrated. 

This new formulation does not require a priori knowledge of 

the specific heat capacity of the material. The only input 

required in this formulation is the scattering time scale (or 

Knudsen number in non-dimensional form), which is the same 

input required for solution of the original BTE. In this work, the 

ballistic component of the phonon intensity is determined by 

the solving the governing equation using two different 

established methods that are appropriate for use in complex 

geometries, namely the discrete ordinates method (DOM), and 

the control angle discrete ordinates method (CADOM). To 

demonstrate the method, a two-dimensional transient heat 

conduction problem is solved. Results of each method for 

solving the BDE are compared against benchmark Monte Carlo 

results, as well as solutions of the BTE using standalone DOM 

and CADOM at various Knudsen numbers. It is found that 

standalone CADOM (for BTE) and hybrid CADOM-P1 (for 

BDE) yield the best accuracy. The hybrid CADOM-P1 is found 

to be the best method in terms of computational efficiency. 

Standard DOM is found to be unacceptable at large Knudsen 

numbers (ballistic limit) due to ―ray effects‖. 
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