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A Nonlinear Model of Passive
Muscle Viscosity
The material properties of passive skeletal muscle are critical to proper function and are
frequently a target for therapeutic and interventional strategies. Investigations into the
passive viscoelasticity of muscle have primarily focused on characterizing the elastic
behavior, largely neglecting the viscous component. However, viscosity is a sizeable con-
tributor to muscle stress and extensibility during passive stretch and thus there is a need
for characterization of the viscous as well as the elastic components of muscle viscoelas-
ticity. Single mouse muscle fibers were subjected to incremental stress relaxation tests to
characterize the dependence of passive muscle stress on time, strain and strain rate. A
model was then developed to describe fiber viscoelasticity incorporating the observed
nonlinearities. The results of this model were compared with two commonly used linear
viscoelastic models in their ability to represent fiber stress relaxation and strain rate sen-
sitivity. The viscous component of mouse muscle fiber stress was not linear as is typically
assumed, but rather a more complex function of time, strain and strain rate. The model
developed here, which incorporates these nonlinearities, was better able to represent the
stress relaxation behavior of fibers under the conditions tested than commonly used mod-
els with linear viscosity. It presents a new tool to investigate the changes in muscle
viscous stresses with age, injury and disuse. [DOI: 10.1115/1.4004993]

Introduction

Skeletal muscle is a composite tissue composed of intercon-
nected contractile and structural proteins, membranes and extracel-
lular matrix that enable both load bearing and force production.
Understanding the mechanism of force production in muscle has
been a primary research focus for the past century as it is unequivo-
cally essential for human mobility, stability and vitality. In contrast,
much less is known about the load bearing properties of muscle in
the absence of activation even though passive muscle properties are
equally vital to proper function. This is easily appreciated when
passive mechanical properties change due to disuse, disease, or
injury, leaving patients debilitated [1,2,3]. Thus, maintaining or
improving passive extensibility of muscle is a primary goal of ther-
apeutic strategies to improve surgical outcomes or increase stability
and performance [4]. Understanding the material properties of load
bearing structures in muscle is important to developing these strat-
egies, especially in terms of passive stretching applied in physical
therapies and diagnostic situations. Additionally, if the efficacy of
such treatments is to be defined, consistent and comprehensive met-
rics of passive extensibility must be available. Thus, our goal is to
develop a comprehensive description of the passive mechanical
properties of skeletal muscle.

Passive skeletal muscle, like most biological tissues, has long
been recognized to exhibit time- and strain-dependent responses
to tensile loads [5–7]. Early attempts to model passive muscle
viscoelastic behavior mathematically assumed linear elastic and
viscous responses [5,6]. Since then, many researchers have shown
the elastic component of muscle tension is nonlinear and most
current models include either a polynomial or exponential elastic
response [7–9]. Nonlinear viscosity has been characterized in
other soft tissues such as ligament [10,11]), but characterization
of viscous muscle properties has been largely neglected and mus-

cle viscosity is typically modeled as linear although there is evi-
dence to suggest significant nonlinearity [12–14].

Current approaches to passive viscoelastic modeling of skeletal
muscle fall into three general categories: (1) structural spring-
dashpot models [15,16], (2) quasi-linear viscoelastic (QLV) mod-
els [4,17], and (3) hyperelastic models [18,19]. The primary dif-
ference among models in these categories lies in the
characterization of the elastic response with some models using as
many as 12 independent parameters to describe elastic nonlinear-
ities [20]. In contrast, the vast majority of these models use only
one or two parameters to describe a simple viscous response that
has no dependence on strain or strain rate (i.e. is linear). Physio-
logically, skeletal muscle is subjected to a large range of strains
and strain rates and frequently functions at different degrees of
stress-relaxation. Thus, viscous properties likely play as large a
role as elastic in determining passive muscle stress. It is not suffi-
cient to characterize the passive properties of such a dynamic sys-
tem by defining its elasticity in a fully relaxed state, or by defining
its viscosity at one super-physiological strain rate as is frequently
done [9,16,21].

Our hypothesis is that muscle fibers have a complex viscosity
that is strain and strain rate dependent and that this behavior can
be explained and described with a model of pseudoplasticity. In
this study, stress relaxation tests were performed on skinned single
fibers from the mouse to define the dependence of fiber viscosity
on time, strain and strain rate. These data were then used to de-
velop a pseudoplastic model incorporating the observed viscous
nonlinearities. The capabilities of this pseudoplastic model were
compared with two commonly used models: the 3rd order Hill
model and the QLV model, in their ability to represent fiber stress
relaxation and strain rate dependence.

Methods

Fiber Isolation. Experiments were performed on single fibers
from the 5th toe of the mouse extensor digitorum longus (EDL)
muscle (129/Sv, average body mass: 23.3 6 1.4 g; Taconic Farms,
Germantown, NY). All procedures were performed in accordance
with the NIH Guide for the Use and Care of Laboratory Animals
and were approved by the University of California and Depart-
ment of Veteran’s Affairs Committees on the Use of Animal
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Subjects in Research. Animals were anesthetized with 2% isoflur-
ane at 2 L/min and then euthanized by cervical dislocation. Hin-
dlimbs were transected proximal to the knee and fibers were
isolated as described previously [22].

Briefly, the 5th toe of the (EDL) muscle was dissected and
stored in a glycerinated relaxing solution overnight at �20�C.
Prior to mechanical testing, muscles were removed from storage
solution and transferred to a relaxing solution at pCa 8.0. Single
fiber segments (2-3 mm in length) were carefully dissected and
mounted in a custom chamber (n¼ 5). They were secured on one
end to a force transducer (Aurora Scientific 405A; Aurora, On-
tario, Canada) and on the other end to a titanium wire rigidly
attached to a rotational bearing (Newport MT-RS; Irvine, CA)
using a 10-0 monofilament nylon suture. Sarcomere length pro-
vided an objective assessment of internal strain and was measured
by transilluminating the specimen using a low power diode.
Segments displaying obvious abnormalities were not used.

Stress Relaxation Testing. The fiber was brought to slack
length, which was determined by the knot-to-knot length at which
passive tension was just measurable above the noise level of the
force transducer (� 1mN, signal to noise ratio > 5). The fiber was
then loaded to a specified strain at a specified strain rate and
allowed to stress-relax at the final strain for 3 mins, where stress
decay was determined to be minimal. Strains were imposed over a
range of 10-50% fiber length (FL), which was determined in pre-
liminary studies to be the maximum strain range where plastic de-
formation or damage of the fiber did not occur. Fibers were tested
at rates from 0.2-200 FL/s, which were chosen as a range from
physiological to maximum motor speed [23]. Following stress-
relaxation, fibers were either further stretched incrementally or
returned to slack length to rest for 3 mins before being subjected
to another stretch. Two fibers were subjected to incremental (10%
FL) stretches at three rates (Fiber 1: 0.2, 2 and 20 FL/s, Fiber 2: 2,
20 and 200 FL/s). Two fibers were subjected to stretches at 20 FL/
sec at different increments (10%, 20%, 30%, 40%, and 50% FL).
An additional fiber was subjected to stretches at 40% FL at rates
of 50, 100, and 200 FL/s. Stretches were performed in random
order to ensure there was no order effect over the strain and strain
rates considered. At the conclusion of testing, the first stretch was
performed again and compared to the initial value to ensure no
plastic deformation had occurred in the sample. Data from fibers
showing a decrease in passive tension following the testing proto-
col were excluded from analysis.

During the first 0.15 s of the stretch, data were acquired at a
rate of 30,000 Hz to ensure that rapid force transients were cap-
tured. For the remainder of the 3-minute hold, data were acquired
at a rate of 30 Hz, which was determined to be sufficient to char-
acterize the slow force transients during this period. Fiber Cauchy
stress was determined by diving the tension measurement by a
predicted current fiber cross-sectional area. This prediction was
based on the measured fiber diameter at slack length, the current
fiber length and the assumption that the fiber was cylindrical and
isovolumic [24]. Fiber strain was calculated at each stretch by
dividing the change in fiber length by the initial slack length.

Pseudoplastic Model Formulation. A pseudoplastic model
incorporating nonlinear viscosity requires a viscous term that is
time, strain and strain rate dependent. This complex viscosity can
be incorporated into a single nonlinear element in the 3-element
Hill model of passive muscle [6] with a viscous parameter given
by gðt; e; _eÞ (Fig. 1(a)). This approach is similar to the modified
superposition method used by Lakes and Vanderby [25]) to
describe nonlinearities in ligament behavior, where the relaxation
modulus is modified to include a strain dependence. In the pseu-
doplastic model it is further modified to also include strain rate
dependence.

This model contains linear elastic elements due to the essen-
tially linear stress-strain behavior of mouse EDL fibers [26]. The

mathematical form of the strain rate dependence of viscosity can
be derived from an equation frequently used in rheology to
describe pseudoplastic material behavior (Eq. 1) [27]. A pseudo-
plastic material exhibits decreasing viscosity with increasing
shear-rate (Figs. 1(b) and 1(c)). In this formulation, viscosity (g)
is inversely proportional to strain rate ( _e), and the initial and mini-
mal viscosities are defined by m and g0 respectively.

gshear ¼ g0 þ
m� g0

ð1þ _eÞ (1)

The dependence of viscosity on time during the period of stress
relaxation can be explained by pseudoplastic theory. When the
shear stress is removed (the material is held at a constant strain)
the viscosity returns to the initial, larger value, g1, (Figs. 1(b) and
1(c)). This “buildup” is represented by Eq. (2).

grest ¼
s2

s� t _s
(2)

Where the function s is given by Eq. (3)

s ¼ g1g0ðt2 þ ð1þ 2aÞtþ aÞ
g0t2 þ ðg0 þ 2ag1Þtþ ag1

(3)

In this formulation, the increase in viscosity under zero shear load
is hyperbolic beginning at a minimal value of g0 and increasing to
a final value of g1. The constant a controls the hyperbolic curva-
ture, or the rate at which viscosity increases. Finally, the depend-
ence of the viscous parameters g0 and a on resting strain can be
described by Eq. (4) where er is resting strain and a and b are
constants.

g0 ¼ aer

a ¼ ber

(4)

With the dependence of viscosity on time, strain and strain rate
thus defined, the response of mouse muscle fibers to a stress relax-
ation test of any rate can be determined by solving the constitutive
equation of the 3-element Hill model as piecewise continuous
under conditions of shear and rest (Eq. 5).

_rþ ks

gðt; er; _eÞ r ¼
kskp

gðt; er; _eÞ eþ ðks þ kpÞ _e; where

gðt; er; _eÞ ¼ gshearð _eÞ for _e > 0

gðt; er; _eÞ ¼ grestðt; erÞ for _e ¼ 0

(5)

As an example, a commonly used material test for muscle is to
perform a single stress relaxation test at a high rate that approxi-
mates an instantaneous change in strain. In this approximation, g
changes instantaneously to g0 under shear and Eq. (5) can be
solved for the rest case only (Eq. 6).

r ¼ ks exp
�kstðat2 þ ðaþ 2abÞtþ bÞ

aberðt2 þ ð1þ 2aÞtþ aÞ

� �
þ kp (6)

Model Fitting. All analysis was performed using Matlab. Sol-
utions to models with instantaneous step strain profiles were exact
while solutions to models with ramp strain profiles were solved
numerically using a nonstiff initial value ordinary differential
equation solver. These solution methods were combined with a
nonlinear least-squares parameter-fitting algorithm to optimize the
solutions. Initial parameter guesses within a 100-fold range of the
solution were shown to result in the same solution, indicating high
model robustness.
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Results

The most commonly performed test to evaluate the viscoelastic
properties of skeletal muscle is a ramp-and-hold stress relaxation
test (depicted in Fig. 1(b)) [9,12,16,21,28]. In this test, strain is
increased at a fixed rate to a final value at which the muscle is
allowed to relax until stress reaches a steady state. Frequently
these tests are performed at very high strain rates to approximate
instantaneous changes in strain [9,15,16,29]. This infinite-rate
assumption simplifies the model fitting process as an exact solu-
tion is available for both structural and QLV models. These mod-
els can be fit to either a single stress relaxation (a locally linear
model) or to stress relaxations over a range of strains. For simplic-
ity, locally linear models will be considered first.

Locally Linear Models. Figure 2 presents data from a stress
relaxation test on a mouse EDL fiber at a super-physiological
strain rate (20 FL/s) to approximate an instantaneous change in
strain. These data were then fit with an 3rd order Hill structural
model (Appendix A) using the infinite rate assumption. This struc-
tural model uses three viscous elements to describe the relaxation
process, which results in a distinctive error during the fast phase
of relaxation as the model attempts to represent a continuous pro-
cess with discrete structural elements (arrow). The pseudoplastic
model described here assumes a continuous spectrum of relaxa-
tion similar to that frequently used in conjunction with QLV

Fig. 1 Schematic representation of a pseudoplastic model of passive muscle mechanics. Fig-
ure 1(a) Modified version of the Hill 3-element model [6]. Spring elements are linear due to the
linear stress-strain behavior of mouse muscle fibers and the dashpot is a nonlinear element
whose behavior is a function of time, strain and strain rate. Figure 1(b) Schematic of two step
strain inputs for a stress relaxation test, one at high strain rate ( _e1) and one a low strain rate
( _e2). Viscosity in this model is a function of time, strain and strain rate gðt ; e; _e)) illustrated
graphically in (Fig 1(c)). The shape of the resulting stress relaxation curves are shown in
(Fig 1(d )) where the stretch at the higher strain rate results in the higher peak stress (rð _e1; g)).

Fig. 2 The pseudoplastic model better represents stress relaxa-
tion data from a mouse muscle fiber compared to the 3rd order
Hill structural model. The fiber was stretched to 30% FL at 20 FL/s
to approximate an instantaneous length change. The pseudoplas-
tic model (red) is a better fit to the raw data (black) than the 3rd
order Hill model (blue) during the phase of fast relaxation. Inset
shows the data magnified over the first 0.2 s of stress relaxation.
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models where a single viscous element is allowed to change its
viscosity over time [9,30].

To evaluate how the viscosity of the fiber changes over time
during the process of stress relaxation, data from a fiber was fit
with individual 1st order Hill models at discrete time points during
relaxation. The viscosities of these models were then plotted as a
function of time during the course of stress relaxation (Fig. 3).
The model viscosity increases as a function of time and was best
fit by a hyperbolic relationship Eq. (3) (r2¼ 0.998). Incorporating
this relationship into the pseudoplastic model solution for an
infinite-rate stress relaxation test (Eq. 6), gives an analytical solu-
tion that can be fit to stress relaxation data. Figure 2 illustrates this
fit compared to the 3rd order Hill model fit where superior repre-
sentation of the data can be seen with the pseudoplastic model
(arrow) especially during the fast phase of stress-relaxation
(r2¼ 0.949 (3rd order Hill), r2¼ 0.987 (pseudoplastic) during 0-2
s). Though both models could be said to yield good fits to the
data, the 3rd order Hill model requires 7 independent parameters
while the pseudoplastic model requires only 5, optimizing the
number of parameters to the goodness of fit.

QLV models frequently also incorporate a continuous spectrum
of relaxation defined by exponential integrals (Appendix B) and
such models require only four independent parameters. However,
the exponential integral stress relaxation poorly characterizes
mouse fiber data at low strains and thus this model did not repre-
sent the experimental data described here as well as either the 3rd
order Hill model or the pseudoplastic model (Table 1).

Strain Rate Sensitivity. The peak stress experienced by a pas-
sively ramp-stretched muscle is known to be a function of the rate
at which it is strained. Structural models such as the 3rd order Hill

model inherently predict high strain rate sensitivity. This is due to
the fact that the fastest decay constant (associated with the dash-
pot with lowest viscosity) will cause significant stress decay dur-
ing the finite time stress ramp. The magnitude of this decay will
increase as strain rate decreases and the amount of time spent in
the strain ramp increases. The QLV model predicts the same high
strain rate sensitivity since viscosity is only a function of time and
thus the 3rd Order Hill model is representative of both responses.

At the strains and strain rates considered here, the mouse mus-
cle fibers were found to be significantly less strain rate sensitive
than the 3rd order Hill model predicted. 3rd order Hill model fits
to high strain rate data were found to underestimate peak stresses
at lower rates by as much as 50%. Figure 4 shows raw data from a
single mouse muscle fiber strained to 50% FL at two strain rates.
The 3rd order Hill model was fit to 20 FL/s data and then used to
predict 2 FL/s data (blue traces). The model is unable to explain
the fiber behavior at 2 FL/s, underestimating peak stress by 30%.
The difference in strain rate sensitivities between the 3rd order
Hill model and mouse muscle fibers was seen at all strains
between 10 and 50% FL (data not shown).

Pseudoplastic theory offers an explanation for this disparity by
introducing nonlinearity to the viscosity. The viscosity of a pseudo-
plastic material decreases inversely proportionally with strain rate
during the time the material is subjected to stress. Thus, during the
ramp stretch, the material would experience less stress decay, as it
would have begun at a high viscosity and only reached the lowest
viscosity at the end of the ramp. The pseudoplastic model considered
here is able to provide good fits to fiber data at both strain rates with
a single set of parameters and an appropriate dependence of viscos-
ity on strain rate (Fig. 4, red traces). Similarly, the pseudoplastic

Fig. 3 Change in viscosity over time during fiber stress relaxa-
tion. Individual data points (black circles) were derived from 1st
order Hill fits to the stress relaxation of a fiber at discrete time
points. Eq. (3) provided a good fit to the data with an r-squared
value of 0.998.

Table 1 Comparison of the locally linear fits of three models to
mouse fiber stress relaxation. Data were taken from 40 total
stretches of 5 fibers over the strains and strain rates discussed.
Goodness of fit was calculated over the first 2 s of stress relax-
ation. The pseudoplastic model provides a superior goodness
of fit to both the 3rd order Hill model and the QLV model (using
exponential integral reduced relaxation).

# Parameters Average r-squared

3rd Order Hill Model 7 0.918 6 0.035
Exponential Integral
Reduced Relaxation

4 0.785 6 0.334

Pseudoplastic Model 5 0.958 6 0.018

Fig. 4 The pseudoplastic model better represents the strain
rate sensitivity of a mouse muscle fiber than the 3rd order Hill
structural model. A single mouse muscle fiber was strained to
50% FL at 20 FL/s (Fig. 4(a) and at 2 FL/s (Fig. 4(b)). The 3rd
order Hill model (blue) and the pseudoplastic model (red) were
fit to raw data (black) at 20 FL/s and then used to predict behav-
ior during a 2 FL/s stretch. The 3rd order Hill model underesti-
mates stress at 2 FL/s, while the pseudoplastic model
accurately represents peak stress.
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model fit to slow strain rate data is able to well represent faster strain
rate data whereas the 3rd order Hill model overpredicts peak stress
at the faster rate with parameters based on the slower rate (data not
shown).

Evidence from mouse muscle fibers suggests that they behave
like a pseudoplastic material. It is difficult to measure viscosity in
a fiber during shear, but the initial rate of stress relaxation follow-
ing strain can be used as an indication of the minimum viscosity
reached, g0 [31]. Three stretches of the same fiber are shown, each
at a different strain rate ranging from 50 FL/s to 200 FL/s (Fig.
5(a)). The stress is normalized on a scale from zero to one to ena-
ble a direct comparison of stress decay rates in different stretches.
The stress clearly decays fastest at the highest strain rate indicat-
ing the fiber reaches the lowest viscosity under this condition.
This behavior is typical of a pseudoplastic material where viscos-
ity decreases with increasing strain rate.

The three stretches depicted reached the same final resting
strain (40% FL), but the initial strain for each was selected such
that the fiber spent the same time under shear load for each case.
This was done deliberately to separate pseudoplastic (viscosity as
a function of strain rate) effects from thixotropic (viscosity as a
function of shear time) effects. Additionally, peak stresses for the
three stretches were within 10% of each other, eliminating stress
as a compounding factor. The length change to which the fiber
was subjected, however, was still variable in this test. Three
stretches of the same fiber were again performed at three different
strain rates ranging from 0.2 FL/s to 20 FL/s, but this time all
strains were from slack length to 20% FL (Fig. 5(b)). Again, the
stretch at the highest rate had the fastest relaxation, indicating that
it reached the lowest viscosity and suggesting pseudoplastic
behavior. Time spent under shear load for each stretch is variable

in this data, but the stretch with the longest time (0.2 FL/s) had
the slowest relaxation rate and thus the highest viscosity—the op-
posite of a thixotropic effect.

Superposition. Stress relaxation tests are usually performed on
muscle either from a predefined “slack length” [9,28] or incremen-
tally at set step increments [14,21,29]. Linear models, which are
most commonly used, obey the principle of superposition, meaning
that that the stress response to reach a given strain is necessarily
equal to the net stress responses of any number of intermediate
steps to that strain. The QLV model also obeys superposition, and
results in similar predictions of peak forces as linear models.

However, experimental data indicate that mouse muscle fibers
do not obey the principle of superposition. In fact, the peak stress
experienced by fibers seems to be nearly completely a function of
the final strain reached regardless of the magnitude of the strain
step, an observation also noted by Quaia et al [14]. Peak stress
(Fig. 6(a), filled circles) and relaxed stress (Fig. 6(b), open circles)
data are shown from a mouse muscle fiber subjected to a variety
of stress relaxation tests. In the first test (blue circles), the fiber is
strained in 10% FL increments to 40% FL. The peak and relaxed
stresses are then respectively summed to yield the superposition
prediction of the peak and relaxed stress for a strain from slack
length to 40% FL (blue circles), In the second test, the same fiber
was strained in increments of 20% FL (turquoise circles) and the
superposition prediction was made in the same way (turquoise as-
terisk). Finally, the fiber was stretched from slack length to 40%
FL (green circles). The superposition predictions of relaxed stress
are close to the fiber measurement, but the peak superposition pre-
dictions overestimate the fiber measurement by 40% and 95%
respectively. Thus, superposition is only a reasonable assumption
for the relaxed stress measurement. It does not reflect peak stress
or stress relaxation behavior.

Since a linear model, by definition, obeys the principle of super-
position, a fit to stress relaxation data from slack length would be
unable to describe incremental stress relaxation data and vice
versa. This is true of the 3rd order Hill model and the QLV model,
though only the 3rd order Hill fit is shown. Figure 6(b) shows raw
incremental stress relaxation data for three consecutive stretches of
a mouse muscle fiber (black traces) at 10% FL. The 3rd order Hill
model was fit to stress relaxation data from slack length and then
used to predict incremental stress relaxation values (blue traces).
The model underestimates the raw data by increasing margins with
succeeding increments (30% at 20% FL and 50% at 30% FL).
Nonlinearities introduced into the dashpot elements of this model
may be able to explain some of the muscle fiber’s deviation from
superposition. If, for instance, the viscosity of the dashpot element
increased with increasing resting strain, a stretch from 30% to 40%
FL could develop as much stress as a stretch from slack length to
40% FL simply due to its higher initial viscosity.

Experimental data indicate that the viscosity of mouse muscle
fibers increases with increasing resting strain, as revealed by nor-
malized stress relaxation data from a fiber subjected to a series of
incremental stretches from slack length to 50% FL (Fig. 7(a)). Nor-
malized stress decays from the same maximum to the same mini-
mum more slowly as the strain is increased from 0 to 50% FL. If
the pseudoplastic model is locally fit to each stretch, the parameters
g0 and a both increase as a function of resting strain (er). Analysis
of the three viscous parameters of the pseudoplastic model as a
function of resting strain for incremental stretches of six fibers to
100%FL (Fig. 7(b)), revealed that the parameters g0 and a increase
linearly with resting strain (r-squared¼ 0.97 and 0.95 respectively)
while g1 remains essentially constant. With stain dependent vis-
cous parameters (Eq. 4), the pseudoplastic model can characterize
the fiber’s deviation from superposition (Fig. 6(b), red traces).

Discussion

The purpose of this study was to define the passive mechanical
behavior of single fibers from the mouse 5th toe EDL muscle

Fig. 5 Mouse muscle fibers exhibit pseudoplasticity. Figure
5(a) single fiber was strained to 40% FL at three different rates.
The fastest rate stretch resulted in the fastest stress decay indi-
cating the lowest viscosity. All strain ramps had the same time
interval and the same peak stress. Figure 5(b) single fiber was
strained from slack length to 20% FL at three different rates.
Again, the fastest stretch had the fastest stress decay, indica-
tive of pseudoplastic behavior. Noise on the traces represents
less than 1 mV noise at these low stresses.
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under a variety of strains and strain rates to evaluate the applic-
ability of a linearly viscous model. The data acquired demonstrate
that the viscosity of mouse muscle fibers is not linear as is typi-
cally assumed, but rather a more complex function of time, strain
and strain rate. A new pseudoplastic model was developed to
describe these nonlinearities and was shown to provide an excel-
lent fit to stress relaxation data and to account for the strain rate
sensitivity and deviation from superposition observed in the
fibers.

The pseudoplastic model was compared with two models fre-
quently used to describe stress relaxation in muscle, the 3rd order
Hill model and the QLV model. The pseudoplastic model is an ad-
aptation of the 1st order Hill model to include nonlinearities in
viscosity and thus the comparison between this model and the 3rd
order Hill model reduces to a comparison between nonlinear and
linear viscosity. The 3rd order Hill model is frequently only used
locally to obtain parameters from a single high strain rate stress
relaxation test in a comparative study where the conditions are the
same between groups. Under these conditions, viscosity would be
only a function of time and this dependence can be reasonably
well approximated by combining linear viscous elements. The
more viscous elements combined in parallel, the better fit the Hill
model provides. However, the ideal model would describe the

maximum amount of data with the minimum number of parame-
ters. Continuing to add viscous elements to the Hill models
increases the model complexity. Thus, for the purposes of com-
parison, the 3rd order Hill model was chosen to balance complex-
ity with goodness of fit. The pseudoplastic model provided a
much better fit to the data described here than the 3rd order Hill
model with fewer parameters because it allowed the viscosity to
change at every time point rather than limiting it to three discrete
values.

The QLV model also allows viscosity to be a function of time
by mathematically incorporating a continuous spectrum of relaxa-
tion into the model. However, a primary tenet of this model is that
the relaxation response is separable, i.e., that the relaxation
response is not a function of strain. It has been shown in the data
presented here and elsewhere [13,14] that this is not the case for
muscle. Nekouzadeh et al. [32] developed an extension of the
QLV model, which allows relaxation to adapt to strain history and
eliminates the requirement for separability. However, both this
adaptive QLV model and the original QLV model still obey
superposition and thus cannot describe the response of the muscle
to incremental stretches [14]. The pseudoplastic model allows the
stress relaxation process to be a function of strain and allows fiber
viscosity to decrease during stretch, which enables it to explain

Fig. 6 Mouse muscle fibers do not obey superposition. Figure 6(a) Peak (closed circles) and relaxed (open circles) stresses
from a single fiber strained incrementally at 10% FL increments (blue) and 20% FL increments (turquoise). These data were
used to predict stresses from a stretch from slack to 40% FL based on the principle of superposition (asterisks). Predictions
match experimental data for the relaxed stress (open green circle), but overestimate the peak stress by as much as 95%
(closed green circle). Figure 6(b) raw stress relaxation data from a fiber stretched in 10% FL increments (black). The 3rd order
Hill model is fit to stretches of the same fiber from slack but provides a poor prediction of incremental stress (blue). The
pseudoplastic model overcomes the limitations of superposition by adding strain dependent viscous parameters and pro-
vides a much better fit (red). Relaxation plots are truncated at 0.3 s to show the initial fast phase of relaxation. Both models
converge with the raw data at the fully relaxed stress.
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fiber behavior over all of the strains and strain rates considered
here.

Hyperelastic models are also frequently used to model skeletal
muscle mechanics especially as they are applied to finite element
models. However, these have either neglected the contribution of
viscosity or modeled it as linear [18–20] and typically require a
large number of parameters. Thus, these models were not used to
fit the data described here but could theoretically be modified to
include viscous nonlinearities.

Other nonlinear model formulations have been developed and
implemented to describe the material behavior of other soft tissues
such as ligament with good success [10,25,33]. These models
have employed similar strategies to the pseudoplastic model
described here where the viscous parameters of a linear model are
modified to include nonlinearities. The pseudoplastic model takes
the description further; however, allowing the viscous parameters
to be continuous and to be functions of strain rate. In addition to
describing these dependencies mathematically, it offers a physical
explanation for the deviation of fiber behavior from separability
and superposition. If muscle is indeed a pseudoplastic material, its
viscosity would be continuously changing as intermolecular bonds
are continuously formed and broken and it is likely that these
interactions change with geometry.

Muscle as a Non-Newtonian Material. Muscle has long been
considered to be non-Newtonian in nature, i.e., it exhibits a vis-
cosity that is not constant. Sinusoidal studies on passive muscles
and single fibers show a “short range stiffness” where the sample
is initially very stiff but then becomes more compliant as the
strain profile continues [34–36]. This observation was attributed
to the muscle being thixotropic, or having a viscosity that
decreases with time spent under shear load. However, the observa-
tion that muscle viscosity decreases under load could also be
explained by pseudoplasticity, where the viscosity decreases

inversely proportionally to the increase in strain rate. The data
presented here suggest that mouse single fibers are pseudoplastic
rather than thixotropic, but it is possible that the decrease in vis-
cosity under shear load is a more complex function of both strain
rate and time. Quaia et al. [37] created a passive muscle model
that incorporates thixotropy, but they noted as well that during
relaxation, the stress drops faster following faster elongations, an
indication of pseudoplastic behavior.

The mechanism behind this non-Newtonian behavior is not
well understood, but the applied stress is supposed to induce re-
versible microstructural “breakdown,” possibly through bond or
network disruption, thus reducing viscosity. After the removal of
the stress, the bonds or networks are reformed spontaneously lead-
ing to a “rebuilding” of viscosity. In this study, the data suggest
that components of the breakdown and rebuilding phases in mus-
cle fibers are functions of strain. It is possible that, as cytoskeletal
elements are lengthened and interstitial space is reduced in the
fibers, that the kinetics of these phases are altered. For example,
as strain increases, it could become more difficult to break the mo-
lecular interactions, leading to a smaller decrease in viscosity for
a given strain rate (i.e. an increase in g0 with strain). The parame-
ter a is also increased with strain, which reflects slower rebuilding,
but eventually all interactions are reformed and the fiber is back to
a relatively strain insensitive viscosity (g1). Another mechanism
proposed in the ligament literature is that increased strains result
in increased fluid loss, causing the tissue to become more elastic
in nature [33], which is certainly a possibility in these skinned
fibers where fluid is allowed to flow freely into and out of the cell.

Sources of Passive Viscosity. Many components of muscle
have been proposed to contribute to viscosity including the myo-
plasm, weakly attached cross-bridges, collagen fibrils, titin and
other cytoskeletal proteins [38]. Only muscle fiber viscosity is
considered here eliminating any contribution of the extracellular

Fig. 7 Viscosity is a function of strain in mouse muscle fibers. Figure 7(a) Normalized stress relaxation data from a single
fiber subjected to an incremental stress relaxation test from slack length to 50% FL at 20 FL/s. Stress is decay is slower with
increasing strain, indicating fiber viscosity is increasing as a function of resting strain. Figure 7(b) The pseudoplastic model
was used to locally fit incremental stress relaxation data from six fibers from slack length to 100% FL at 20 FL/s. Parameters
and both increase linearly as a function of resting strain, but remains relatively constant.
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matrix (ECM), but it will be interesting to compare the properties
measured here in fibers to bundles and whole muscle. Although
fiber elasticity is essentially linear (Fig. 6(a)), the inclusion of
ECM at the bundle and whole muscle scale imparts significant
nonlinearity [26].

It is likely that, like elasticity, the dependence of viscosity on
time, strain and strain rate could change dramatically with scale,
aging or disease. Chronic alterations in viscosity may well have a
large effect on muscle function and thus sources of viscosity
should be considered as potential therapeutic targets. This new
pseudoplastic model is a tool to evaluate these changes and their
effect on function.
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Appendix A

Hill Models of Viscoelasticity. The first and most basic
model of muscle viscoelasticity was proposed by A. V. Hill
[6]) in 1938 as a contractile element which provides structural
damping under passive conditions in series with a spring which
provides transient stiffness to the system under conditions of
fast stretch. These two elements are placed in parallel with
another spring which provides a time-invariant material stiffness
(Fig. 8(a)). In the case of passive muscle, this model is equiva-
lent to a standard linear solid model of viscoelasticity, since the
contractile element can be represented by a linear dashpot. The
Hill model reproduces the basic form of muscle stress relaxa-
tion, but fails to accurately reproduce the fast phases of stress
decay since it is limited by a single decay rate [9]. Raw data
from a mouse muscle fiber during a stress relaxation test to
30% FL at 20 FL/s (Fig. 9, black) reveal that the Hill model
(Fig. 9, green) underestimates the decay rate in short time
(inset) and overestimates it in long time as it attempts to
describe multiple decay rates with one time constant. To over-
come this limitation, the classic Hill model is frequently modified
to include additional branches of a dashpot and a series spring
[39–41]. These models can include n number of branches, which
provide n number of exponential stress decay rates. The stress
response of the nth order Hill model to a strain profile (e) can be
determined by solving the following system of coupled linear dif-
ferential equations (Eq. 7).

_r ¼ kp _eþ
Pn
i¼1

ksi _ei

_ei ¼ _e� ksi

ci
ei

(7)

As additional branches are added to the classic Hill model, it is
better able to represent the shape of the stress decay. However,
each additional branch adds an equation to the system, increasing
the complexity and the number of parameters. If too many
branches are added, some of the parameters become redundant
and thus difficult to interpret. Ideally, the minimum number of
branches would be added in order to improve the fit to some pre-
determined tolerance. For the data considered here, the 3rd order
Hill model best meets this goal, yielding an r-squared value
of 0.98 with only two additional branches. The 3rd order Hill
model fit to the raw data (Fig. 9, blue) provides a much better
representation of the stress decay than the classic 1st order Hill
model though still misestimating the decay rates at some points
(arrow).

Appendix B

The Quasi-Linear Viscoelastic Theory. Quasi-linear viscoe-
lasticity (QLV) was developed to provide a more general formula-
tion of viscoelasticity, which would be more flexible in its ability
to describe nonlinear elastic materials. The basic tenet of this
model is that viscoelastic behavior of soft tissues is composed of a
nonlinear elasticity superimposed on a linear relaxation. This
property is stated mathematically in Eq. (8) where K(e,t) is the
relaxation function describing the response of the tissue to an infi-
nite rate step elongation from 0 to e G(t) is the reduced relaxation
function which describes the normalized stress decay and TðeÞ (e)
is the elastic response and is a function of strain alone.

Kðe; tÞ ¼ GðtÞTðeÞðeÞ (8)

The elastic function is typically either a polynomial or an expo-
nential similar to the springs in nonlinear versions of structural
models. The reduced relaxation function can take many forms, but
the two most common use a sum of exponentials [13] or an expo-
nential integral formulation [9]. The relaxation function that uses

Fig. 8 Schematics of the classic Hill model of muscle viscoe-
lasticity (A) and the 3rd order Hill model (generalized Maxwell
model) (B). The contractile element is represented by a dashpot
with damping constant c since only passive muscle mechanics
are considered here. The series and parallel springs are repre-
sented by linear spring constants of modulus ks and kp respec-
tively. The 3rd order Hill model includes two additional branches
of dashpot and series spring in parallel, which add two addi-
tional time constants to the stress decay during relaxation.

Fig. 9 The 3rd order Hill model better represents stress relaxa-
tion data from a mouse muscle fiber than the 1st order Hill
structural model. The fiber was stretched to 30% FL at 20 FL/
sec to approximate an instantaneous length change. The 3rd
order Hill model (blue) provides a better fit to the raw data
(black) than the 1st order Hill model (green) during the phase of
fast relaxation. Inset shows the data magnified over the first
0.2 seconds of stress relaxation.
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G(t) as a sum of exponentials reduces to the solution of the gener-
alized Hill model for infinite rate step strains and thus will not be
considered separately. The other commonly used form of the
reduced relaxation function is given by Eq. (9), where E1 (t) is the
exponential integral [30].

GðtÞ ¼
1þ c E1

t
s2

� �
� E1

t
s1

� �h i

1þ c ln s2

s1

� � (9)

The derivation of the exponential integral formulation of stress
relaxation is based on the assumption of a continuous spectrum of
relaxation. Essentially, instead of having a discrete number of
individual decay rates (si), s is allowed to be a continuous variable
changing in time from s1 to s2.

Eq. (8) applies only to stress responses to instantaneous step
changes in strain or approximations thereof, i.e., the infinite rate
assumption. It is a specific case of a more general formulation
given by Eq. (10).

TðtÞ ¼
ðt

�1
Gðt� sÞ @TðeÞ½eðsÞ�

@e
@eðsÞ
@s

ds (10)

To describe the response of a tissue to a generic elongation his-
tory, this equation makes use of the superposition principle. It rep-
resents a generic response as an infinite sum of relaxation
responses to infinitesimally small step-changes in strain. Thus,
this model requires that relaxation be a function of time only and
that the sample obey superposition.
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