

Recurrent Set and R Stability of Non-wandering Operator

Huan Oian ^{*}

Nonlinear Scientific Research Center, Jiangsu University, Zhenjiang, Jiangsu,212013, China *(Received 5 February 2008, accepted 21 March 2008)*

Abstract: In the paper the stability of non-wandering operator on recurrent set is studied. By using the method of functional analysis, a sufficient condition for being non-wandering operator on recurrent set is given. Meanwhile, it is proved that invertible non-wandering operator on recurrent set is structural stable.

Keywords: non-wandering operator; recurrent set; structural stability; pseudo orbit tracing property; no-cycle condition

1 Introduction

It is well known that linear operators in finite-dimensional linear spaces can't be chaotic but the nonlinear operator may be. Only in infinite-dimensional linear spaces can linear operators have chaotic properties. This has attracted wide attention (see [1-6]). Non-wandering operators are new linear chaotic operators. They are relative to hypercyclic operators, but different from the later(see [5]). Some hypercyclic operators are not non-wandering operators (see [5] Remark 3.5 (2)). There also exists a non-wandering operator, which does not belong to hypercyclic operators(see [5], Remark 3.5 (3)). Hence they are different operators. Suppose that bounded linear operator T is invertible. If T is a hypercyclic operator, then $\sigma(T) \cap \partial D \neq \emptyset$ (see [8], Remark 4.3 (2)); if T is a non-wandering operator, then $\sigma(T) \cap \partial D = \emptyset$ where ∂D is unit circle (see [5], Theorem 4.2). When linear operator is not invertible, there exist operators being not only non-wandering operator but also hypercyclic operator. In recent years, the study of non-wandering operators has got a rapid progress. Jiangbo Zhou, etc discussed the hereditayily hypercyclic decomposition of non-wandering operators in infinite dimensional Frechet space (see [7]); Xun Liu, etc discussed non-wandering semigroup (see [8]); Shaoguang Shi, etc obtained the invariance of non-wandering operator under small perturbation (see[9]) and Lihong Ren, etc studied n-multiple non-wandering operator (see [10]).

The paper is organized as follows. In Section 2, the basic notations and definitions are listed. Then in Section 3, some properties about recurrent set is shown. And a sufficient condition for being non-wandering operator on recurrent set is given. Meanwhile, it is proved that invertible non-wandering operator on recurrent set is structural stable.

2 Basic notation and definitions

Let $(X, \|\cdot\|)$ be an infinite dimensional separable Banach space on real number field or complex number field K. Let $L(X)$ be the set of all bounded linear operators over X. N, Z, Q, R and C will be referred to as the sets of positive integers, rational numbers, and the real and complex scalar fields, respectively.

We introduce the following notations. For $y \in X$, Let $(X, \|\cdot\|)$ be an infinite dimensional separable Banach space on real number field or complex number field K.

We introduce the following notations. For $y \in X$, let

$$
W_{\eta}^{u}(y) = \{ x \in X | ||T^{k}(y-x)|| > \eta, (k = 0, 1, 2, \cdots) \lim_{k \to +\infty} ||T^{-k}(y-x)|| = 0 \}
$$

[∗]*E-mail address*: qh109@163.com

$$
W_{\eta}^{s}(y) = \{x \in X | ||T^{k}(y - x)|| < \eta, (k = 0, 1, 2, \cdots) \lim_{k \to +\infty} ||T^{k}(y - x)|| = 0\}
$$

\n
$$
W^{u}(y) = \{x \in X | \lim_{k \to +\infty} ||T^{-k}(y - x)|| = 0\}, W^{s}(y) = \{x \in X | \lim_{k \to +\infty} ||T^{k}(y - x)|| = 0\}
$$

\n
$$
W^{u}(E) = \{x \in X | \lim_{k \to +\infty} ||T^{-k}(y - x)|| = 0, x \in E\}
$$

\n
$$
W^{s}(E) = \{x \in X | \lim_{k \to +\infty} ||T^{k}(y - x)|| = 0, x \in E\}.
$$

Definition 1 *Suppose* $T \in L(X)$ *. T is a linear chaotic operator or a linear chaotic map if it satisfies the following two conditions:*

(1) T *is topologically transitive, i.e.,* T *has a dense orbit in* X*. (2) The set of periodic points* $Per(T)$ *for* T *is dense in* X *.*

Definition 2 *(see [5]).Let* $(X, \|\cdot\|)$ *be an infinite dimensional separable Banach space.Suppose* $T \in L(X)$ *. Then* T *is called to be a non-wandering operator relative to* E *if it satisfies:*

(1) There exists a closed subspace $E \subset X$, which has hyperbolic structure: $E = E^u \bigoplus E^s, TE^u =$
(1) There exists a closed subspace $E \subset X$, which has hyperbolic structure: $E = E^u \bigoplus E^s, TE^u =$ $E^u, TE^s = E^s$, where E^u, E^s are closed subspaces. In addition, there exist constants $\tau(0 < \tau < 1)$ and $C > 1$, such that $||T^k \xi|| \ge C\tau^{-k} ||\xi||$, for any $\xi \in E^u, k \in N$; $||T^k \eta|| \le C\tau^k ||\eta||$, for any $\xi \in E^s, k \in N$; *(2)* $Per(T)$ *is dense in* E *.*

Remark 1 *(1)* T *may be invertible or not. When* T *is invertible, the spectral property of non-wandering operators is different from that of hypercyclic operators(see [5] Theorem 4.2). But when* T *is not invertible, the case is much complicated.*

(2) If T is a non-wandering operator, then $Per(T) \cap E = \emptyset$ *.(see [8] Remark 2.6).*

Definition 3 *(see[5]).* Let $E ⊂ X$ *be a closed linear subspace of T. If there exist countable closed invariant subsets* $E_1, E_2, \dots, E_n, \dots$ (any two of them are never intersected) such that $E = \bigcup_{i=1}^{\infty} E_i$. And for $arbitrary$ nonempty open subsets $U, V \subset E_i$, there exists $n \in N$, such that $T^nU \bigcap V \neq \emptyset$. Then it is called *the spectra decomposition of* T *for* E, and $E_1, E_2, \cdots, E_n, \cdots$ *are called basic sets.*

Definition 4 Let T be a non-wandering operator relative to closed subspace $E \subset X$. Suppose that $\{x_i\}_{i=a}^b$ *is a sequence in* E and $\alpha > 0$. If for each $i = a, \dots, b - 1$ $(a = -\infty$ or $b = +\infty$ *is also allowed*), we have $\|Tx_i - x_{i+1}\| < \alpha$, then $\{x_i\}_{i=a}^b$ is supposed to be a α –pseudo orbit of $T.$ For a given $\beta > 0$, if there *is* $y \in E$ *such that* $||T^iy - X_i|| < \beta$ *for each* $i = a, \dots, b$ *, then we say that the* α -*pseudo orbit is* β *traced by the orbit sending from y. T is called the pseudo orbit tracing property, if for each* $\beta > 0$ *, there is* $\alpha = \alpha(\beta) > 0$ *such that each* α −*pseudo orbit of can be* β −*traced by some point in* E.

Definition 5 Let $E_i(T)(i = 1, 2, \cdots)$ be the basic sets of T for $E(T)$, we define the relationship $\ddot{P} \succ \ddot{P}$ as $\textit{follows:} E_i \succ E_j \Longleftrightarrow (W^u(E_i \setminus E_j)) \cap (W^s(E_j \setminus E_j)$. Moreover, $E_i(T)$ is called no-cycle if there aren't distinct indices such that $E_{i_1} \succ E_{i_2} \succ \cdots \succ E_{i_r} \succ \succ \cdots \succ E_{i_1}$.

Remark 2 If $i \neq j$, then $W^u(E_i)$ \overline{a} $E_j = \emptyset, E_i$ **s 2** If $i \neq j$, then $W^u(E_i) \cap E_j = \emptyset$, $E_i \cap W^s(E_j) = \emptyset$. If we define the relation " \triangleright " : $E_i \triangleright E_j \Leftrightarrow$ $W^u(E_i \bigcap W^s(E_j)) \neq \emptyset$, then the no-cycle condition in Def. 2.5 turns to: (a) There aren't distinct indices $i_1, i_2, \cdots, i_r, \cdots$ such that $E_{i_1} \triangleright E_{i_2} \triangleright \cdots \triangleright E_{i_r} \triangleright \cdots E_{i_1}$ (*b*) $W^u(E_i) \bigcap W^s(E_i) = E_i(i = 1, 2, \cdots).$

Definition 6 *Let* $(X, \|\cdot\|)$ *be an infinite dimensional separable Banach space. Suppose* $T \in L(X)$ *. Point* x *is called recurrent point, if for* ∀ε > 0*, there exists periodic* α−*pseudo orbit by point* x*. The set of all recurrent points of* T *is called recurrent set of* T *, denoted by* $R(T)$ *.*

Definition 7 *Let* $(X, \|\cdot\|)$ *be an infinite dimensional separable Banach space. Suppose* $T_1, T_2 \in L(X)$ *. If there exists a homeomorphism* $\varphi : R(T_1) \to R(T_2)$ *, such that* $\varphi \circ T_1 | R(T_1 = T_2 \circ \varphi)$ *, then* T_1 *is called* R−*conjugate to* T2*.*

Definition 8 Let $(X, \|\cdot\|)$ be an infinite dimensional separable Banach space. Suppose $T \in L(X)$. T is *called* R−*stable, if for* $\forall \varepsilon > 0$ *, there exists a neighborhood* $B_{\varepsilon}(T)$ *of* T*, such that for any* $S \in B_{\varepsilon}(T)$ *,* T *and* S *is* R−*conjugate.*

Definition 9 *Let* Λ *is the set of all non-empty closed subset on* X*. We define Hausdorff distance as follows:* $D(A, B) = \sup$ x∈X $|d(x, A) - d(x, B)|$, here $d(x, A) = \inf_{y \in A} ||x - y||$.

3 Non-wandering operator on recurrent set and stability

3.1 properties about recurrent set

Proposition 3 *The sufficient and necessary condition of* $x \in R(T)$ *is that for* $\forall \delta > 0$ *, there exists periodic* δ−*pseudo orbit of* T *in the* δ−*ball field of* x*.*

Proof. The necessary is obvious. Then we will proof the sufficiency.

For $\forall \varepsilon > 0$, set $0 < \delta < \frac{\varepsilon}{3}$ such that $p, q \in X$, $||p - q|| < \delta \Rightarrow ||Tp - Tq|| < \frac{\varepsilon}{3}$ $\frac{\varepsilon}{3}$. Let $\{x_i\}_{-\infty}^{\infty}$ is the periodic δ -pseudo orbit which satisfies $||x_0 - x|| < \delta$ and its period is n. Set $x'_i = x, i = kn, or x'_i = x_i$. Next we will proof $\{x_i^{\prime}\}$ $i_{i}^{'}\}$ is the periodic ε -pseudo orbit by point x, and its period is n.

There are two cases as follows:

(a)n = 1. Then $x_k = x_0, \forall k \in \mathbb{Z}$. Thus $||x_0-x|| < \delta < \frac{\varepsilon}{3},$ $||Tx_0-x_0|| < \delta < \frac{\varepsilon}{3},$ $||Tx-Tx_0|| < \delta < \frac{\varepsilon}{3},$ So $||Tx'_0 - x'_0||$ $\|x_0\| = \|Tx - x\| \le \|Tx_0 - Tx\| + \|Tx_0 - x_0\| + \|x_0 - x\| < \varepsilon.$ $(b)n > 1$. Then $\|x_0-x\|<\delta<\frac{\varepsilon}{3}, \|Tx-Tx_0\|<\frac{\varepsilon}{3}$ $\frac{\varepsilon}{3}$ $||Tx'_0 - x'_1||$ $\|x_1'\| \le \|Tx - Tx_0\| + \|Tx_0 - x_1\| < \frac{\varepsilon}{3} + \delta < \varepsilon,$

$$
\|Tx_{n-1}^{'}-x_{n}^{'}\|=\|Tx_{n-1}-x\|\leq \|Tx_{n-1}-x_0\|+\|x_0-x\|<\delta+\delta<\varepsilon.
$$

For two cases, we all proof: $\{x_i^{\prime}\}$ $i_{i}^{'}\}_{-\infty}^{\infty}$ is the periodic ε -pseudo orbit by point x.

Proposition 4 R(T) *is closed set.*

Proof. Let $x \in \overline{R(T)}$. Then there exists periodic ε −pseudo orbit of T in the ε −ball field of x. From Proposition 3.1, we know $x \in R(T)$. ■

Proposition 5 Let T *is invertible, then* $R(T)$ *is invariant set of* T *.*

Proof. For $\forall \varepsilon > 0$, set $\delta > 0$, such that $p, q \in X$, $||p-q|| < \delta \Rightarrow ||Tp - Tq|| < \varepsilon$. Let $x \in R(T)$. Then there exists periodic δ -pseudo orbit $\{x_i\}_{-\infty}^{\infty}$ by point x. Since $||Tx_i - x_{i+1}|| < \delta \Rightarrow ||T(Tx_i) - Tx_{i+1}|| < \varepsilon$, we have ${Tx'_i}_{\sim}^{\infty}$ is periodic ε -pseudo orbit by point Tx. So $T(R(T)) \subset R(T)$. On the other hand, we have $T^{-1}(R(T)) = T^{-1}(R(T^{-1})) \subset R(T^{-1}) = R(T)$. Therefore $T(R(T)) = R(T)$.

3.2 Non-wandering operator on recurrent set

Lemma 6 *(see[11] Theorem 3.4) Let* T *be an invertible non-wandering operator relative to closed subspace* $E \subset X$, then T has pseudo orbit tracing property.

Remark 7 *The proof of this lemmas is not relative to the second condition of non-wandering operator–"* $Per(T)$ *is dense in* E", so we can use this lemmas here.

Lemma 8 Let T is invertible, then for any $x \in R(T)$, there exists periodic pseudo orbit $\{x_i\}$ by this point, *and* $x_i \in R(T)$ *.*

Proof. Let $x_0 \in R(T)$. Since $R(T)$ is invariant set, $T(x_0) \in T(R(T)) = R(T)$. From Proposition 3.1,we know: for $\forall \varepsilon > 0$, there exists $x_1 \in U(T(x_0, \varepsilon))$ such that $||T(x_0) - x_1|| < \varepsilon$. For x_1 , we also have $x_1 \in R(T)$, thus there exists $x_2 \in U(T(x_1, \varepsilon))$ such that $||T(x_1) - x_2|| < \varepsilon$. Using the same method, we can get ${x_i}_0^{\infty}$. Now we will proof ${x_i}_0^{\infty}$ is convergent.

In fact, since T is bounded, we only consider $||T|| < 1$. From above, we know $||Tx_{i-1} - x_i|| < \varepsilon$, $(i =$

 $1, 2, \dots$). Thus

$$
||T^{n}x_{0}-x_{n}|| < (1+||T||+\cdots+||T||^{n-1})\varepsilon, (n=1,2,\cdots).
$$

So for N large enough, when $n > m > N$, we have

 $||x_n - x_m|| < (1 + ||T|| + \cdots + ||T||^n + 1 + ||T|| + \cdots + ||T||^m)\varepsilon + ||T||^m||T^{n-m}x_0 - x_0||.$ For the first part, when N is large enough,

 $1 + ||T|| + \cdots + ||T||^{n} + 1 + ||T|| + \cdots + ||T||^{m} \leq M_1.$

For the second part, when N is large enough,

$$
||T||^{m} < \varepsilon, ||T^{n-m}x_0 - x_0|| \le M_2.
$$

Hence

$$
||x_n - x_m|| < (M_1 + M_2)\varepsilon.
$$

Set $\eta = (M_1 + M_2)\varepsilon$. Then there exists N, when $n > m > N$, $||x_n - x_m|| < \eta$ holds. Therefore ${x_i}_0^{\infty}$ is convergent. Since $R(T)$ is closed, there exists $x^* \in R(T)$ such that $x_n \to x^*$. For ε above, there exists N, when $n \ge N$, $||x_n - x^*|| < \frac{\varepsilon}{\sqrt{T}}$ $\frac{\varepsilon}{\|T\|}$ holds. Particularly, set $n = N$, we have

$$
||Tx_N - Tx^*|| \le ||T|| ||x_N - x^*|| < \varepsilon.
$$

For point x_0, Tx^* , from the closed invariant property of $R(T)$, there exists an orbit which approaches this two point. Thus there exists $y \in R(T)$, $s, t \in N$, $(s < t)$, such that

$$
||T^sy - x_0|| < \varepsilon, ||T^ty - Tx^*|| < \frac{\varepsilon}{||T||}.
$$

So the periodic ε −pseudo orbit from $x_0, x_1, \cdots, x_N, Tx^*, T^{t+1}y, \cdots, T^{s+1}y$ passes by point x_0 .

Theorem 9 Let T has hyperbolic structure on $R(T)$, then $\overline{Per(T)} = \Omega(T) = R(T)$, therefore T is a *non-wandering operator on* R(T)*.*

Proof. For any $x \in R(T)$, from Lemma 3.2 : there exists periodic α –pseudo orbit $\{x_i\} \subset R(T)$ by point x, and let its period is m. Besides, from Lemma 3.1, there exists orbit $\{f^i y\}_{i=0}^{\infty}$ by point $y \beta$ -traced $\{x_i\}$. Then

$$
||T^{i}T^{m}y - T^{i}y|| \le ||T^{i+m}y - x_{i+m}|| + ||x_{i} - T^{i}y|| \le 2\beta, \forall i \in Z.
$$

And we let β is small enough, then $T^m y = y$, that is to say $y \in Per(T)$. Hence for any $x \in R(T)$ and β small enough, there exists $y \in Per(T)$ such that $||x - y|| < \beta$. Therefore we proof $Per(T) = R(T)$, so T is a non-wandering operator on $R(T)$.

Lemma 10 *Let* $(X, \|\cdot\|)$ *be an infinite dimensional separable Banach space. Suppose* $T \in L(X)$ *satisfies Axiom A[12],* Ω_i *is a basic set of T,* $y, z \in \Omega_i$ *,* $\zeta > 0$ *is a given real number. Then there exists periodic point* $p \in \Omega_i$ *of* T *and* $k \in N$ *such that* $\|p - y\| < \zeta$, $\|T^k p - z\| < \zeta$.

Proof. Let orbit sending from the point $x \in \Omega_i$ is dense in Ω_i . Then there exists $m, n \in \mathbb{Z}$ such that $\|T^mx-y\|<\frac{\zeta}{2}$ $\frac{\zeta}{2},$ || $T^n x - z$ || $\lt \frac{\zeta}{2}$ $\frac{\zeta}{2}$.

Besides since periodic point is also dense in Ω_i , there exists periodic point $p \in \Omega_i$ of T such that $p \in B(T^m x, \frac{\zeta}{2})$ $(\frac{\zeta}{2})\bigcap T^{-(n-m)}B(T^{\tilde n}x,\frac{\zeta}{2})$ $\frac{\zeta}{2}$).

Let period of p is h and $k \in N$. Set $k = n - m$. Then $||p - T^m x|| < \frac{\zeta^2}{2}$ $\frac{\zeta}{2},$ || $T^k p - T^n x$ || $\lt \frac{\zeta}{2}$ $\frac{6}{2}$. Therefore $||p - y|| < \zeta, ||T^k p - z|| < \zeta.$

Theorem 11 Let T has hyperbolic structure on $R(T)$, then $\Omega(T) = R(T)$ satisfies no-cycle condition.

Proof. Let there exists cycle of basic sets $\Omega(T) = R(T) = \bigcup_{i=1}^{\infty} \Omega_i$: $\Omega_1 \succ \Omega_2 \succ \cdots \succ \Omega_r \succ \Omega_{r+1} \succ$ $\cdots \succ \Omega_{\infty} = \Omega_1$. Then we have

$$
q_i \in W^u(\Omega_i) \cap W^s(\Omega_{i+1}), (i = 1, 2, 3, \cdots).
$$

Thus for any $\varepsilon > 0$, there exists large enough $m \in N$ such that

$$
d(T^{-m}q_i, \Omega_i) \leq \frac{\varepsilon}{2} d(T^m q_i, \Omega_{i+1}) \leq \frac{\varepsilon}{2}, (i = 1, 2, 3, \cdots).
$$

From Lemma 3.3 : there exists $p_i \in \Omega_i$ and $k_i \in N$ such that

 $||p_i - T^m q_{i-1}|| < \frac{\varepsilon}{2}$ $\frac{\varepsilon}{2}$, $(i = 2, 3, 4, \cdots)$ (*), $||T^{k_i} p_i - T^{-m} q_i|| < \frac{\varepsilon}{2}$ $\frac{\varepsilon}{2}, (i = 1, 2, 3, \cdots).$

On the other hand, let $\Omega_n^* = \bigcup_{i=n}^{\infty} \Omega_i$, then $\lim_{n \to \infty} \bigcup_{i=n}^{\infty} \Omega_i = \Omega_{\infty} = \Omega_1$. Thus for $\varepsilon > 0$ above, exists N, when $n > N$, $D(\Omega_n^*, \Omega_1) < \frac{\varepsilon}{2}$ $\frac{\varepsilon}{2}$ holds. Particularly, set $n = N + 1$, we have $D(\Omega_{N+1}^*, \Omega_1) < \frac{\varepsilon}{2}$ $\frac{\varepsilon}{2}$. And set $i = N + 1$ in (*), we get $||p_{N+1} - T^m q_N|| < \frac{\varepsilon}{2}$ $\frac{\varepsilon}{2}$.

For $p_{N+1} \in \Omega_{N+1}^*$, since $D(\Omega_{N+1}^*, \Omega_1) < \frac{\varepsilon}{2}$ $\frac{\varepsilon}{2}$, we can find x^* in Ω_1 such that $||p_{N+1} - x^*|| < \frac{\varepsilon}{2}$ $\frac{\varepsilon}{2}$. Hence $||T^m q_N - x^*|| \le ||T^m q_N - p_{N+1}|| + ||p_{N+1} - x^*|| < \varepsilon.$

And since Ω_1 is invariant set, for $q_1 \in \Omega_1$, then $T^j q_1 \in \Omega_1$, $(j \in Z)$. Let orbit sending from the point $y \in \Omega_i$ is dense in Ω_i , then there exists $s, t \in N, (s < t)$ such that

 $||T^s y - x^*|| < \frac{\varepsilon}{\sqrt{2}}$ $||T||$ $\|T^ty - T^{-m}q_1\| < \varepsilon.$ Therefore we get a periodic pseudo orbit from following points: $x^*, T^{s+1}y, T^{s+2}y, \cdots, T^{t-1}y, T^{-m}q_1, \cdots, q_1, \cdots, T^{m}q_1; p_2, \cdots, T^{k_2}p_2; T^{-m}q_2, \cdots, q_2, \cdots, T^{m}q_2;$

 $\cdots\cdots\cdot;p_N,\cdots,T^{k_N}p_N;T^{-m}q_N,\cdots,q_N,\cdots,T^{m-1}q_N.$

Since N can be large enough, so for any $\varepsilon > 0$ and all N, there exists periodic pseudo orbit by point q_i , that is to say, $q_i \in R(T) = \Omega(T)$, $(i = 1, 2, 3, \dots)$, but this is contradictive to the choosing method of q_i , so we can get the conclusion. \blacksquare

Acknowledgements

Research was supported by the National Nature Science Foundation of China (No: 10771088) and Nature Science Foundation of Jiangsu (No: 2007098) and Outstanding Personnel Program in Six Fields of Jiangsu (No: 6-A-029).

References

- [1] C. Kitai: Invariant closed sets for linear operators. *Ph. D. thesis, University of Toronto*. Ontario(1982)
- [2] X.-C. Fu, J. Duan: Infinite-dimensional linear dynamical systems with chaoticity. *J. Nonlinear Sci.*. 9(2): 197-211(1999)
- [3] P.S. Bourdon: Invariant manifolds of hypercyclic vectors. *Proc. Amer. Math. Soc*. 118(2): 587- 595(1993)
- [4] C. R. MacCluer: Chaos in linear distributed systems. *J. Dyn. Syst. Meas. Control*. 114(2): 322- 324(1992)
- [5] Lixin Tian, Jiangbo Zhou, Xun Liu, Guangsheng Zhong: Non-wandering operators in Banach space.*International Journal of Mathematics and Mathematical Sciences*. 24(2005): 3895-3908
- [6] Lixin Tian, Dianchen Lu: The property of nonwandering operator. *Appl Math Mech* . 17: 155- 161(1996)
- [7] Jiangbo Zhou, Lixin Tian, Dianchen Lu: The hereditarily decomposition of non-wandering operators in infinite dimensional Frechet space. *J Jiangsu University*. 22(6): 88 - 91(2001)
- [8] Xun Liu, Lixin Tian: The property of non-wandering semigroup. *J Jiangsu University*. 23(5): 9- 12(2002)
- [9] Lixin Tian, Shaoguang Shi, Lihong Ren: The invariance of nonwandering operator under small perturbation. *International Journal of Nonlinear Science*. 2(28):(2008).
- [10] Lixin Tian, Lihong Ren: N-multiple nonwandering unilateral weighted backward shift operators and the property of direct sum operators in Banach space, *International Journal of Nonlinear Science*. 2(2): 104-110(2006)
- [11] Lixin Tian, Minggang Wang: Pseudo orbit tracing property of non-wandering operator. *International Journal of Nonlinear Science.* 1(3): 3-7 (2007)
- [12] Zhusheng Zhang: Differential dynamical system. *Beijing, Science Press* (2003)