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The aim of this paper is to give characterizations in terms of Lyapunov functions for nonuniform exponential dichotomies of
nonautonomous and noninvertible discrete-time systems.

1. Introduction

The notion of (uniform) exponential dichotomy essentially
introduced by Perron in [1] for differential equations and
by Li in [2] for difference equations plays a central role
in a substantial part of the asymptotic behaviors theory of
dynamical systems.

In some situations, particularly in the nonautonomous
settings, the concept of uniform exponential dichotomy is
too restrictive and it is important to consider more general
behaviors.

One of the main reasons for weakening the assumption
of uniform exponential dichotomy is that from the point of
view of ergodic theory almost all variational equations in
a finite-dimensional space admit a nonuniform exponential
dichotomy. On the other hand it is important to treat the
case of noninvertible systems because of their interest in
applications (e.g., random dynamical systems, generated by
random parabolic equations, are not invertible).

The importance of Lyapunov functions is well established
in the study of linear and nonlinear systems in both con-
tinuous and discrete-time. Thus, after the seminal work of
Lyapunov republished most recently in [3] relevant results
using Lyapunov’s direct method (or second method) are
presented in the books due to LaSalle, Lefschetz [4], Hahn
[5], Halanay, Wexler [6], and Maliso and Mazenc [7].

This paper considers the general notion of nonuniform
exponential dichotomy for nonautonomous linear discrete-
time systems in Banach spaces. The main objective is to
give characterizations of nonuniform exponential dichotomy
in terms of Lyapunov functions for the general case of
noninvertible linear discrete-time systems, as a particular
case is the concept of (nonuniform) exponential dichotomy
for the discrete-time linear systems which are invertible in
the unstable directions. This approach can be found in the
works of Barreira and Valls (see [8, 9]), and for the uniform
approachwe canmention the paper of Papaschinopoulos (see
[10]).

In the nonuniform exponential dichotomies of linear
discrete-time systems presented in this paper we consider
two types of projection sequences: invariant and strongly
invariant, which are distinct even in the finite-dimensional
case.

We remark that we consider linear discrete-time systems
having the right hand side not necessarily invertible and the
dichotomy concepts studied in this paper use the evolution
operators in forward time. In the definition of nonuniform
exponential dichotomy we assume the existence of invariant
projections sequence. At a first view the existence of such
sequence is a strong hypothesis. This impediment can be
eliminated using the notion of admissibility (see [11]).
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The main theme of our paper is the relation between the
notion of nonuniform exponential dichotomy with invariant
projection sequences and the notion of Lyapunov functions.
The case of exponential dichotomy with strongly invariant
projection sequences was considered by Barreira and Valls
(see [8, 9]).

2. Definitions, Notations, and
Preliminary Results

We first fix the notions and introduce the basic concepts
underlying this paper. By N we denote the positive integers
andR

+
denotes the set of positive real numbers.𝑋 is a real or

complex Banach space andB(𝑋) is the Banach algebra of all
bounded linear operators on 𝑋. The norm on 𝑋 and B(𝑋)

will be denoted by ‖ ⋅ ‖. We denote by 𝐼 the identity operator
on𝑋.

If 𝐴 ∈ B(𝑋) then we will denote by Ker𝐴 and by Im𝐴,
respectively, the kernel and range of 𝐴; that is,

Ker𝐴 = {𝑥 ∈ 𝑋 : 𝐴𝑥 = 0} , (1)

respectively,

Im𝐴 = {𝐴𝑥 : 𝑥 ∈ 𝑋} . (2)

We also denote by Δ the set of all pairs of natural numbers
(𝑚, 𝑛) with𝑚 ≥ 𝑛.

Throughout this paper, we consider the linear discrete-
time systems of the form

𝑥
𝑛+1

= 𝐴
𝑛
𝑥
𝑛
, 𝑛 ∈ N, (A)

where (𝐴
𝑛
) is a sequence in B(𝑋). If for every 𝑛 ∈ N

the operator (𝐴
𝑛
) is invertible, then the linear discrete-time

system (A) is called reversible. Every solution 𝑥 = (𝑥
𝑛
) of the

system (A) is given by

𝑥
𝑚

= A (𝑚, 𝑛) 𝑥
𝑛
, (3)

for all (𝑚, 𝑛) ∈ Δ, whereA : Δ → B(𝑋) is defined by

A (𝑚, 𝑛) = {
𝐴
𝑚−1

⋅ ⋅ ⋅ 𝐴
𝑛

if 𝑚 > 𝑛

𝐼 if 𝑚 = 𝑛.
(4)

ThemapA is called the discrete evolution operator associated
to the system (A).

Remark 1. The discrete evolution operator A(𝑚, 𝑛) satisfies
the propagator property; that is,

A (𝑚, 𝑛)A (𝑘, 𝑛) = A (𝑚, 𝑛) , (5)

for all (𝑚, 𝑘), (𝑘, 𝑛) ∈ Δ.

Definition 2. A sequence (𝑃
𝑛
) inB(𝑋) is called a projections

sequence on𝑋, if

𝑃
2

𝑛
= 𝑃
𝑛
, for every 𝑛 ∈ N. (6)

Remark 3. If (𝑃
𝑛
) is a projections sequence on𝑋 the sequence

(𝑄
𝑛
) defined by

𝑄
𝑛
= 𝐼 − 𝑃

𝑛
, ∀𝑛 ∈ N (7)

is a projections sequence on 𝑋, which is called the comple-
mentary projections of (𝑃

𝑛
).We remark that𝑃

𝑛
𝑄
𝑛
= 𝑄
𝑛
𝑃
𝑛
= 0,

Ker𝑃
𝑛
= Im𝑄

𝑛
, and Ker𝑄

𝑛
= Im𝑃

𝑛
.

Definition 4. A projection sequence (𝑃
𝑛
) is called invariant

for the system (A) if

𝐴
𝑛
𝑃
𝑛
= 𝑃
𝑛+1

𝐴
𝑛
, (8)

for all 𝑛 ∈ N.

Remark 5. In the particular case when (A) is autonomous,
that is, 𝐴

𝑛
= 𝐴 ∈ B(𝑋) and 𝑃

𝑛
= 𝑃 ∈ B(𝑋) for all 𝑛 ∈ N,

then (𝑃
𝑛
) is invariant for (A) if and only if 𝐴𝑃 = 𝑃𝐴.

Remark 6. The relation (8) from Definition 4 is also true for
the complementary projection (𝑄

𝑛
) and, as a consequence of

(8), we have that

A (𝑚, 𝑛) 𝑃
𝑛
= 𝑃
𝑚
A (𝑚, 𝑛) , (9)

respectively,

A (𝑚, 𝑛)𝑄
𝑛
= 𝑄
𝑚
A (𝑚, 𝑛) , (10)

for all (𝑚, 𝑛) ∈ Δ.

Remark 7. If (𝑃
𝑛
) is a projections sequence invariant for

the reversible system (A) then A(𝑚, 𝑛) is invertible for all
(𝑚, 𝑛) ∈ N2 and

A(𝑚, 𝑛)
−1

𝑃
𝑚

= 𝑃
𝑛
A(𝑚, 𝑛)

−1

,

A(𝑚, 𝑛)
−1

𝑄
𝑚

= 𝑄
𝑛
A(𝑚, 𝑛)

−1

,

(11)

for all (𝑚, 𝑛) ∈ Δ.

Definition 8. Let (𝑃
𝑛
) be a projections sequence which is

invariant for the system (A). We say that (𝑃
𝑛
) is strongly

invariant for (A) if for every (𝑚, 𝑛) ∈ Δ the linear operator
A(𝑚, 𝑛) is an isomorphism from Ker𝑃

𝑛
to Ker𝑃

𝑚
.

A characterization of strongly invariant projections se-
quence is given by the following.

Proposition 9. Let (𝑃
𝑛
) be a projections sequence which is

invariant for the system (A). Suppose that for all (𝑚, 𝑛) ∈ Δ the
evolution operatorA(𝑚, 𝑛) is injective on Ker𝑃

𝑛
. Then (𝑃

𝑛
) is

strongly invariant for (A) if and only if

Ker𝑃
𝑚

⊂ ImA (𝑚, 𝑛) (12)

for all (𝑚, 𝑛) ∈ Δ.
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Proof.

Necessity. If (𝑃
𝑛
) is strongly invariant for (A) and 𝑦 ∈ Ker𝑃

𝑚

then there is 𝑥 ∈ Ker𝑃
𝑛
with 𝑦 = A(𝑚, 𝑛)𝑥 and hence 𝑦 ∈

ImA(𝑚, 𝑛).

Sufficiency. We will prove that for every 𝑦 ∈ Ker𝑃
𝑚
there

exists 𝑥 ∈ Ker𝑃
𝑛
with 𝑦 = A(𝑚, 𝑛)𝑥.

Let 𝑦 ∈ Ker𝑃
𝑚
. Then 𝑦 ∈ Im𝑄

𝑚
and hence 𝑦 = 𝑄

𝑚
𝑦.

Moreover, from the hypothesis there is 𝑥
0
∈ 𝑋 such that 𝑦 =

A(𝑚, 𝑛)𝑥
0
. Then

𝑦 = 𝑄
𝑚
𝑦 = 𝑄

𝑚
A (𝑚, 𝑛) 𝑥

0
= A (𝑚, 𝑛)𝑄

𝑛
𝑥
0
= A (𝑚, 𝑛) 𝑥,

(13)

where 𝑥 = 𝑄
𝑛
𝑥
0
∈ Ker𝑃

𝑛
.

Corollary 10. If the projections sequence (𝑃
𝑛
) is invariant for

the reversible system (A) then it is also strongly invariant for
(A).

An example of invariant projections sequence which is
not strongly invariant is given by the following.

Example 11. Let𝑋 = R3 with the norm

(𝑥1, 𝑥2, 𝑥3)
 =

𝑥1
 +

𝑥2
 +

𝑥3
 (14)

and let (A) be the discrete-time system defined by the
sequence

𝐴
𝑛
(𝑥
1
, 𝑥
2
, 𝑥
3
) =

{

{

{

(
𝑥
1

𝑒
, 𝑒𝑥
2
, 𝑒𝑥
3
) if 𝑛 ≥ 1

(𝑥
1
, 0, 𝑥
3
) if 𝑛 = 0.

(15)

It is easy to verify that the sequence (𝑃
𝑛
) defined by

𝑃
𝑛
(𝑥
1
, 𝑥
2
, 𝑥
3
) = {

(𝑥
1
, 𝑥
2
, 0) if 𝑛 = 0

(𝑥
1
+ 𝑥
2
𝑒
−2𝑛

, 0, 0) if 𝑛 ≥ 1
(16)

is a projections sequence which is invariant for the system
(A). Moreover, the evolution operator associated to the
system (A) is given by

A (𝑚, 𝑛) (𝑥
1
, 𝑥
2
, 𝑥
3
)

=

{{

{{

{

(𝑥
1
𝑒
𝑛−𝑚

, 𝑥
2
𝑒
𝑚−𝑛

, 𝑥
3
𝑒
𝑚−𝑛

)
if 𝑚 ≥ 𝑛 ≥ 1

or 𝑚 = 𝑛 = 0

(𝑥
1
𝑒
−𝑚

, 0, 𝑥
3
𝑒
𝑚
) if 𝑚 > 𝑛 = 0

(17)

for all (𝑚, 𝑛) ∈ Δ. We can see that the evolution operator
is injective on Ker𝑃

𝑛
. The sequence (𝑃

𝑛
) is not strongly

invariant for (A) because 𝑦 = (−1/𝑒
2
, 1, 0) ∈ Ker𝑃

1
and

𝑦 ∉ ImA(1, 0).

Remark 12. If the projections sequence (𝑃
𝑛
) is strongly

invariant for the system (A) then there existB : Δ → B(𝑋)

such that for all (𝑚, 𝑛) ∈ Δ the evolution operatorB(𝑚, 𝑛) is
an isomorphism from Ker𝑃

𝑚
to Ker𝑃

𝑛
.

Proposition 13. The function B : Δ → B(𝑋) has the
following properties:

(b1) A(𝑚, 𝑛)B(𝑚, 𝑛)𝑄
𝑚

= 𝑄
𝑚
,

(b2) B(𝑚, 𝑛)A(𝑚, 𝑛)𝑄
𝑛
= 𝑄
𝑛
,

(b3) B(𝑚, 𝑛)𝑄
𝑚

= 𝑄
𝑛
B(𝑚, 𝑛)𝑄

𝑚
,

(b4) 𝑄𝑚 = B(𝑚,𝑚)𝑄
𝑚

= 𝑄
𝑚
B(𝑚,𝑚)𝑄

𝑚

for all (𝑚, 𝑛) ∈ Δ.

Proof. The properties (b
1
) and (b

2
) are immediate.

(b
3
) We observe that for every (𝑚, 𝑛, 𝑥) ∈ Δ × 𝑋 we have

that

𝑄
𝑚
𝑥 ∈ Im𝑄

𝑚
= Ker𝑃

𝑚
(18)

and hence

B (𝑚, 𝑛)𝑄
𝑚
𝑥 ∈ Ker𝑃

𝑛
= Im𝑄

𝑚
, (19)

which implies (b
3
).

(b
4
) follows immediately from (b

1
) and (b

3
).

Remark 14. If the projections sequence (𝑃
𝑛
) is invariant for

the reversible system (A) then

B (𝑚, 𝑛) = A(𝑚, 𝑛)
−1

, (20)

for all (𝑚, 𝑛) ∈ Δ.

3. Nonuniform Exponential Dichotomies

In this section we investigate some dichotomy concepts of
linear discrete-time systems (A)with respect to a projections
sequence (𝑃

𝑛
) invariant for (A).

Definition 15. We say that system (A) admits a nonuniform
exponential dichotomy (n.e.d.) with respect to the projections
sequence (𝑃

𝑛
), if there exist a constant 𝛼 > 0 and a function

𝐷 : N → [1,∞) such that the following properties hold:

𝑒
𝛼(𝑚−𝑛)

‖A (𝑚, 𝑛) 𝑥‖ ≤ 𝐷 (𝑛) ‖𝑥‖ , (21)

𝑒
𝛼(𝑚−𝑛) 𝑦

 ≤ 𝐷 (𝑚)
A (𝑚, 𝑛) 𝑦

 ,
(22)

for all (𝑚, 𝑛) ∈ Δ and all (𝑥, 𝑦) ∈ Im𝑃
𝑛
× Ker𝑃

𝑛
.

As particular cases of nonuniform exponential dichot-
omy, we have the following.

(1) If 𝐷(𝑛) = 𝑐𝑒
𝜀𝑛 with 𝑐 ≥ 1 and 𝜀 ≥ 0 then we say that

system (A) admits an exponential dichotomy (e.d.).
(2) If 𝐷(𝑛) = 𝐷 ≥ 1 for all 𝑛 ∈ N then we say that system

(A) is uniformly exponentially dichotomic (u.e.d.).

Remark 16. If𝐷(𝑛) = 𝐷 ≥ 1 for all 𝑛 ∈ N and (𝑃
𝑛
) is bounded

(i.e., there exist 𝑀 ≥ 1 such that ‖𝑃
𝑛
‖ ≤ 𝑀) then it can be

easily checked that the concept of nonuniform exponential
dichotomy considered in our paper is in fact a particular
case of exponential forward splitting considered in [12], with
(𝑚, 𝑛) ∈ Δ.
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Remark 17. If the system (A) is uniformly exponentially
dichotomic and (𝑃

𝑛
) is bounded then the sequence 𝐴

𝑛
is

uniformly boundedwith respect to 𝑛. (i.e., sup
𝑛∈N‖𝐴𝑛‖ < ∞).

On the other hand, sup
𝑛∈N‖𝐴𝑛‖may be finite and system (A)

admits a nonuniform behavior. See [13] for various examples
for nonuniform exponential contractions and [14, 15] for
nonuniform dichotomies. For the differential equations case,
see [16].

Remark 18. The connection between the dichotomy concepts
considered in this paper can be synthesized as (u.e.d.) ⇒

(e.d.) ⇒ (n.e.d.). The following examples show that the
converse implications are not valid.

Example 19. Let (A) be the linear discrete-time system and
(𝑃
𝑛
) the projections sequence considered in Example 11. By a

simple computation we can see that

𝑒
𝑚−𝑛

‖A (𝑚, 𝑛) 𝑥‖ ≤ 𝑒
2𝑛

‖𝑥‖ , (23)

respectively,

𝑒
𝑚−𝑛 𝑦

 ≤ 𝑒
2𝑚 A (𝑚, 𝑛) 𝑦


(24)

for all (𝑚, 𝑛) ∈ Δ and all (𝑥, 𝑦) ∈ Im𝑃
𝑛
× Ker𝑃

𝑛
. Hence,

for 𝛼 = 1 and 𝐷(𝑛) = 𝑒
2𝑛 the system (A) is nonuniform

exponentially dichotomic. Obviously, the nonuniform part
cannot be removed.

Example 20. Let𝑋 = 𝑙
∞
(R) be the Banach space of bounded

real-valued sequences, endowed with the norm

‖𝑥‖ = sup
𝑛≥0

𝑥𝑛
 , for 𝑥 = (𝑥

0
, 𝑥
1
, . . . , 𝑥

𝑛
, . . .) ∈ 𝑋. (25)

Let (𝑃
𝑛
) be a sequence inB(𝑋) defined by

𝑃
𝑛
(𝑥
0
, 𝑥
1
, 𝑥
2
, . . .)

= (𝑥
0
+ (2
𝑛
2

− 1) 𝑥
1
, 0, 𝑥
2
+ (2
𝑛
2

− 1) 𝑥
3
, 0, . . .) .

(26)

It is a simple verification to see that (𝑃
𝑛
) is a projections

sequence with the complementary

𝑄
𝑛
(𝑥
0
, 𝑥
1
, 𝑥
2
, . . .) = ((1 − 2

𝑛
2

) 𝑥
1
, 𝑥
1
, (1 − 2

𝑛
2

) 𝑥
3
, 𝑥
3
, . . .) .

(27)

We consider the linear discrete-time system (A) defined
by the sequence (𝐴

𝑛
) given by

𝐴
𝑛
= 2
𝑎
𝑛
−𝑎
𝑛+1𝑃
𝑛
+ 2
𝑎
𝑛+1
−𝑎
𝑛𝑄
𝑛+1

, (28)

where

𝑎
𝑛
=

{

{

{

2𝑘

3
if 𝑛 = 2𝑘

2𝑘 + 1 if 𝑛 = 2𝑘 + 1,

(29)

for all 𝑛 ∈ N and all 𝑥 ∈ 𝑋.

We have that the evolution operator associated to (A) is

A (𝑚, 𝑛) = 2
𝑎
𝑛
−𝑎
𝑚𝑃
𝑛
+ 2
𝑎
𝑚
−𝑎
𝑛𝑄
𝑛
, (30)

for all (𝑚, 𝑛) ∈ Δ.
We observe that for all (𝑚, 𝑛) ∈ Δ we obtain

𝑎
𝑛
− 𝑎
𝑚

≤
𝑛 − 𝑚

3
+

2𝑛

3
(31)

hence

𝑎
𝑚
− 𝑎
𝑛
≥

𝑚 − 𝑛

3
−

2𝑛

3
. (32)

We can see that (𝑃
𝑛
) is strongly invariant for the system (A)

and

‖A (𝑚, 𝑛) 𝑥‖ ≤ 2
2𝑛/3

2
−(1/3)(𝑚−𝑛)

‖𝑥‖ (33)

and, respectively,
B (𝑚, 𝑛) 𝑦

 ≤ 2
(2/3)𝑚

2
−(1/3)(𝑚−𝑛) 𝑦


(34)

for all (𝑚, 𝑛) ∈ Δ and all (𝑥, 𝑦) ∈ Im𝑃
𝑛
× Ker𝑃

𝑛
. Finally, we

observe that system (A) is exponentially dichotomic.
On the other side, if we suppose that the system (A)

admits a uniform approach, taking into account (21) from
Definition 15 with 𝐷(𝑛) = 𝐷 and (33) for 𝑚 = 𝑛 + 1 and
𝑛 = 2𝑘 + 1, we have that

2
(4𝑘+1)/3

‖𝑥‖ ≤ 𝐷 ‖𝑥‖ (35)

for all 𝑥 ∈ Im𝑃
𝑛
, which shows that nonuniform part cannot

be removed.

Example 21. Consider, on 𝑋 = R2, the sequence (𝐴
𝑛
) in

B(R2) given by

𝐴
𝑛
(𝑥
1
, 𝑥
2
) = (𝑒𝑎

𝑛
𝑥
1
,
𝑥
2

𝑒
) (36)

for all (𝑛, 𝑥
1
, 𝑥
2
) ∈ N ×R2, where

𝑎
𝑛
= {

𝑒
𝑛(1+2

𝑛
) if 𝑛 = 2𝑘

𝑒
−(𝑛+1)(1+2

𝑛+1
) if 𝑛 = 2𝑘 + 1.

(37)

Then for (𝑃
𝑛
) inB(R2) defined by

𝑃
𝑛
(𝑥
1
, 𝑥
2
) = (𝑥

1
, 0) (38)

for all (𝑛, 𝑥
1
, 𝑥
2
) ∈ N × R2, we have that for 𝛼 = 1 and

𝐷(𝑛) = 𝑒
𝑛(1+2

𝑛
) the system (A) is nonuniform exponentially

dichotomic. Obviously, system (A) is neither exponentially
dichotomic nor uniformly exponentially dichotomic.

Remark 22. The system (A) is nonuniform exponentially
dichotomic with respect to the projections sequence (𝑃

𝑛
)

invariant for (A) if and only if there exist a constant 𝑟 ∈ (0, 1)

and a function𝐷 : N → [1,∞) such that

‖A (𝑚, 𝑛) 𝑥‖ ≤ 𝐷 (𝑛) 𝑟
𝑚−𝑛

‖𝑥‖ ,

𝑦
 ≤ 𝐷 (𝑚) 𝑟

𝑚−𝑛 A (𝑚, 𝑛) 𝑦
 ,

(39)

for all (𝑚, 𝑛) ∈ Δ and all (𝑥, 𝑦) ∈ Im𝑃
𝑛
× Ker𝑃

𝑛
.

A characterization of nonuniformexponential dichotomy
of reversible systems is given by the following.
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Proposition 23. The reversible system (A) is nonuniform ex-
ponentially dichotomic if and only if there exist a projections
sequence (𝑃

𝑛
) invariant for (A), a function 𝐷 : N → [1,∞),

and a constant 𝛼 > 0 such that

‖A (𝑚, 𝑛) 𝑥‖ ≤ 𝐷 (𝑛) 𝑒
−𝛼(𝑚−𝑛)

‖𝑥‖ , (40)

A
−1

(𝑚, 𝑛) 𝑦

≤ 𝐷 (𝑚) 𝑒

−𝛼(𝑚−𝑛) 𝑦


(41)

for all (𝑚, 𝑛) ∈ Δ and all (𝑥, 𝑦) ∈ Im𝑃
𝑛
× Ker𝑃

𝑚
.

Proof. It is sufficient to prove the equivalence between (22)
and (41).

Necessity. If (22) holds then for all (𝑚, 𝑛, 𝑦) ∈ Δ × Ker𝑃
𝑚
we

have

A(𝑚, 𝑛)

−1

𝑦


=

A(𝑚, 𝑛)

−1

𝑄
𝑚
𝑦

=

𝑄
𝑛
A(𝑚, 𝑛)

−1

𝑄
𝑚
𝑦


≤ 𝐷 (𝑚) 𝑒
−𝛼(𝑚−𝑛) 

A (𝑚, 𝑛)𝑄
𝑛
A(𝑚, 𝑛)

−1

𝑄
𝑚
𝑦


= 𝐷 (𝑚) 𝑒
−𝛼(𝑚−𝑛) 𝑄𝑚𝑦

 = 𝐷 (𝑚) 𝑒
−𝛼(𝑚−𝑛) 𝑦

 .

(42)

Sufficiency. From (41) it results that for all (𝑚, 𝑛, 𝑦) ∈ Δ ×

Ker𝑃
𝑚
we have

𝑦
 =

𝑄𝑛𝑦
 =


A(𝑚, 𝑛)

−1

𝑄
𝑚
A (𝑚, 𝑛)𝑄

𝑛
𝑦


≤ 𝐷 (𝑚) 𝑒
−𝛼(𝑚−𝑛) 𝑄𝑚A (𝑚, 𝑛)𝑄

𝑛
𝑦


= 𝐷 (𝑚) 𝑒
−𝛼(𝑚−𝑛) A (𝑚, 𝑛)𝑄

𝑛
𝑦
 .

(43)

A characterization of nonuniformexponential dichotomy
propertywith respect to strongly invariant projection sequen-
ces is given by the following.

Theorem 24. Let (𝑃
𝑛
) be a projections sequence which is

strongly invariant for the system (A). Then (A) is nonuniform
exponentially dichotomic with respect to (𝑃

𝑛
) if and only if there

exist a function 𝐷 : N → [1,∞) and a constant 𝛼 > 0 such
that

‖A (𝑚, 𝑛) 𝑥‖ ≤ 𝐷 (𝑛) 𝑒
−𝛼(𝑚−𝑛)

‖𝑥‖ , (44)

B (𝑚, 𝑛) 𝑦
 ≤ 𝐷 (𝑚) 𝑒

−𝛼(𝑚−𝑛) 𝑦


(45)

for all (𝑚, 𝑛) ∈ Δ and all (𝑥, 𝑦) ∈ Im𝑃
𝑛
× Ker𝑃

𝑚
.

Proof. It is sufficient to prove the equivalence between (22)
and (45).

Necessity. We observe that from (22) and the properties (b
1
)

and (b
3
) from Proposition 13, we obtain

A (𝑚, 𝑛) 𝑦


=
B (𝑚, 𝑛)𝑄

𝑚
𝑦


(b
3
)

=
𝑄𝑛B (𝑚, 𝑛)𝑄

𝑚
𝑦


≤ 𝐷 (𝑚) 𝑒
−𝛼(𝑚−𝑛) A (𝑚, 𝑛)𝑄

𝑛
B (𝑚, 𝑛)𝑄

𝑚
𝑦


= 𝐷 (𝑚) 𝑒
−𝛼(𝑚−𝑛) 𝑄𝑚A (𝑚, 𝑛)B (𝑚, 𝑛)𝑄

𝑚
𝑦


(b1)
= 𝐷 (𝑚) 𝑒

−𝛼(𝑚−𝑛) 𝑄𝑚𝑦
 = 𝐷 (𝑚) 𝑒

−𝛼(𝑚−𝑛) 𝑦
 ,

(46)

for all (𝑚, 𝑛, 𝑦) ∈ Δ × Ker𝑃
𝑚
.

Sufficiency. By (45), using the property (b
2
) from

Proposition 13 we obtain

𝑦
 =

𝑄𝑛𝑦


(b
2
)

=
B (𝑚, 𝑛)A (𝑚, 𝑛)𝑄

𝑛
𝑦


=
B (𝑚, 𝑛)𝑄

𝑚
A (𝑚, 𝑛)𝑄

𝑛
𝑦


≤ 𝐷 (𝑚) 𝑒
−𝛼(𝑚−𝑛) A (𝑚, 𝑛)𝑄

𝑛
𝑦


= 𝐷 (𝑚) 𝑒
−𝛼(𝑚−𝑛) A (𝑚, 𝑛) 𝑦



(47)

for all (𝑚, 𝑛, 𝑦) ∈ Δ × Ker𝑃
𝑛
.

4. Lyapunov Functions and Nonuniform
Exponential Dichotomies

Let (A) be a linear discrete-time system on a Banach space𝑋
and (𝑃

𝑛
) a projections sequence which is invariant for (A).

Definition 25. We say that 𝐿 : Δ × 𝑋 → R
+
is a Lyapunov

function for the system (A) with respect to projections
sequence (𝑃

𝑛
) if there exists a constant 𝑎 ∈ (1, +∞) such that

the following properties hold:

𝐿 (𝑚, 𝑛, 𝑥) − 𝑎𝐿 (𝑚 + 1, 𝑛, 𝑥) ≥ ‖A (𝑚, 𝑛) 𝑥‖ (48)

for all (𝑚, 𝑛, 𝑥) ∈ Δ × Im𝑃
𝑛

𝐿 (𝑚 + 1, 𝑛, 𝑦) − 𝑎𝐿 (𝑚, 𝑛, 𝑦) ≥
A (𝑚 + 1, 𝑛) 𝑦

 (49)

for all (𝑚, 𝑛, 𝑦) ∈ Δ × Ker𝑃
𝑛
,

𝐿 (𝑛, 𝑛, 𝑦) ≥
𝑦

 (50)

for all (𝑛, 𝑦) ∈ N × Ker𝑃
𝑛
.

Example 26. Let (A) be the linear discrete-time system and
(𝑃
𝑛
) the projections sequence considered in Example 11. Let

𝐿 (𝑚, 𝑛, 𝑥) = 2
𝑛−𝑚 𝑃𝑛𝑥

 + 2
−𝑚

𝑒
𝑚−𝑛

𝑚

∑

𝑘=𝑛

2
𝑘 𝑄𝑘𝑥

 , (51)

for all (𝑚, 𝑛, 𝑥) ∈ Δ×𝑋. By a simple computation for 𝑎 = 2𝑒/5

we can see that

𝐿 (𝑚, 𝑛, 𝑥)−
2𝑒

5
𝐿 (𝑚 + 1, 𝑛, 𝑥) = (2 −

2𝑒

5
) ‖A (𝑚, 𝑛) 𝑥‖

≥ ‖A (𝑚, 𝑛) 𝑥‖

(52)

for all (𝑚, 𝑛, 𝑥) ∈ Δ × Im𝑃
𝑛
and

𝐿 (𝑚 + 1, 𝑛, 𝑦) −
2𝑒

5
𝐿 (𝑚, 𝑛, 𝑦) ≥ 𝑒

𝑚−𝑛+1 𝑄𝑚+1𝑦


=
A (𝑚 + 1, 𝑛) 𝑦



(53)

for all (𝑚, 𝑛, 𝑦) ∈ Δ × Ker𝑃
𝑛
.
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Moreover

𝐿 (𝑛, 𝑛, 𝑦) =
𝑄𝑛𝑦

 =
𝑦

 (54)

for all (𝑛, 𝑦) ∈ N × Ker𝑃
𝑛
.

The main result of this paper is as follows.

Theorem 27. The linear discrete-time system (A) is nonuni-
form exponentially dichotomic with respect to the projections
sequence (𝑃

𝑛
) invariant for (A) if and only if there exists a

nondecreasing sequence 𝛽 : N → [1,∞) such that

𝐿 (𝑚, 𝑛, 𝑥) + 𝐿 (𝑚, 𝑛, 𝑦) ≤ 𝛽 (𝑛) ‖𝑥‖ + 𝛽 (𝑚)
A (𝑚, 𝑛) 𝑦



(55)

for all (𝑚, 𝑛) ∈ Δ and all (𝑥, 𝑦) ∈ Im𝑃
𝑛
× Ker𝑃

𝑛
.

Proof.

Necessity. Suppose that (A) is nonuniform exponentially
dichotomic with respect to the projections sequence (𝑃

𝑛
). We

define 𝐿 : Δ × 𝑋 → R
+
by

𝐿 (𝑚, 𝑛, 𝑥) =

∞

∑

𝑘=𝑚

𝑑
𝑘−𝑚 A (𝑘, 𝑛) 𝑃

𝑛
𝑥


+

𝑚

∑

𝑘=𝑛

𝑑
𝑚−𝑘 A (𝑘, 𝑛) 𝑄

𝑛
𝑥
 ,

(56)

where 𝑑 ∈ (1, 1/𝑟) and 𝑟 is given by Remark 22. First, we
observe that

𝐿 (𝑚, 𝑛, 𝑥) =

∞

∑

𝑘=𝑚

𝑑
𝑘−𝑚 A (𝑘, 𝑛) 𝑃

𝑛
𝑥


+

𝑚

∑

𝑘=𝑛

𝑑
𝑚−𝑘 A (𝑘, 𝑛) 𝑄

𝑛
𝑥


≤

∞

∑

𝑘=𝑚

𝑑
𝑘−𝑚

𝐷(𝑛) 𝑟
𝑘−𝑛 𝑃𝑛𝑥



+

𝑚

∑

𝑘=𝑛

𝑑
𝑚−𝑘

𝑟
𝑚−𝑘

𝐷 (𝑚)
A (𝑚, 𝑛)𝑄

𝑛
𝑥


≤
𝐷 (𝑛)

1 − 𝑑𝑟

𝑃𝑛𝑥
 +

𝐷 (𝑚)

1 − 𝑑𝑟

A (𝑚, 𝑛)𝑄
𝑛
𝑥


= 𝛽 (𝑛)
𝑃𝑛𝑥

 + 𝛽 (𝑚)
A (𝑚, 𝑛)𝑄

𝑛
𝑥
 ,

(57)

where 𝛽(𝑛) = 𝐷(𝑛)/(1 − 𝑑𝑟), and thus (55) is verified.
On the other hand, for 𝑥 ∈ Im𝑃

𝑛
we have that

𝐿 (𝑚, 𝑛, 𝑥) =

∞

∑

𝑘=𝑚

𝑑
𝑘−𝑚

‖A (𝑘, 𝑛) 𝑥‖

= 𝑑
0

‖A (𝑚, 𝑛) 𝑥‖ + 𝑑
1

‖A (𝑚 + 1, 𝑛) 𝑥‖ + ⋅ ⋅ ⋅

= 𝑎
𝑛

𝑚
+ 𝑑𝑎
𝑛

𝑚+1
+ 𝑑
2

𝑎
𝑛

𝑚+2
+ ⋅ ⋅ ⋅ ,

(58)

where 𝑎𝑛
𝑚

= ‖A(𝑚, 𝑛)𝑥‖. Moreover

𝐿 (𝑚 + 1, 𝑛, 𝑥)

=

∞

∑

𝑘=𝑚+1

𝑑
𝑘−𝑚−1

‖A (𝑘, 𝑛) 𝑥‖

= 𝑑
0

‖A (𝑚 + 1, 𝑛) 𝑥‖ + 𝑑
1

‖A (𝑚 + 2, 𝑛) 𝑥‖ + ⋅ ⋅ ⋅

= 𝑎
𝑛

𝑚+1
+ 𝑑𝑎
𝑛

𝑚+2
+ 𝑑
2

𝑎
𝑛

𝑚+3
+ ⋅ ⋅ ⋅ .

(59)

From (58) and (59) we have that
𝐿 (𝑚, 𝑛, 𝑥) = 𝑎

𝑛

𝑚
+ 𝑑𝐿 (𝑚 + 1, 𝑛, 𝑥) . (60)

Hence
𝐿 (𝑚, 𝑛, 𝑥) − 𝑎𝐿 (𝑚 + 1, 𝑛, 𝑥) ≥ ‖A (𝑚, 𝑛) 𝑥‖ , (61)

for all (𝑚, 𝑛, 𝑥) ∈ Δ × Im𝑃
𝑛
.

In the same manner we can see that for 𝑦 ∈ Ker𝑃
𝑛
we

have that

𝐿 (𝑚 + 1, 𝑛, 𝑦) =

𝑚+1

∑

𝑘=𝑛

𝑑
𝑚−𝑘 A (𝑘, 𝑛) 𝑦



= 𝑑𝐿 (𝑚, 𝑛, 𝑦) +
A (𝑚 + 1, 𝑛) 𝑦

 .

(62)

Hence
𝐿 (𝑚 + 1, 𝑛, 𝑦) − 𝑎𝐿 (𝑚, 𝑛, 𝑦) ≥

A (𝑚 + 1, 𝑛) 𝑦
 . (63)

Sufficiency. According to (48) for every (𝑚, 𝑛, 𝑥) ∈ Δ × Im𝑃
𝑛

we have that
𝐿 (𝑛, 𝑛, 𝑥) − 𝑎𝐿 (𝑛 + 1, 𝑛, 𝑥) ≥ ‖A (𝑛, 𝑛) 𝑥‖

𝐿 (𝑛 + 1, 𝑛, 𝑥) − 𝑎𝐿 (𝑛 + 2, 𝑛, 𝑥) ≥ ‖A (𝑛 + 1, 𝑛) 𝑥‖

...

(64)

which implies

𝐿 (𝑛, 𝑛, 𝑥) ≥

∞

∑

𝑗=𝑛

𝑎
𝑗−𝑛 A (𝑗, 𝑛) 𝑥

 =

∞

∑

𝑘=0

𝑎
𝑘

‖A (𝑛 + 𝑘, 𝑛) 𝑥‖ .

(65)
From (65) we have that

𝑎
𝑚−𝑛

‖A (𝑚, 𝑛) 𝑥‖ ≤ 𝐿 (𝑛, 𝑛, 𝑥) ≤ 𝛽 (𝑛) ‖𝑥‖ . (66)
Hence

‖A (𝑚, 𝑛) 𝑥‖ ≤ (
1

𝑎
)

𝑚−𝑛

𝛽 (𝑛) ‖𝑥‖ (67)

for all (𝑚, 𝑛, 𝑥) ∈ Δ × Im𝑃
𝑛
.

In a completely analog way, from (49) and (50) for 𝑦 ∈

Ker𝑃
𝑛
we have that

𝐿 (𝑚, 𝑛, 𝑦) − 𝑎𝐿 (𝑚 − 1, 𝑛, 𝑦) ≥
A (𝑚, 𝑛) 𝑦



𝐿 (𝑚 − 1, 𝑛, 𝑦) − 𝑎𝐿 (𝑚 − 2, 𝑛, 𝑦) ≥
A (𝑚 − 1, 𝑛) 𝑦



...

𝐿 (𝑛 + 1, 𝑛, 𝑦) − 𝑎𝐿 (𝑛, 𝑛, 𝑦) ≥
A (𝑛 + 1, 𝑛) 𝑦



𝐿 (𝑛, 𝑛, 𝑦) ≥
𝑦



(68)
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which implies

𝐿 (𝑚, 𝑛, 𝑦) ≥

𝑚

∑

𝑗=𝑛

𝑎
𝑚−𝑗 A (𝑗, 𝑛) 𝑦



≥ 𝑎
𝑚−𝑛 A (𝑛, 𝑛) 𝑦



= 𝑎
𝑚−𝑛 𝑦

 .

(69)

By (69) we have

𝑎
𝑚−𝑛 𝑦

 ≤ 𝐿 (𝑚, 𝑛, 𝑦) ≤ 𝛽 (𝑚)
A (𝑚, 𝑛) 𝑦

 . (70)

Hence

𝑦
 ≤

𝛽 (𝑚)

𝑎𝑚−𝑛

A (𝑚, 𝑛) 𝑦


(71)

for all (𝑚, 𝑛, 𝑦) ∈ Δ×Ker𝑃
𝑛
. From (67) and (71) we obtain that

system (A) is nonuniform exponentially dichotomic. Thus,
the proof is completed.

Corollary 28. The linear discrete-time system (A) is exponen-
tially dichotomic with respect to the projections sequence (𝑃

𝑛
) if

and only if there exist some constants𝐾, 𝑝 ≥ 1 and a Lyapunov
function 𝐿 with respect to (𝑃

𝑛
) such that

𝐿 (𝑚, 𝑛, 𝑥) + 𝐿 (𝑚, 𝑛, 𝑦) ≤ 𝐾 (𝑝
𝑛

‖𝑥‖ + 𝑝
𝑚 A (𝑚, 𝑛) 𝑦

)

(72)

for all (𝑚, 𝑛) ∈ Δ and all (𝑥, 𝑦) ∈ Im𝑃
𝑛
× Ker𝑃

𝑛
.

Corollary 29. The linear discrete-time system (A) is uni-
formly exponentially dichotomic with respect to the projections
sequence (𝑃

𝑛
) if and only if there exist a Lyapunov functionwith

respect to (𝑃
𝑛
) and a constant 𝐾 ≥ 1 such that

𝐿 (𝑚, 𝑛, 𝑥) + 𝐿 (𝑚, 𝑛, 𝑦) ≤ 𝐾 (‖𝑥‖ +
A (𝑚, 𝑛) 𝑦

) (73)

for all (𝑚, 𝑛) ∈ Δ and all (𝑥, 𝑦) ∈ Im𝑃
𝑛
× Ker𝑃

𝑛
.
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