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Lung cancer is the most common cause of cancer-related deaths in the USA. It can be detected and diag-
nosed using computed tomography images. For an automated classifier, identifying predictive features from
medical images is a key concern. Deep feature extraction using pretrained convolutional neural networks
(CNNs) has recently been successfully applied in some image domains. Here, we applied a pretrained
CNN to extract deep features from 40 computed tomography images, with contrast, of non-small cell adeno-
carcinoma lung cancer, and combined deep features with traditional image features and trained classifiers
to predict short- and long-term survivors. We experimented with several pretrained CNNs and several fea-
ture selection strategies. The best previously reported accuracy when using traditional quantitative features
was 77.5% (area under the curve [AUC], 0.712), which was achieved by a decision tree classifier. The best
reported accuracy from transfer learning and deep features was 77.5% (AUC, 0.713) using a decision tree
classifier. When extracted deep neural network features were combined with traditional quantitative features,
we obtained an accuracy of 90% (AUC, 0.935) with the 5 best post-rectified linear unit features extracted
from a vgg-f pretrained CNN and the 5 best traditional features. The best results were achieved with the
symmetric uncertainty feature ranking algorithm followed by a random forests classifier.

INTRODUCTION
Lung cancer is the most common cause of cancer-related deaths
in the USA (1). Early detection of cancer results in improved
patient outcomes. Radiological imaging modalities, such as com-
puted tomography (CT) and magnetic resonance imaging, can help
in early detection, diagnosis, and management of cancer. Ra-
diomics (33) is a process of extracting quantitative features for
computer-aided image analysis on high-quality medical images
(eg, magnetic resonance imaging, CT). The process involves
extraction of various quantitative features from a region of
interest (2) (intensity, shape, or texture) and use of those (and
potentially other) features to provide actionable information.

Traditional quantitative features (30, 31, 32, 36, 37) may be
insufficient for tumor classification; therefore, features extracted
from a deep neural network may prove helpful. Recently, deep
feature extraction from a convolutional neural network (CNN) has

shown good classification performance in the machine learning
field. Artificial neural networks (ANN), which are inspired by bio-
logical neural networks, have been used for classification and
prediction. ANNs consist of several layers—input, hidden, and out-
put layers—and there can be multiple hidden layers. Hidden and
output nodes contain an activation function. There are some issues
when using ANNs. Every consecutive layer is interconnected;
therefore, the number of weights will rapidly increase with more
layers, which, in turn, will affect the learning rate. For images, this
problem can be dealt with by using several small filters on the input
and subsampling the space of filter activations until there are
sufficient high-level features. Neural networks using filters are
called CNNs, which are currently a highly effective approach for
image classification and recognition tasks.

The predecessor of convolutional networks the “neocogni-
tron” was proposed by Fukushima (3) in 1980. In a major
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advancement, backpropagation allowed visual recognition by
deep convolutional networks (LeCun et al.) (4). This was further
simplified and advanced by Simard et al. (5) for larger data sets.
Krizhevsky et al. (6) achieved improved performance by using a
CNN for large-scale image classification when using an image
database with millions of examples, ImageNet. Girshick et al. (7)
used supervised pretraining, when data was scarce, with fine-
tuning in a specific domain. Donahue et al. (8) examined
whether the features extracted using a pretrained CNN could be
used for various classification tasks. Pretraining reduced the
overfitting problem and made the optimization easier (9). The
use of pretrained CNNs is based on transfer learning (35), which
means using previously learned knowledge to improve the ac-
curacy for a new task.

Based on transfer learning methodologies, in our current
study, we used 3 existing CNN models pretrained on ImageNet
(10) to extract deep features from lung tumors. Medical images
are different from the ImageNet images of objects in natural
scenes; therefore, in this study, we also showed that we could
classify and predict outcomes from medical images using an
ImageNet-trained CNN network. We compared our results with
the results of Hawkins et al. (2), which were obtained based on
traditional quantitative features. In this paper, we also experi-
mented by mixing deep features with quantitative features. This
work is an extension of Paul et al.’s study (11) with more
experiments, analysis using both pre- and post-rectified linear
unit (ReLU) features, and the use of multiple slices and more
emphasis on mixed feature sets. Here, we obtained 90% accu-
racy (0.935 area under the curve [AUC]), which is a significant
AUC improvement over the best previous results of 77.5% (AUC,
0.713) (11).

TRANSFER LEARNING
Transfer learning (12,13) is an approach, by which a system can
apply knowledge learned from previous tasks to a new task
domain that is, in some way, related to the previous domain.
This theory is inspired from the idea that people can intuitively
use their previously learned experience to define and solve new
problems.

In our study, we used a CNN pretrained on ImageNet. Im-
ageNet (10), currently the largest data set for image classifica-
tion and visual recognition, is an image database with �14
million images of �1000 object categories, organized according
to the WordNet hierarchy. We have a relatively small data set
(40 cases), which is very small to train a CNN that can have
millions of weights to learn. Therefore, we used several different
CNN architectures, which were previously trained on a subset of
the current ImageNet database—MatConvNet-vgg-f, MatConv-
Net-vgg-m, and MatConvNet-vgg-s. There is a wide variety in
the 1000 classes of objects in ImageNet, and we hypothesize that
some useful texture features may exist.

When using the CNN as a feature extractor, we removed the
last fully connected layer, which is the output layer. Feature
values can be extracted as raw values or after they have been
transformed by an ReLU, where an output x is mapped to
max(0,x). The activation values that we got from the last hidden
layer were the deep features (preReLU features, 4096). We also

extracted the postReLU features (4096 feature vectors). Then, we
can use these “deep features” for training and classification.

Convolutional Neural Networks
A CNN (34, 38, 39, 40, 41, 42, 43, 44) is a type of multilayer
feed-forward biologically influenced neural network. A CNN
has several layers, which can be classified into the following 3
types: convolutional (compute the output of the connected local
input region neurons), max pooling (subsampling the inputs),
and fully connected layers (used in computing each class’s
activation). The input to a CNN is an n � n � m image, where n
is the height and width and m is the number of channels, and
there will be k convolutional filters of size a � a in the convo-
lutional layer, where a � n. We have used the vgg-F, vgg-M, and
vgg-S architectures of pretrained CNNs described in Chatfield et
al.’s work (14). They have 5 convolutional layers followed by 3
fully connected layers. The details of these architectures are
described in Tables 1 to 3. All the networks used Dropout in
training, where some random weights were not allowed to
change for an iteration. They also used ReLUs for the fully
connected layers. More description about the CNN architecture
can be found in Srivastava et al.’s (15) and Dumoulin et al.’s (16)
studies. The pretrained CNN that we used in our study is imple-
mented in a MATLAB toolbox named MatConvNet (17). The
toolbox required the input image size to be a 224 � 224 RGB
(red, green, and blue) image. Because, chest CT images do not
have a color component, we modified the code to allow the
grayscale images to be fed to the CNN. The voxel intensities of
the CT images were first converted to the range [0, 255]. For the
pretrained networks, the input images need to be normalized by

Table 2. vgg-M Architecture

Conv 1 96 � 7 � 7 st. 2, pad 0

Conv 2 256 � 5 � 5 st. 2, pad 1

Conv 3 512 � 3 � 3 st. 1, pad 1

Conv 4 512 � 3 � 3 st. 1, pad 1

Conv 5 512 � 3 � 3 st. 1, pad 1

Full 6 4096 dropout

Full 7 4096 dropout

Full 8 1000 softmax

Table 1. vgg-F Architecture

Conv 1 64 � 11 � 11 st. 4, pad 0

Conv 2 256 � 5 � 5 st. 1, pad 2

Conv 3 256 � 3 � 3 st. 1, pad 1

Conv 4 256 � 3 � 3 st. 1, pad 1

Conv 5 256 � 3 � 3 st. 1, pad 1

Full 6 4096 dropout

Full 7 4096 dropout

Full 8 1000 softmax
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average image first; in our experiment, we took only the infor-
mation from the R channel, which has the lowest frequency, for
normalization, and ignored the B and G channels. The deep
features have been taken from the last layer before the outputs,
the fully connected seventh layer, and we consider the activa-
tion values (both pre- and postReLU) that we are obtaining from
this last hidden layer as deep features (dimensional feature
vectors, 4096) for the input images.

CLASSIFIERS AND FEATURE SELECTORS
We experimented with the 4 classifiers described below, as
implemented in Weka (version 3.6.8) (18).

Naïve Bayes
The naïve Bayes classifier (19), which is based on the Bayes’
theorem, is a simple probabilistic classifier that does not have a
complicated iterative parameter estimation. It makes an as-
sumption that the input features are independent of each other,
given the class variable. For estimating the classification result,
it requires only a small amount of data in training and also
performs well in case of categorical variables, which we do not
currently use.

Nearest Neighbors
A nearest neighbor classifier (20) is a lazy, nonparametric in-
stance-based learning algorithm. The main idea behind this
algorithm is to find how close a new example and stored exam-
ples are and to predict labels from the nearest examples. The
closeness is measured using a distance function (eg, Euclidean
distance, Manhattan distance, Minkowski distance, etc.), and the
classification of a new example is based on a vote of the k
nearest neighbors. In this approach, training is very fast and it
does not lose information, but more comparisons and larger
memory are required, if there is a large training set.

Decision Trees
Decision trees (21) are a top-down, nonparametric classification
algorithm. They are made up of the following 3 types of nodes:
root node (no incoming edges), internal node or test node, and
leaf node (decision nodes). The test at the root node splits the
data set into smaller subsets of internal (or leaf) nodes based on
some test conditions, and examples at internal nodes will con-
tinue being split by tests until a leaf node is created consisting of
either pure or nearly pure examples. Leaf nodes are the decision
nodes and contain the class labels. A small to medium-size

decision tree is easy to comprehend and does not require any
domain knowledge.

Random Forests
Random forests (22) is a classification method that trains en-
sembles of decision trees and chooses the class by using majority
voting among the trained trees. It uses bagging (creation of a
new training data set by selection with replacement) and ran-
dom selection of a test from the highest-ranked tests at an
internal node of a tree. We used 100 trees and randomly chose from
log2 (4096) � 1 � 13 features. It works quite effectively on large
data sets.

With each classifier, we tried the following 2 filter feature
selectors. This gave us 8 feature selector classifiers pairs.

Relief-f Feature Selector
Relief-f (23-25) is a simple, noise-tolerant, effective feature
selection algorithm for finding features with strong class depen-
dencies. This approach uses a nearest neighbor algorithm on
both the same class and the opposite class instances for ranking
the features. It assigns more weight to the features that help
differentiate between distinct classes. We used the top 5 and 10
features found by the algorithm for classification.

Symmetric Uncertainty Feature Selector
Symmetric uncertainty (26) is a feature selection approach that
can be used to rank the features by calculating the fitness
between the features and the classes. It can be calculated using
the ratio between the information gain of 2 features and the
summation of entropy of those 2 features. We used the top 5 and
10 features found by the algorithm for classification.

EXPERIMENTS
Data Set
The data set used consisted of chest CT scans and associated
clinical data in an institutional review board-approved study
from the H. Lee Moffitt Cancer Center & Research Institute,
Tampa, Florida. Eighty-one patients with �2 years of follow-up
imaged with standard-of-care contrast-enhanced CT scans who
had non-small cell cancer with biopsy-verified adenocarcinoma
were used for survival time analysis. Most (24) scans of the
subset of 40 used here were 5 mm thick slices and the second
most (7) were at 6 mm. The others were scattered from 2 to 4 mm,
with most at 3 and 4 mm. The scanners used were from GE and
Siemens, with 1 exception. There was no observed relationship
of classes with slice thickness or scanner. The data set is chal-
lengingly diverse. Patient data were de-identified and were
distributed into 4 stages as follows: 32 cases in stage 1, 20 in
stage 2, 25 in stage 3, and 4 cases in stage 4. The median survival
time from diagnosis was 925 days. The 81 patients were divided
into upper and lower quartiles based on the survival time. The
lower quartile (class � �1) consisted of 20 patients surviving
from 103 to 498 days, with a median survival time of 289 days.
The upper quartile (class � 1) consisted of 20 patients surviving
from 1351 to 2163 days, with a median survival time of 1551
days. We classified patients in the upper and lower quartiles as
long- and short-term survivors, respectively. As such, we used
the same 40 lung cancer cases as those analyzed by Hawkins et

Table 3. vgg-S Architecture

Conv 1 96 � 7 � 7 st. 2, pad 0

Conv 2 256 � 5 � 5 st. 1, pad 1

Conv 3 512 � 3 � 3 st. 1, pad 1

Conv 4 512 � 3 � 3 st. 1, pad 1

Conv 5 512 � 3 � 3 st. 1, pad 1

Full 6 4096 dropout

Full 7 4096 dropout

Full 8 1000 softmax
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al. (2). Figure 1A presents an example of a patient from the
long-term class (Left), and Figure 1B presents an example of a
patient from the short-term class (Right). Lung region segmen-
tation was performed using the Lung Tumor Analysis software

suite from Definiens (27). Tumor identification was conducted
by radiologists from H. Lee Moffitt Cancer Center & Research
Institute. Finally, a region-growing algorithm by Gu et al. (28)
was applied to segment the tumor region. Note that this is the
same data set that was used by Hawkins et al. (2).

Table 4 shows the demographics of the data set and P values
for differences in the classes where appropriate. There were no
significant differences in demographics found between the ex-
amples in the 2 classes.

In our study, for each case of lower- and upper-quartile
data, we chose the tumor slice that had the largest tumor area.
This was to maximize the tumor in one slice given to the CNN for
feature selection. One risk is if important characteristics are
missing, such as the ground glass part of a tumor (in our data set,
we did not have ground-glass tumors). We mitigated the risk by
using multiple slices. We explored extracting deep features
using a cropped image of the same size for each tumor or by
using a rectangle that most closely fit the tumor. In both cases,
the image must be resized to 224 � 224 for the CNN. We call the
approach of directly warping a variable-size rectangle that is
tightly fit to the tumor: “warping”.

Table 4. Demographic Summary of Patients in the Data Set

Characteristics Short Survival Class Long Survival Class P Value

Age, mean (SD) 69 (8.07) 64.45 (9.75) 0.1161 (Unpaired student t-test)

Sex, N (%)

Male 12 (60%) 7 (35%) 0.2049 (Fisher exact test)

Female 8 (40%) 13 (65%)

Race

White 20 (100%) 20 (100%) 1 (Fisher exact test)

Black, Asian, and Others 0 (0%) 0 (0%)

Ethnicity, N (%)

Hispanic or Latino 1 (5%) 0 (0%) 1 (Fisher exact test)

Neither Hispanic/Latino and unknown 19 (95%) 20 (100%)

Histology, N (%)

Adenocarcinoma 20 (100%) 20 (100%)

Squamous cell carcinoma 0 (0%) 0 (0%)

Other, NOS, unknown 0 (0%) 0 (0%)

Stage, N (%)

I 4 (20%) 10 (50%)

II 5 (25%) 5 (25%)

III 10 (50%) 3 (15%)

IV 1 (5%) 2 (10%)

Carcinoid, unknown 0 (0%) 0 (0%)

Tobacco Use, N%

Moderate (1–2 PPD) 4 (20%) 4 (20%)

Light (�1 PPD) 0 (0%) 1 (5%)

HIST 12 (60%) 12 (60%)

None 0 (0%) 3 (15%)

Cigarettes Nos 4 (20%) 0 (0%)

Figure 1. Example computed tomography (CT)
slices of long-term (A) and short-term (B) survival
groups with tumors outlined.
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In our study, we used the symmetric uncertainty and relief-f
feature selectors on the training set while performing a leave-
one-out cross validation. We calculated both accuracy (accuracy
is the 0.5 probability threshold) and AUC (obtained by adjusting
the probability threshold for each classifier). We tested the
classification process with the following 4 classifiers: naïve
Bayes, nearest neighbor, decision tree, and random forests. So,
there were 8 feature selector/classifier pairs. For space, we
report only a subset of best results (full results can be found
in the Supplemental Appendix).

Deep Feature Extraction from “Warped” Tumor Patches
We created the tumor patch from the CT scan image by drawing
a rectangular box that completely covered the tumor and we
called it a “warped” tumor, as each starts with a different size
and ends up transformed to the same size. This was performed
on the slice in the axial plane with the largest tumor area. The
sizes of the warped tumors were different for each case. Some
interpolation was necessary to use a CNN with different-sized
tumors; it may have unpredictable effects. It is possible the CNN
compensates for the interpolation well, as it seems to do for
camera images of different sizes. Because the pretrained CNN-F
architecture requires a 224 � 224 input image size, we used
bicubic interpolation to resize the tumor patches and then ex-
tracted deep features from them. Figure 2 shows an outlined
tumor in a slice to be warped. The size of each deep feature
vector from each tumor patch was 4096. As we obtained a large
number of features from each tumor patch, which may not all be
useful for classification, we used a feature selector for ranking
the deep features and then classified the instances. The best
result of 75% was obtained using preReLU features from a vgg-f
CNN architecture and a random forests classifier in a leave-one-
out cross validation, with 5 features using the symmetric uncer-
tainty feature ranking algorithm on each fold.

Using postReLU features, the best result of 70% was ob-
tained from a vgg-s CNN architecture and a random forest

classifier in a leave-one-out cross validation with 10 features
and the relief-f ranking algorithm on each fold. The classifica-
tion was performed on both 5 and 10 features.

Deep Feature Extraction from “Cropped” Tumor Patches
The size of each tumor patch is different; therefore, we explored
the usage of different-sized windows on all tumors. We calcu-
lated the average height and width of the window that exactly
encompassed the tumor. The average height and width is �40
pixels in the native resolution of the scan; as such, we chose a
size of 40 � 40 window for automatically cropping the tumor
patch from the center pixel of the tumor using the tumor mask.

In addition to an average-size window, a bigger window
size of 56 � 56, which completely covered almost all tumors
(only 6 tumor patches are bigger than 56 � 56), was used. This
also provides some information on whether the area outside the
tumor provides useful information for prediction. Figure 3 pres-
ents a cropped box for the same tumor as shown in Figure 2. The
feature extraction and classification procedure is the same as
the warped method. With the 40 � 40 cropped window method,
we found a best accuracy of 75% using preReLU features from
the vgg-f CNN architecture with a decision tree classifier in a
leave-one-out cross validation with 5 features using the re-
lief-f feature ranking.

Using the 40 � 40 cropped window method and postReLU
features from the vgg-m CNN architecture, we found a best
result of 82.5% with a decision tree classifier in a leave-one-out
cross validation with 5 features using the symmetric uncertainty
feature ranking. The classification was performed on 5 and 10
features, selected per fold.

With a 56 � 56 cropped window, we got a best result of
77.5% using preReLU features from the vgg-f CNN architecture
with a decision tree classifier in a leave-one-out cross vali-
dation with 10 features using the symmetric uncertainty
feature ranking.

Figure 2. Example of lung patch used for the
warped approach.

Figure 3. Example of lung patch used for the
cropped approach.
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With a 56 � 56 cropped window using postReLU features,
we got a best result of 65% from the vgg-m CNN architecture
with a decision tree classifier in a leave-one-out cross validation
with 5 features using the symmetric uncertainty feature ranking.
The classification was performed on both 5 and 10 features,
which were selected per fold.

Deep Feature Extraction from “Warped” Multiple Tumor
slices
We used multiple slices for each patient to generate additional
features for classification. For each patient, we selected the slice
that had the largest tumor area and selected the slices just before
and after the largest slice. We created the tumor patch by
drawing a rectangular box that completely covered the tumor.
The resizing of each small patch and the feature extraction and
classification were done as previously described. The predictions
of each slice were voted.

The best result using preReLU features was 85% with the
vgg-f CNN architecture and a random forest classifier in a
leave-one-out cross validation with 10 features using the sym-
metric uncertainty feature ranking algorithm on each fold.

An improved result of 87.5% was obtained using postReLU
features from vgg-f CNN architecture and a random forest clas-
sifier in a leave-one-out cross validation with 5 features using
the symmetric uncertainty feature ranking algorithm on each
fold.

The classification was performed on both 5 and 10 features,
selected per fold.

Merging Deep Features with Quantitative Features
We merged the top 5 deep features from our method with
traditional quantitative features from Hawkins et al.’s study (2).
This is a new approach where we try to incorporate both deep
features and quantitative features. We selected the top 5 features
from each set using both symmetric uncertainty and the relief-f
feature selector. There are 5 features selected per fold from both
deep features and traditional quantitative features for a total of
10 features.

The best accuracy obtained using a single-slice approach
(by merging deep and traditional quantitative features extracted
from single-tumor slice) was 82.5% using the preReLU deep

features from the vgg-f CNN architecture using a cropped
window (56 � 56) and traditional quantitative features from
Hawkins et al.’s study (2), a nearest neighbor classifier in a
leave-one-out cross validation with 10 features, and the sym-
metric uncertainty feature ranking. From the cropped (40 � 40)
single-tumor slice, using preReLU deep features from vgg-f CNN
architecture and traditional quantitative features from Hawkins
et al.’s study (2) with a naïve Bayes classifier in a leave-one-out
cross validation with 10 features and the relief-f feature ranking,
we obtained an accuracy of 82.5%.

The best accuracy obtained from the multiple-slice ap-
proach was 82.5% using the preReLU deep features from vgg-f
CNN architecture with random forest classifier in a leave-one-
out cross validation with 10 features and the symmetric uncer-
tainty feature ranking.

The best accuracy obtained from the single-slice approach
was 90% using the postReLU deep features from warped vgg-f
CNN architecture and those mentioned in Hawkins et al.’s study
(2) with naïve Bayes classifier in a leave-one-out cross valida-
tion with 10 features and relief-f feature ranking.

The best accuracy obtained from a multiple-slice approach
was also 90% using the postReLU deep features from a vgg-f
CNN architecture with a random forests classifier in a leave-
one-out cross validation with 10 features and the symmetric
uncertainty feature ranking.

Table 5 summarizes the best results that were obtained with
deep features alone and with mixed features. Results are shown
for single and multiple slices. The AUCs are included with the
highest value of 0.935.

We compared our best result with the result obtained from
Hawkins et al.’s study (2). The previous method is based on the
size, shape, and texture of the tumor patches obtained from the
CT scan images. The best accuracy, solely using 219 traditional
quantitative features, was 77.5% with an AUC of 0.713 using a
decision tree classifier in a leave-one-out cross validation with 5
features using the relief-f feature ranking.

The best accuracy of our combined method was an im-
proved 90% with an AUC of 0.935. The AUC difference between
the traditional features and the combined approach is statisti-
cally significant at the P � .05 level.

Table 5. Selected Results

Pre-Trained CNN
Architecture

vgg-m (postReLU
5 Features)

vgg-m (postReLU
5 Features)

vgg-f (postReLU
5 Features)

vgg-f (postReLU
Features)

vgg-f (postReLU
Features)

Feature Type Deep features Deep features Deep features Mixed (Deep � Traditional
quantitative) features

Mixed (Deep � Traditional
quantitative) features

Number of Slices Single Single Multiple Single Multiple

Classifier Used Decision tree Random forest Random forest Naïve bayes Random forest

Feature Selector Used Symmetric uncertainty Symmetric uncertainty Symmetric uncertainty Relief-f Symmetric uncertainty

Number of Features 5 5 5 10 (5 Deep � 5 Traditional
quantitative image
features)

10 (5 Deep � 5 Traditional
quantitative image
features)

Accuracy 82.5% 72.5% 87.5% 90% 90%

AUC 0.778 0.804 0.875 0.935 0.935

Abbreviations: CNN, convolutional neural network; ReLU, rectified linear unit; AUC, area under the curve.
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DISCUSSION
The meaning of the deep features and potential correlation remains
to be investigated. With the small amount of data, we could not
show any statistical difference between using deep features, mul-
tiple slices, and the mixed-feature model with random forests other
than the AUC of our traditional feature approach and the mixed-
feature approach. Although the mixed and deep-feature approach
showed �12% increase in accuracy, it is not a statistically signif-
icant increase with this small data set.

The stability of the deep features for the vgg-f CNN postReLU
experiment where the best 5 features were used, as identified by the
symmetric uncertainty feature selector, was investigated. The top
feature was the same for all 40 trials. The second best feature was
the same for 37 trials, and in the top 40 (at a different rank), it
appeared 3 more times. Three more features appeared at least 26
times. So, the deep features had some stability.

A recent study (29) using the Lung Image Database Consortium
data set showed that a classifier could predict whether a lung nodule
was cancerous with an overall accuracy of 75.01% using different
types of deep features than those used in this study. They used a
5-layered denoising autoencoder-trained network to extract features;
200 features extracted from layer 4 were given to a decision tree. Only
deep features were used, which shows their potential.

CONCLUSIONS
Recent advancements in CNNs have opened another path to extract
features and analyze tumor patches from CT. Adding features of
lung tumors from a CNN provides some potentially new features
not in a nonexhaustive set of the usual quantitative features (eg,
Haarlick, Laws, Wavelets). The tumors here are of different sizes
and must be preprocessed before they are given to a CNN. In this
paper, we used the transfer learning concept, in which previously
learned knowledge is used in a new task domain. Here, we used
CNNs pretrained on ImageNet to select features, which is faster than
training a CNN (for which we need much larger data). In this study,
we also showed that images from ImageNet, which are camera
images of nonmedical objects and hence considerably different
from lung cancer images, could be used for extracting useful

features from the tumor patches. We used 3 different pretrained
CNN architectures and extracted pre- and postReLU features. By
using the pretrained CNN (vgg-f architecture) and preReLU features
with a single slice, we obtained an accuracy of 77.5% using 10
features in predicting patients to be either short- or long-term
survivors. In the multiple-slice approach, the best result of 85%
using 10 features was obtained using preReLU features from the
vgg-f CNN architecture. We experimented by merging the top 5
features from both a pretrained CNN (preReLU) and the traditional
quantitative features approach and found that the best accuracy
was 82.5% from a vgg-f architecture and using a nearest neighbor
classifier in a leave-one-out cross validation with symmetric un-
certainty feature ranking.

By using the postReLU features from a single slice using
pretrained CNN (vgg-m architecture), we found an accuracy of
82.5% using 5 features. In the multiple-slice approach, the best
result of 87.5% was obtained using postReLU features from
vgg-f CNN architecture.

When we experimented by merging the top 5 features from
both a pretrained CNN (postReLU) and the traditional quantitative
features approach, using a single-slice approach, we found that the
best accuracy was 90% from a vgg-f architecture using a naïve
Bayes classifier in a leave-one-out cross validation with the relief-f
feature ranking. Using the multiple-slice approach, we found that
the best accuracy was 90% from vgg-f architecture using a random
forest classifier in a leave-one-out cross validation with the sym-
metric uncertainty feature ranking.

The 90% accuracy (AUC, 0.935) is a big improvement over
the previous best results of 77.5% (AUC, 0.713) with both “hand-
crafted” (traditional quantitative) features (2) and deep features
(11) and 82.5% by mixing “handcrafted” and deep features (11).
The AUC is statistically significantly higher than the previous
best results. Our future work consists of tuning CNNs.

Supplemental Materials
Supplemental Appendix: http://dx.doi.org/10.18383/j.tom.

2016.00211.sup.01
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