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ABSTRACT
A lot of recent work has shown that the proximity of terms
can be exploited to improve the performance of information
retrieval systems. We review a recent approach that uses an
intuitive framework to incorporate proximity functions into
vector based information retrieval systems.

More importantly, we present several proximity functions
that were learned within this framework and show that they
adhere to previously developed constraints regarding the
shape of a good proximity function. Finally, we include re-
sults of all of the learned functions on unseen test data that
shows the consistency of the learning approach used.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—Retrieval models, Search Process

General Terms
Experimentation, Performance
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1. INTRODUCTION
Much recent work has shown that the proximity between

terms is useful for improving retrieval quality in various in-
formation retrieval models [3, 5, 6]. Recent work has also
used a machine learning approach to incorporate proximity
functions into a general framework [1]. Within this frame-
work a number of proximity functions have been learned
using a symbolic machine learning approach (genetic pro-
gramming).

Indeed, machine learning approaches applied to tasks in
information retrieval have become more and more widespread.
Support vector machines, neural networks, decision trees,
gradient descent and genetic programming have all been ap-
plied to problems in information retrieval. While many of
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these artificial learning techniques show improved perfor-
mance over traditional benchmarks for certain tasks, many
lack a theoretical reason as to their comparative, if not supe-
rior, performance. To date, there has been a lack of analysis
regarding the output of many of these machine learning ap-
proaches. It is important that solutions from these many
and varied machine learning approaches can be analysed so
that theories underpinning the research in question can be
further refined. The contributions of this paper are three-
fold:

• In section 2 we review a general approach to incorpo-
rating proximity into any standard retrieval function
and show that one of the main benchmark proximity
approaches is a special case of this framework.

• In section 3 we analyse several proximity functions pro-
duced from a machine learning process and show that
they are adhere to theoretically sound properties re-
garding proximity.

• Finally, in section 4 we present results of these learned
functions on unseen test data and show that all of the
functions outperform a standard benchmark approach.

2. PROXIMITY RETRIEVAL MODEL
Vector based information retrieval systems are still some

of the most common and efficient in use. Thus, a framework
that intuitively incorporates proximity fully into these mod-
els is quite useful. In [1], a framework for incorporating in-
formation about the proximity between all query-terms into
a retrieval model has been developed. This approach uses
the following representation of a document D that matches
a query Q = {t1, t2, t3}:

D =





w(t1) p(t2, t1) p(t3, t1)
p(t1, t2) w(t2) p(t3, t2)
p(t1, t3) p(t2, t3) w(t3)





where w() is a traditional tf · idf type weighting and p()
is some proximity function. This tf · idf score can be de-
rived from a vector space model (e.g. pivoted document
length normalisation [2]), probablistic model (e.g. BM25
[2]) or even a language model (e.g. using Dirichlet Priors
[2]), as all of these models can be realised using a vector
based framework.

The score, R(Q,D), of this document is then simply some
aggregation of the values in the document matrix. The fol-



lowing formulation [1] is used:

R(Q,D) =
∑

i∈Q∩D

∑

j∈Q∩D

{

w(i) ∀i = j
p(i, j) ∀i 6= j

}

Thus, R(Q,D) is the final score of a document in relation to
a query Q. By ignoring the proximity function in this frame-
work, that is, by setting p(ti, tj) = 0 ∀i 6= j, the standard
ranking function is recovered. Using the sample document
above and assuming a BM25 weight for the initial terms,
document D can be scored as follows:

R(Q,D) = BM25(Q,D)+2 · (p(t1, t2)+ p(t1, t3)+ p(t2, t3))

as p(t1, t2) = p(t2, t1) in this framework. Thus, we can see
that by simply extending any vector based model, the prox-
imity of query-terms within a document can be incorpo-
rated.

However, there have been other approaches that incorpo-
rate proximity into retrieval functions. A common bench-
mark approach is that of Tao and Zhai [5]. Using docu-
ment D as an example and assuming that t1 and t2 are the
closest pair of query-terms in document D, Tao’s approach
(TR(Q,D)) scores a document as follows:

TR(Q,D) = BM25(Q,D) + tao(t1, t2)
= BM25(Q,D) + 2 · (tao(t1, t2)/2)

where tao(t1, t2) = log(α + exp(π(t1, t2, D))). In this for-
mulation, α is a tuning parameter and π(t1, t2, D) is the
distance between t1 and t2 in D.

By comparing the way in which R(Q,D) and TR(Q,D)
both score the sample document D, we can see that they are
only equivalent when there are two matching terms (i.e. t1
and t2). We can see that R(Q,D) is a more complete view of
proximity than that taken by a Tao’s approach. By viewing
the scoring of the sample document D as an aggregation of
all the entries in the matrix for D, we can see that tao(t1, t2)
can approximate only two of the larger valued non-diagonal
scores in D (i.e. one pair of terms), and therefore it ignores
the rest of the non-diagonal entries. This can be seen more
easily in Figure 1. The darkest cells indicate the original
weight of a term and are common to the score of a document
in all approaches, i.e. non-proximity (BM25) and proximity
(R(Q,D) and TR(Q,D)) approaches. The lighter shaded
cells are used in the proximity approaches identified here,
i.e. R(Q,D) and TR(Q,D). Finally, the non-shaded cells
are used in only one of the proximity approach outlined (i.e.
R(Q,D)).
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Figure 1: Graphical View of Proximity Framework

So, if t1 and t2 are the closest pair of terms in the docu-
ment, the tao(t1, t2) function can approximate 2× p(t1, t2),

but will ignore 2× p(t1, t3) and 2× p(t2, t3) and the remain-
ing non-shaded cells. For queries of length 2, the frameworks
are the same, but for longer queries Tao’s approach will ig-
nore the proximity between many more terms. Therefore, we
would expect the more general approach (T (Q,D)) to work
well on longer queries. It is in this regard that the frame-
work re-introduced here is a generalisation of that developed
by Tao and Zhai [5] as it deals with queries of any length.
Now that a complete framework has been outlined, the next
step is to investigate the properties of a proximity function
(p(ti, tj)) for all matching query-terms in a document.

3. PROXIMITY FUNCTION ANALYSIS
Now that we have outlined how a proximity function can

be fully incorporated into any standard ranking function,
we now wish to look at actual instantiations of these prox-
imity functions. Developing proximity functions is not a
trivial task [5] and much research into modelling proxim-
ity functions and proximity kernels [4, 3] has been con-
ducted recently. In particular, previous work [5] has devel-
oped two constraints relating to proximity and it is argued
that these constraints help model proximity correctly. These
constraints state that (1) the score of a proximity function
should decrease as the distance between the two terms in-
creases and (2) that the score should drop sharply at first
and become nearly constant as the distance between terms
increases (i.e. a convex shape). Although these constraints
have been outlined, much research has continued that aims
to discover other useful functional shapes regarding proxim-
ity. A number of different proximity-based kernel functions
continue to be explored by researchers [4, 3] (e.g. Gaus-
sian, triangle, cosine, circle and discrete passage based ker-
nels have all been adopted). Indeed, many of these kernel
functions impose a different shape on a proximity function
than those modelled by the constraints developed by Tao
and Zhai.

A proximity function is typically comprised of one or more
measures of the distances between a pair of terms in a docu-
ment. An extensive list of proximity measures has previously
been introduced [1]. Table 1 shows a number of proximity
measures that can capture the distances between all occur-
rences of a pair of terms (ti and tj) in a document.

Previous work [1] has developed a number of proximity
functions (i.e. p(ti, tj) that can be used in the framework
outlined in section 2) using a machine learning approach.
In that work, a machine learning approach is used to com-
bine multiple measures of proximity (i.e. all those from Ta-
ble 1 and a number of other scaling factors) with a num-
ber of pre-defined functions to produce a number of prox-
imity functions. These proximity functions were produced
using a genetic programming approach that optimised the
MAP (mean average precision) over a number of queries on
some training data. Genetic programming is a biologically
inspired survival of the fittest stochastic algorithm. Ran-
domly created solutions undergo guided perturbations based
on their level of fitness (i.e. performance on some training
data). The interested reader is directed to [1].

The functions produced from that data-driven approach
are outlined in Table 2 (labelled p1() to p6()). We present all
of the learned proximity functions and also analyse all of the
functions produced from that work. On inspection of all of
the six functions, the only explicit proximity measures that
appear in each function aremin distij and avg distij . Ther-



Table 1: Proximity Measures between two terms (ti and tj) in a document D

min disttitj the minimum distance between any occurrence of ti and tj in D
diff avg postitj the difference in the average position of ti and tj in D
avg disttitj the average distance between all occurrences of ti and tj in D
min avg disttitj the average of the minimum distance between an occurrences of ti and tj in D
match disttitj the average of the distances of uniquely paired occurrences of ti and tj in D
max disttitj the maximum distance between any occurrence of ti and tj in D

fore, we have re-written the functions letting x = min disttitj
and y = avg disttitj . Various different normalisation mea-
sures and scaling measures also appear in these functions,
but they do not affect the explicit distances that separate
two pairs of terms. Indeed, both of these measures (x and
y) appear in five of the six proximity functions produced.

In the learned functions (Table 2), c1 and c2 are constants
for this analysis (they are actually the sum and product
respectively of the term-frequencies of the pairs of terms)
and can be considered scaling factors. The c3 factor is the
number of query-terms that match the document, while the
c4 factor is the portion of the document that contains all
occurrences of all query-terms.
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Figure 2: Curve for tao() and p1()

We now analyse these functions by varying x and y for
typical values for both measures. In Figure 2, we plot the
Tao function [5] (tao()) and p1() as they both contain only
min disttitj (i.e. x) as an explicit proximity measure. We
can see that the learned function p1() adheres to both prox-
imity constraints as (1) as the distance measure increases
the proximity function decreases and (2) the shape of this
decrease is convex. Tao’s function was designed to adhere
to the constraints, while the p1() was learned on training
data. Furthermore, in Figures 3 and 4 we can see that all
the learned proximity functions adhere to both proximity
constraints for both measures of proximity contained within
(x = min disttitj and y = avg disttitj ). This is quite in-
teresting as it shows that a useful proximity function can
often contain different measures of proximity, and further-
more, it shows the constraints for proximity apply to each of
these different measures of proximity. These can be viewed
as different dimensions of proximity being governed by the
same constraints. Therefore, if a proximity function contains
many different measures of proximity, each measure of prox-
imity should also adhere to the constraints. Moreover, there
may be many more than two proximity measures contained

within any particular proximity function. This is an inter-
esting finding as no other approaches to date have included
multiple measures relating to proximity in their document
scoring functions. Furthermore, very little or no analysis
of machine learning approaches to IR problems have been
analysed to date.

As all these functions were produced from a data-driven
approach, where the shape of the function is determined
mainly by performance, the analysis of these learned func-
tions reinforces the correctness of the constraints outlined by
Tao and Zhai [5]. Furthermore, although much research has
looked at different kernel functions for proximity, it would
seem that only a few of these are suitable in a retrieval set-
ting (i.e. those that adhere to the constraints). Indeed, some
research has suggested that the Gaussian kernel [3] is one of
the better performing proximity kernels. It is interesting
that the Gaussian kernel has a similar shape to the learned
functions presented here.

4. PERFORMANCE OF PROXIMITY FUNC-
TIONS

In this section, we include empirical results using all of
the learned proximity functions to show that they perform
well on a variety of different test collections. For the un-
seen test data, the FBIS (with topics 301-450), LATIMES
(with topics 351-450), FR (with topics 251-450) collections
from TREC disks 4 and 5 were used as test collections. The
OHSUMED collection and its topics was also used. Stem-
ming and stop-word removal was employed.

Table 3 shows the performance (MAP) on test data (†
shows statistical significance over the underlying function
at the 0.05 level). The table shows the performance of all
functions with respect the original ranking function (labelled
S(Q,D)). On average, all these learned functions outper-
form the underlying function on test data. This confirms the
generality of the machine learning approach adopted. The
worst performing learned proximity functions are also com-
parable to Tao’s baseline proximity approach (i.e. S(Q,D)+
tao()). Furthermore, we can see that Tao’s approach per-
forms poorer on some collections that use the longer (title
and description) queries, which was mentioned in our discus-
sions in section 2. Although many of the learned proximity
functions are not statistical significant compared to the un-
derlying function, the results do suggest a consistent trend
among the learned functions.

5. CONCLUSION
We have shown that the framework outlined in [1] is a

more general, yet related, framework to that shown in pre-
vious work [5]. More interestingly, we have shown that the
constraints, previously developed, correctly model the best
performing proximity functions produced from a learning



Table 2: Proximity Functions p1() to p6()

p1() = (((((2 · c1 + (c1/x)) + (c2/((c1 + c2)/x))/x
2)/c2)/x))/(c1 · x)

p2() = log(10/x) + 5 · (c2/y) +
√

10/x

p3() = ((
√

(100 · (c2/y))/x)/x
2) + (0.5/x2)

p4() = ((exp(
√

√

(((c2/y) · (10/x)) + 1)/0.5))/x2)

p5() = (((((( log(c4)
x2 + 10

c1
) · x)− 0.5)/(x2)) + (((log(0.5)) + ( c2

y
))/0.5))/x) − 0.5

p6() = ((3 · log( 10
x
) + log(c2 +

10
x
) + 10

x
+ prod

c1·c3
)/c3) +

c2
y·x
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Figure 3: Surface for functions p2() to p5() (left) and function p6() (right)

Table 3: MAP on Test Data
title only queries title and description queries

LA FBIS FR LA FBIS FR OHSUMED

S(Q,D) 0.2099 0.2666 0.2772 0.2293 0.2920 0.2792 0.3314
S(Q,D) with tao() 0.2169 0.2678 † 0.2615 0.2306 † 0.2686 0.2290 0.3327 †

S(Q,D) with p1() 0.2162 0.2781 † 0.2786 0.2367 0.2980 0.2842 0.3334
S(Q,D) with p2() 0.2152 0.2746 0.2820 0.2394 † 0.3001 0.2848 0.3367
S(Q,D) with p3() 0.2146 0.2740 0.2758 0.2425 0.2896 0.2738 0.3281
S(Q,D) with p4() 0.2135 0.2713 0.2813 0.2377 0.2958 0.2823 0.3282
S(Q,D) with p5() 0.2208 0.2797 † 0.2788 0.2363 0.3009 † 0.2826 0.3290
S(Q,D) with p6() 0.2233 0.2770 † 0.2834 † 0.2420 † 0.2979 0.2901 † 0.3371 †

approach. Finally, we include the results of all six proximity
functions on test data and that show the consistency of the
learning process adopted.
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