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a b s t r a c t

The transmission of automotive engine vibrations to the chassis is isolated using a new class of mounts

which rely in their operation on optimally designed and periodically distributed viscoelastic inserts. The

proposed mount acts as a mechanical filter for impeding the propagation of vibration within specific

frequency bands called the ‘‘stop bands’’. The spectral width of these bands is enhanced by making the

viscoelastic inserts operate in a shear mode rather than compression mode. The theory governing the

operation of this class of periodic mounts is presented using the theory of finite elements combined

with the transfer matrix approach. The predictions of the performance of the mount are validated

against the predictions of the commercial finite element code ANSYS and against experimental results

obtained from prototypes of plain and periodic mounts. The obtained results demonstrate the feasibility

of the shear mode periodic mount as another means for blocking the transmission of vibration over a

broad frequency band. Extending the effective width of the operating frequency bands of this class of

mount through active control means is the ultimate goal of this study.

& 2010 Elsevier B.V. All rights reserved.
1. Introduction

A periodic structure consists of an assembly of identical
elements connected in a repeated manner [1]. Examples of these
structures can be found in many engineering applications such as
satellite solar panels, wings and fuselages of aircraft, petroleum
pipe-lines, railway tracks, submarines and many others.

In these structures, waves can propagate in some frequency
bands called ‘‘pass bands’’ and are attenuated in others called
‘‘stop bands’’ [2–7]. Excellent reviews on the state-of-the-art have
been given by Mead [7] and by Mester and Benaroya [8], where
extended lists of references can be found. Since then, studies of
the characteristics of periodic structures and their applications in
engineering have been extensively investigated including passive
and active periodic structures [9–17].

In this paper, the emphasis is placed on the development of a
shear mode passive periodic engine mounts in order to effectively
isolate the transmission of vibration from the engine to the
chassis. This class of mounts is radically different from other
conventional types of engine mounts such as the passive rubber
mounts [18] and hydraulic engine mount [19,20] which are
generally effective at narrow frequency ranges. It is equally as
effective as other types of active engine mounts [21,22] which can
operate over broader frequency ranges but at the expense of the
classical complexity and reliability.
ll rights reserved.

: +1 301 405 8331.
The effectiveness of the presented periodic engine mount stems
from its unique design that relies in its operation on optimally
designed and periodically distributed viscoelastic inserts in order
to generate broad band filtering characteristics. Such characteristics
enable the mount to completely block the propagation of the
vibration rather than attenuating it. The spectral width of the
operating band is enhanced by making the viscoelastic inserts
operate in a shear mode rather than compression mode used in the
passive periodic mount of Asiri [23].

The paper is accordingly organized in five sections. In Section 1, a
brief introduction is given. In Section 2, a mathematical model of the
shear mode periodic mount is presented and the equations of
motion are derived from the finite element approach and then the
transfer matrix is obtained. The basic filtering characteristics of
these mounts are outlined in Section 3. Section 4 demonstrates the
experimental results and numerical analysis using ANSYS. Section 5
summarizes the obtained results and conclusions reached.
2. Mathematical modeling of passive periodic mounts

2.1. Overview

Fig. 1a shows a schematic drawing of the shear mode passive
periodic mount which is made of identical cells in the longitudinal
direction. Each cell can be divided into four elements as shown in
Fig. 1b. These elements are numbered 1,2,3, and 4 from the left to
the right. The dynamic behavior of element 2 is dominated by the
shear of the viscoelastic layer while elements 1, 3, and 4

www.elsevier.com/locate/finel
dx.doi.org/10.1016/j.finel.2010.03.007
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Nomenclature

A Area
b width
E Young’s modulus of elasticity
F Longitudinal traction force
G2 Shear modulus of viscoelasticity
h1,h2,h3 Thickness of core, viscoelastic material and outer

layer
Kij The element of dynamic stiffness matrix of sub-cell
Li the length of sub-cell
m Mass per unit length
Ni Shape function of sub-cell
T Kinetic energy
T Transfer matrix
u Longitudinal deflection
V Potential energy
W External work
ai Coefficient of exponential shape function

a Propagation attenuation factor
b Propagation phase angle
g Shear strain
l Eigenvalues of the transfer matrix
dij Longitudinal deflection vector
r Mass density
m Propagation parameter
o Frequency (rad/s)

Subscripts

jr, sk nodes of element of core and outer layer, respectively.
x Partial differential with respect to x

t Partial differential with respect to t

Superscripts

�1 Matrix inverse
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experience longitudinal loading. The transfer matrix of the unit
cell is derived by applying the finite element approach along with
the appropriate boundary conditions.
2.2. The transfer matrix of element 2

2.2.1. Main assumptions
(1)
 the shear strains in the metal core are negligible;

(2)
 the longitudinal stresses in the viscoelastic layer are negligible;
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Fig. 1. Schematic drawing of shear mode periodic mount and main p
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the transverse displacements of all the points on any cross
section of the periodic mount are not considered;
(4)
 the metal core and outer layers are assumed to be elastic and
dissipate no energy;
(5)
 the viscoelastic layer is linearly viscoelastic.
2.2.2. Kinematic relationships

The deflected configuration is shown in Fig. 2 where A1,E1,h1

denote the cross section area, Young’s modulus and thickness of
core. A2,G2,h2,g are the cross section area, shear’s modulus,
aterial
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Fig. 2. Deflected configuration of Element 2.
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thickness and shear strain of viscoelastic material. Also, A3,E3,h3

define the cross section area, Young’s modulus and thickness of
outer layers.

From the geometry of Fig. 2, the shear strain g in the
viscoelastic material is given by

g¼ ðujr�uskÞ=h2 ð1Þ

where ujr and usk are the longitudinal deflections of the core and
outer layer, respectively. Also, h2 defines the thickness of
viscoelastic layer.

2.2.3. Energies of the element 2

Potential energies. The potential energies, V1 and V2, associated
with the longitudinal extension of the core/outer layers and the
shear of viscoelastic layers are given by

V ¼ V1þV2 ¼

Z Z Z
V

1

2
ðsjrejrþsskeskþt2gÞdV

¼
1

2
E1A1

Z L2

0

@ujr

@x

� �2

dxþ
1

2
E3A3

Z L2

0

@usk

@x

� �2

dx

þ
1

2
G2A2

Z L2

0
g2 dx ð2Þ

where A1 ¼ h1b, A2 ¼ 2h2b, A3 ¼ 2h3b with b denoting the width of
the core and the outer layer. Also, t2, G2 denote shear stress and
storage shear modulus of the viscoelastic layer. L2 is the length of
element 2. Subscripts jr, sk denote the nodes of the core and outer
layer, respectively.

Kinetic energies. The kinetic energy T associated with the
longitudinal deflection ujr and usk is given by

T ¼
1

2
r1A1

Z L2

0

@ujr

@t

� �2

dxþ
1

2
r3A3

Z L2

0

@usk

@t

� �2

dx ð3Þ

where r1, r3 are the densities of the core and outer layer,
respectively.

2.2.4. Finite element model of element 2

The displacements of core and outer layer can be described by
the following shape functions:

ujrðxÞ ¼ ½Nj Nr �
uj

ur

( )
¼ ½Nj Nr�fdjrg,

uskðxÞ ¼ ½Ns Nk�
us

uk

( )
¼ ½Ns Nk�fdskg ð4Þ

where uj,ur ,Nj,Nr are nodal displacements and shape functions at

nodes j, r in core, as are us,uk,Ns,Nk at nodes s, k of outer layer.
From Eqs. (1) and (4), the shear strain g becomes,

g¼ ðujr�uskÞ=h2 ¼ ð1=h2ÞðNjujþNrur�Nsus�NkukÞ
ð5Þ

ujr, usk in Eq. (4) can be also rewritten as

ð6Þ

The potential energy of Eq. (2) can be evaluated using Eq. (6) as
follows,

ð7Þ

where

One can also obtain mass matrix of element 2 using the kinetic
energies,

ð8Þ

The equation of motion for element 2 can be obtained as follows:

½Mele2�f
€de2gþ½Kele2�fde2g ¼ fFele2g or ½KD

ele2�fde2g ¼ fFele2g ð9Þ

where dynamic stiffness ½KD
ele2� ¼ ½Kele2�o2Mele2� and fde2g ¼ fdjr

dskg
T . The dynamic stiffness matrix of element 2 can be given by

ð10Þ
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Table 1
Geometric properties.

Length (mm) Thickness (mm) Width (mm)

L1 4.76 h1 3.17 b 25.4

L2 17.46 h2 3.18, 8, 15

L3 4.76

L4 4.76 h3 3.18
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where

Kab ¼

Z L2

0
½E1A1ðNa,xNb,xÞþgðNaNbÞ�o2r1A1ðNaNbÞ�dx;

a¼ j,r; b¼ j,r

Kjs ¼�

Z L2

0
½gðNjNsÞ�dx, Kjk ¼�

Z L2

0
½gðNjNkÞ�dx,

Krs ¼�

Z L2

0
½gðNrNsÞ�dx

Krk ¼�

Z L2

0
½gðNrNkÞ�dx, Ksj ¼�

Z L2

0
½gðNsNjÞ�dx,

Ksr ¼�

Z L2

0
½gðNsNrÞ�dx

Kkj ¼�

Z L2

0
½gðNkNjÞ�dx, Kkr ¼�

Z L2

0
½gðNkNrÞ�dx

Kcd ¼

Z L2

0
½E3A3ðNc,xNd,xÞþgðNcNdÞ�o2r3A3ðNcNdÞ�dx;

c¼ s,k; d¼ s,k

g ¼ ðG2A2=h2
2Þ

2.2.5. The transfer matrix of element 2

The transfer matrix of element 2 can be obtained by using
dynamic stiffness matrix of Eq. (10) and applying the free
boundary condition at ur, us:

ð11Þ

Rearranging Eq. (11) leads to the following equation:

Kele2
11 Kele2

12

Kele2
21 Kele2

22

" #
uj

uk

( )
¼

Fj

Fk

( )
ð12Þ

From Eq. (12) and Fig. 2, one can establish the transfer matrix [T2]:

ujþ1

Fjþ1

( )
¼

uk

�Fk

( )
¼ ½T2�

uj

Fj

( )
ð13Þ

where [T2] is the transfer matrix of element 2. Combining Eq. (12)
and (13) yields the transfer matrix [T2]:

ð14Þ

or

ð15Þ

where

Kele2
11 ¼ ðKjjÞþðKjsÞCjþðKjrÞDj, Kele2

12 ¼ ðKjkÞþðKjsÞCkþðKjrÞDk

Kele2
21 ¼ ðKkjÞþðKksÞCjþðKkrÞDj, Kele2

22 ¼ ðKkkÞþðKksÞCkþðKkrÞDk

Cj ¼�½ðKssÞ�ðKsrÞðKrrÞ
�1
ðKrsÞ�

�1½ðKsjÞ�ðKsrÞðKrrÞ
�1
ðKrjÞ�

Ck ¼�½ðKssÞ�ðKsrÞðKrrÞ
�1
ðKrsÞ�

�1½ðKskÞ�ðKsrÞðKrrÞ
�1
ðKrkÞ�

Dj ¼ ½�ðKrrÞ
�1
ðKrjÞ�ðKrrÞ

�1
ðKrsÞCj�

Dk ¼ ½�ðKrrÞ
�1
ðKrkÞ�ðKrrÞ

�1
ðKrsÞCk�
2.3. The transfer matrices of elements 1, 3 and 4

Elements 1,3 and 4 can be regarded as one-dimensional rod
with different cross section areas, therefore, their potential and
kinetic energies have the similar form:

Vi ¼
1

2
EiAi

Z Li

0

@ui

@x

� �2

dx, ð16Þ

Ti ¼
1

2
riAi

Z Li

0

@ui

@t

� �2

dx, i¼ 1,3,4 ð17Þ

Let u1, u2 be the axial displacement of two nodes of one element.
Also Let N1ðxÞ,N2ðxÞ be the shape function of u1, u2. The deflection
variation of one-dimensional rod can be derived as

uiðxÞ ¼ ½N1ðxÞ N2ðxÞ�
u1

u2

( )
¼ ½N�½de� ð18Þ

where fdeg ¼ fu1 u2g
T . One can evaluate potential energies and

kinetic energies as follows:

Vi ¼
1

2
EiAi

Z Li

0

@ui

@x

� �T @ui

@x

� �
dx

¼
1

2
deg

T EiAi

Z Li

0

@N1

@x

@N1

@x

@N1

@x

@N2

@x
@N2

@x

@N1

@x

@N2

@x

@N2

@x

2
664

3
775dx

0
BB@

1
CCA de

� �
8>><
>>:

¼
1

2
deg

T ½ki
a� de

� �n
ð19Þ

Ti ¼
1

2
riAi

Z Li

0

@ui

@t

� �T @ui

@t

� �
dx

¼
1

2
_deg

T ðriAi

Z Li

0

N1N1 N1N2

N2N1 N2N2

" #
dxÞ _de

n o
¼

1

2
_deg

T ½mi
a�

_de

n on(

ð20Þ

The equation of motion for one element can be obtained as
follows:

½mi
a�f
€degþ½k

i
a�fdeg ¼ fFeg or ½ki

a�o
2mi

a�fdeg ¼ fFeg ð21Þ

From Eq. (21), the dynamic matrix of elements 1,3, and 4 are given by

½ki
D� ¼

EiAi

R Li

0

@N1

@x

@N1

@x
�o2 ri

Ei

� �
ðN1N1Þ

� �
dx EiAi

R Li

0

@N1

@x

@N2

@x
�o2 ri

Ei

� �
ðN1N2Þ

� �
dx

EiAi

R Li

0

@N2

@x

@N1

@x
�o2 ri

Ei

� �
ðN2N1Þ

� �
dx EiAi

R Li

0

@N2

@x

@N2

@x
�o2 ri

Ei

� �
ðN2N2Þ

� �
dx

2
6664

3
7775

ð22Þ

From Eq. (21), the equation of motion of an element can be expressed
as follows:

½ki
D�

ui
1

ui
2

( )
¼

Fi
1

Fi
2

( )
or

ki
11 ki

12

ki
21 ki

22

" #
ui

1

ui
2

( )
¼

Fi
1

Fi
2

( )
ð23Þ



ARTICLE IN PRESS

Attenuation[α=real(μ)]

Frequency (Hz)

M
ag

ni
tu

de
(d

B
)

by Exponential Shape Function(h2=3.18mm)
by Linear Shape Function(h2=3.18mm)

M
ag

ni
tu

de
(d

B
)

attenuation at h2 = 3.18mm 

attenuation at h2 = 8mm 

attenuation at h2 = 15mm 

Attenuation[α=real(μ)]

Frequency (Hz)

M
ag

ni
tu

de
(d

B
)

by Exponential Shape Function(h2=8mm)
by Linear Shape Function(h2=8mm)

M
ag

ni
tu

de
(d

B
)

Attenuation[α=real(μ)]

-2

0

2

4

6

8

10

12

-2
0
2
4
6
8

10
12
14
16
18

-5

0

5

10

15

20

Frequency (Hz)

M
ag

ni
tu

de
(d

B
)

by Exponential Shape Function(h2=15mm)
by Linear Shape Function(h2=15mm)

M
ag

ni
tu

de
(d

B
)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000

Fig. 3. The propagation constant and determinant of [T] for passive periodic shear mode

at h2¼3.18 mm; (b) determinant of [T] at h2¼3.18 mm; (c) attenuation at h2¼8 mm; (d)

of [T] at h2¼15 mm.

Table 2
Physical properties.

Material Density (kg m�3) Modulus (MPa)

Aluminum 2700 70 000a

Viscoelastic layer 1200 15+0.0ib

a Young’s modulus.
b Complex shear modulus(G(1+Zi), Z¼0.0).
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The transfer matrix [Ti] between (i)th element and (i+1)th
element has the following relationship,

uiþ1
1

Fiþ1
1

( )
¼

ui
2

�Fi
2

( )
¼ ½Ti�

ui
1

Fi
1

( )
ð24Þ

Combining Eqs. (23) and (24) gives the transfer matrix as follows:

ð25Þ
Determinant of Transfer Matrix

Frequency (Hz)
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by Linear Shape Function(h2=3.18mm)
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determinant of [T] at h2¼8 mm; (e) attenuation at h2¼15 mm and (f) determinant
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2.4. The transfer matrix of the passive periodic mount

Now, the transfer matrix of unit cell can be computed as

Tcell ¼ ½Telement4� � ½Telement3� � ½Telement2� � ½Telement1� ð26Þ

and for the complete periodic mount

T¼ ðTcellÞ
Ncell ð27Þ

where Ncell is the number of cells in the passive periodic mount.
Thus, all the information about the propagation characteristics is
given by the eigenvalues l of the transfer matrix T:

l¼ em ¼ eaþbi ð28Þ
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Fig. 4. The propagation constant and determinant of ½T�for passive periodic shear mode

determinant of [T] at h2¼3.18 mm; (c) attenuation at h2¼8 mm; (d) determinant of [T] a
where m is the propagation constants, a and b are called
attenuation factor and phase angle and represent the real and
imaginary portion of the propagation constant. Also, one another
important characteristic of the transfer matrix T is

Determinant of ½T� ¼ 1 ð29Þ

This can be proved using Eq. (15) and the symmetry of the
dynamic stiffness matrix:

ð30Þ
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t h2¼8 mm; (e) attenuation at h2¼15 mm and (f) determinant of [T] at h2¼15 mm.
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Eq. (30) can be used effectively for checking the accuracy of
transfer matrix T.
3. Performance of passive periodic mount

3.1. Shape function of element 2 and elements 1, 3, 4

The one-dimensional rod element has two nodes and one
degree of freedom at each node, the axial displacement can be
represented by exponential function which is derived from the
equation of longitudinal vibration in a rod and also is suitable in
the higher frequency range:

uiðxÞ ¼ Ae�jkixþBejkix ¼ ½e�jkix ejkix�
A

B

� 	
ð31Þ

where k2
i ¼ ðri=EiÞo2, o is the exciting frequency(rad/s). Applying

boundary conditions uið0Þ ¼ u1 at x¼0 and uiðLiÞ ¼ u2 at x¼Li and
solving A, B yield

A

B

� �
¼

1

ðejkiLi�e�jkiLi Þ

ejkiLi �1

�e�jkiLi 1

" #
u1

u2

( )

¼ ai
ejkiLi �1

�e�jkiLi 1

" #
u1

u2

( )
ð32Þ

Substituting Eq. (32) into Eq. (31) leads to

uiðxÞ ¼ ai½e
jkiðLi�xÞ�e�jkiðLi�xÞ ejkix�e�jkix�

u1

u2

( )

¼ ½NpðxÞ NqðxÞ�
u1

u2

( )
¼ ½N�fdeg ð33Þ

From Eq. (33), Nj,Nr ,Ns,Nk of element 2 and N1, N2 of element
1,3,4 are expressed as

NpðxÞ ¼ ap½e
jkpðLp�xÞ�e�jkpðLp�xÞ�, p¼ j,s,1

NqðxÞ ¼ aq½e
jkqx�e�jkqx�, q¼ r,k,2 ð34Þ

In addition to the exponential shape functions of Eq. (34),
linear shape functions for element 2 are also used to obtain the
L4
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From Eq. (35),

NmðxÞ ¼ 1�ðx=LmÞ, m¼ j,s

NnðxÞ ¼ ðx=LnÞ, n¼ r,k ð36Þ

3.2. Materials

The passive periodic mount is made of two materials, one is
aluminum, and the other is rubber as shown in Fig. 1. The
geometric and physical properties of them are given in Tables 1
and 2.

3.3. The propagation of waves in passive periodic mount

3.3.1. The comparison between exponential and linear shape

function

Fig. 3 shows comparisons between the filtering characteristics
of the passive periodic shear mode mount with four cells when
the shape function of element 2 is exponential and linear. From
Fig. 3, it is evident that there is no difference between exponential
and linear shape function of element 2. In this paper, exponential
shape function is used for calculation of the propagation
characteristics.

3.3.2. Comparison between F.E.M and analytic approach

Fig. 4 displays comparisons between the filtering characteristic
of the passive periodic shear mount with four cells as predicted by
the F.E.M and analytical method suggested by the authors [24].
Accordingly, the F.E.M will be used to calculate the propagation
characteristics of the passive periodic shear mount.
L4

L3

h3 h1h2
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Lc

hc = 2h2

ssion mode
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unifrom mount with
all aluminum

h4

ar, equivalent compression and uniform mounts
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3.3.3. Comparison between shear and compression mount

Fig. 5 shows unit cells of the passive periodic shear mount,
equivalent compression and uniform mount, respectively. The
dimensions of the equivalent passive periodic compression mount
are determined to maintain the same dimension of the
viscoelastic material as the shear mount and have the same
cross section of the aluminum parts in both mounts, namely by,

hc ¼ 2h2, Wc ¼ L2, Lc ¼ h1ðL1þL2Þþ2h3ðL2þL3Þþh4L4 ð37Þ

Fig. 6 shows the attenuation factor of the propagation
constant, respectively, for the shear, compression, and uniform
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mount configurations. It can be seen that the compression mount
is more effective than the shear mount when the thickness of the
viscoelastic layer is small (Fig. 6a). However, increasing the
thickness of the viscoelastic layer makes the passive periodic
shear mount exhibit broader stop band characteristics than the
compression mount (Fig. 6c). It should also be noted that stop
bands are not observed over the entire frequency range for the
uniform aluminum mount. This result emphasizes that the
transmission of the vibration along the passive periodic mount
is blocked over certain frequency bands by virtue of the
periodicity effect.
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Fig. 7 displays a numerical comparison between the
transmissibility of the passive periodic shear, equivalent
compression and uniform mode mounts. It can be seen that a
significant attenuation of vibration transmission occurs over the
zones of the stop bands. More importantly, it can be seen that the
shear mode mount, with thicker viscoelastic layers, is more
effective than the compression mode mount. The reverse is true
for thinner viscoelastic layers.
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Fig. 8. Experimental models of uniform and passive periodic mounts:
4. Experimental performance of periodic mount

In order to validate the predictions of theoretical model, a
series of experiments are performed. Two experimental proto-
types of mounts are designed and manufactured. One prototype is
used to measure the amplitude of the transfer function the
passive periodic mount, the other is used to determine the
transfer function of a conventional non-periodic mount. Fig. 8
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shows schematic drawings of the two prototypes and Fig. 9 shows
a photograph of the experimental periodic mount. It can be seen
that the prototype with four passive periodic mounts is used to
measure the vibration transmission from the upper plate which is
excited by a shaker. Each periodic mount is made of four cells.
Piezoelectric accelerometers (PCB Model 303A3) are placed at the
ends of the passive periodic mount. An accelerometer is used to
measure the acceleration produced by the shaker at the top of the
mount while the other accelerometer is used to capture
acceleration transmitted to the bottom of the mount. A
spectrum analyzer (ONO SOKKI Model CF910) is used to record
the output signals of the accelerometers.

The predictions of the developed model are also validated
against the predictions of the commercially available finite
element package ANSYS. Fig. 10 displays ANSYS finite element
model of the passive periodic mount. Also, the predictions of the
ANSYS model are validated against the experimental results.

Fig. 11 shows a comparison between the amplitude of the
experimental transfer functions relating the input excitation of
the top end of the mount to transmitted acceleration to its other
end. Fig. 12 shows the corresponding numerical transfer function
as obtained by using ANSYS. It can be clearly seen that the stop
Fig. 9. The experimental passive periodic shear mode mount.

Fig. 10. ANSYS finite element model of the passive periodic shear mode mount.

Fig. 12. Amplitude of the ANSYS transfer function.
bands cover the whole frequency range from the low frequencies
to high frequencies. The attenuation of the vibration transmission
is obvious and effective over the entire frequency range.

It is also evident that the experimental results are in
agreement with the prediction of theoretical model in Section 3
and those obtained from numerical analysis using ANSYS.
5. Conclusions

In this study, a passive periodic engine mount with periodic
viscoelastic inserts is presented. A theoretical model is developed to
describe the dynamics of wave propagation in the passive periodic
mount. The model is derived using the theory of finite elements. A
cell of the passive periodic mount is divided into four elements, the
transfer matrix formulation for each element is given. The overall
transfer matrix of unit cell is obtained by multiplying the transfer
matrices of the four elements composing the cell. The mechanical
filtering characteristics of wave propagation in four series cells thus
are analyzed by the transfer matrix formulation.
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Numerical examples are given to illustrate the effectiveness of
this class of periodic mounts. The experiments are performed to
validate the predictions of the theoretical model. Both the
theoretical and experimental results show that the passive
periodic mount exhibit stop bands covering a broad frequency
range.
The presented engine mounts can find many appli-
cations in gearbox support struts, engine mounts of auto-
mobiles and aircraft as well as underwater vehicles. The
development of active prototypes of the shear mode periodic
mount presented here is a natural extension of the present
work.
Appendix A. Element of matrix in Eq. (10)

A.1. Exponential shape function

Exponential shape function can be Eq. (A.1):

Nj ¼ a1½e
jk1ðL2�xÞ�e�jk1ðL2�xÞ�, Nj,x ¼ a1ð�jk1Þ½e

jk1ðL2�xÞ þe�jk1ðL2�xÞ�,

Nr ¼ a1ðe
jk1x�e�jk1xÞ, Nr,x ¼ a1ðjk1ejk1xþ jk1e�jk1xÞ ¼ a1ðjk1Þðe

jk1xþe�jk1xÞ

Ns ¼ a3½e
jk3ðL2�xÞ�e�jk3ðL2�xÞ�, Ns,x ¼ a3ð�jk3Þ½e

jk3ðL2�xÞ þe�jk3ðL2�xÞ�,

Nk ¼ a3ðe
jk3x�e�jk3xÞ, Nk,x ¼ a3ðjk3ejk3xþ jk3e�jk3xÞ ¼ a3ðjk3Þðe

jk3xþe�jk3xÞ

a1 ¼
1

ðejk1L2�e�jk1L2 Þ
, a3 ¼

1

ðejk3L2�e�jk3L2 Þ
, k2

i ¼ ðri=EiÞo2 ðA:1Þ

Inserting exponential shape function in (A.1) into Eq. (10) gives
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where

a1 ¼ 1=ðejk1L2�e�jk1L2 Þ, a3 ¼ 1=ðejk3L2�e�jk3L2 Þ, aa ¼ 1=ðejkaL2�e�jkaL2 Þ

k1 ¼ ðr1=E1Þo2, k3 ¼ ðr3=E3Þo2, g ¼ ðG2A2=h2
2Þ
A.2. Linear shape function

Linear shape function can be Eq. (A.2):

Nj ¼
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Inserting exponential shape function in (A.2) into Eq. (10) yields

Kjj ¼ ð1=L2ÞðE1A1þ2pG2A2Þ�ðo2=3ÞðM1Þ, Kjr ¼ ð1=L2Þð�E1A1þpG2A2Þ�ðo2=6ÞðM1Þ

Kjs ¼�ð1=L2Þð2pG2A2Þ, Kjk ¼�ð1=L2ÞðpG2A2Þ

Krj ¼ ð1=L2Þð�E1A1þpG2A2Þ�ðo2=6ÞðM1Þ, Krr ¼ ð1=L2ÞðE1A1þ2pG2A2Þ�ðo2=3ÞðM1Þ

Krs ¼�ð1=L2ÞðpG2A2Þ, Krk ¼�ð1=L2Þð2pG2A2Þ

Ksj ¼�ð1=L2Þð2pG2A2Þ, Ksr ¼�ð1=L2ÞðpG2A2Þ

Kss ¼ ð1=L2ÞðE3A3þ2pG2A2Þ�ðo2=3ÞðM3Þ, Ksk ¼ ð1=L2Þð�E3A3þpG2A2Þ�ðo2=6ÞðM3Þ

Kkj ¼�ð1=L2ÞðpG2A2Þ, Kkr ¼�ð1=L2Þð2pG2A2Þ

Kks ¼ ð1=L2Þð�E3A3þpG2A2Þ�ðo2=6ÞðM3Þ, Kkk ¼ ð1=L2ÞðE3A3þ2pG2A2Þ�ðo2=3ÞðM3Þ
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where,

p¼
1

6

L2

h2

� �2

, M1 ¼ r1A1L2 ¼ r1ðbh1ÞL2, M3 ¼ r3A3L2 ¼ r3ð2bh3ÞL2
Appendix B. Element of matrix in Eq. (23)
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