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[1] The one-dimensional model of Rudnicki and Chen [1988] for a slip-weakening dilating
fault is extended to include shear heating. Because inertia is not included, instability (a
seismic event) corresponds to an unbounded slip rate. Shear heating tends to increase pore
pressure and decrease the effective compressive stress and the resistance to slip and
consequently tends to promote instability. However, the decrease of effective compressive
stress also reduces the magnitude of shear heating. Consequently, in the absence of
frictional weakening and dilation, there exists a steady solution for slip at the tectonic rate in
which the pressure does not change and the shear heating is exactly balanced by heat flux
from the fault zone. In the absence of shear heating, dilatancy tends to decrease pore
pressure and inhibit instability; more rapid slip weakening promotes instability. Analysis of
undrained, adiabatic slip (characteristic of rapid slip or hydraulically and thermally isolated
faults) reveals that the interaction of these effects can cause increased slip weakening to be
stabilizing and increased dilatancy to be destabilizing. These counterintuitive effects are
due to the dependence of the shear heating on the total shear stress (not just its change).
They occur for small thermal expansivity and for material parameters within a plausible
range for 0–10 km depth. INDEX TERMS: 3210 Mathematical Geophysics: Modeling; 3299

Mathematical Geophysics: General or miscellaneous; 5104 Physical Properties of Rocks: Fracture and flow;
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1. Introduction

[2] Coupling of shear deformation with changes in the
temperature and pressure of pore fluid can affect the
stability of slip in fault gouge zones. Alterations of pore
fluid temperature and pressure arise from shear-induced
dilatancy or compaction and shear heating. These effects
are examined using an extension of the model proposed by
Rudnicki and Chen [1988] to study the stabilizing effects of
pore fluid pressure reductions due to dilatancy on frictional
slip.
[3] The role of pore fluid pressure on fault slip and rock

failure processes has been well documented by both labo-
ratory [e.g., Brace and Martin, 1968] and field studies [e.g.,
Raleigh et al., 1976]. In addition, direct observation of fluid
outflows following seismic events [Sibson, 1981] and geo-
logic observations of extensive dilatant fractures and min-
eralized vein systems near faults [Sibson, 1981, 1987, 1988]
provide further evidence of the connection between fault
slip and pore fluid processes. Several authors [Byerlee,

1990, 1993; Rice, 1992; Sibson, 1991; Sleep and Blanpied,
1992] have suggested that high (near lithostatic) pore
pressures could resolve issues concerning low stress levels
on the San Andreas fault and modulate episodic occurrence
of earthquakes.
[4] One mechanism by which pore pressure affects the

stability of slip on faults is coupling with inelastic volume
deformation in response to shear. Laboratory work has
documented volume changes accompanying frictional slip
[Teufel, 1981] and shearing of simulated fault gouge [Mar-
one et al., 1990; Marone and Kilgore, 1993; Lockner and
Byerlee, 1994]. If the volume deformation occurs rapidly,
by comparison to the timescale of pore fluid mass diffusion,
it can cause an alteration of the local pore pressure and, via
the effective stress principle, an alteration of the resistance
to inelastic shearing or frictional slip. In particular, dilation
tends to cause a reduction of pore fluid pressure, an increase
in effective compressive stress, and, hence, an increase in
resistance. Compaction produces the opposite effect. Dila-
tant hardening is the cause of apparent deviations from
effective stress principle observed by Brace and Martin
[1968] and stabilization of failure in axisymmetric com-
pression tests on Westerly granite [Martin, 1980]. More
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recently, experiments by Lockner and Byerlee [1994] dem-
onstrated that pore pressure reductions caused by dilatancy
in hydraulically isolated faults can inhibit or even suppress
instability. Several models [Rudnicki and Chen, 1988; Sleep
and Blanpied, 1992; Segall and Rice, 1995; Chambon and
Rudnicki, 2001] have examined the effect of dilatancy on
stabilizing and modifying the evolution of slip on fluid-
saturated faults.
[5] Shear heating is another mechanism by which pore

pressure affects the stability of slip. Temperature rise due to
frictional heating causes thermal expansion of the pore fluid
and, consequently, an increase of the pore pressure. An
increase in pore pressure decreases the effective compres-
sive stress and reduces the frictional resistance. Importantly,
shear heating introduces a dependence on the ambient
compressive stress level (rather than just on the stress drop)
and, thus, introduces a depth dependence in addition to that
of material or transport properties. Geological observations
of extensive vein systems near faults are interpreted as
evidence for hydraulic fracturing and, consequently, pore
fluid pressure rise in excess of the least compressive stress
[Sibson, 1981], which can be caused by shear heating.
Lachenbruch [1980], Raleigh and Evernden [1981], and
Mase and Smith [1987] have examined the effects of factors
such as stress level, hydraulic and thermal diffusivities, fault
zone width, event duration, dilation and compressibility, on
shear heating. These studies were, however, kinematic. That
is, they specified the slip rather than determining it by
means of a fault constitutive relation in response to imposed
remote loading. In addition, these models did not include
the possibility of slip instability. Other studies of the role of
shear heating in frictional instability include the studies of
Shaw [1995], Sleep [1995], and Vardoulakis [2000].
[6] Here and in the companion paper (D. I. Garagash and

J. W. Rudnicki, Shear heating of a fluid-saturated slip-
weakening dilatant fault zone, 2, Quasi-drained regime,
submitted to Journal of Geophysical Research, 2002, here-
inafter referred to as Garagash and Rudnicki, submitted
manuscript, 2002), we extend the model of Rudnicki and
Chen [1988] to study in detail the interaction of dilatancy
and thermal pressurization on slip instability. As noted
above, dilatancy tends to stabilize slip; more severe slip
weakening tends to promote instability. We will show,
however, that the interaction between shear heating, slip
weakening, and dilatancy can cause dilatancy to promote
instability and more severe slip weakening to stabilize slip.
These surprising effects are due to the dependence of shear
heating on the absolute stress level, not just its change.

2. Problem Formulation

[7] Figure 1 shows the geometry of the problem and the
loading: a crustal block of thickness 2‘ contains a fault zone
of thickness 2l with l � ‘. Because the geometry and
loading are symmetric about y = 0, the dashed line in Figure
1, only the portion y � 0 is shown. The slab extends
indefinitely in the other directions so that the problem is
one dimensional. The crustal block is loaded at its top
surface (y = ‘ + l) by a normal stress s and a shear
displacement d‘(t) related to the constant tectonic strain rate
_g‘ by d‘ = ‘ _g‘t. Because the problem is symmetric about
y = 0, the fault slip is twice the shear displacement d(t) at

the boundary of the fault zone (y = l) and fault dilatancy is
twice the normal displacement l(t) � lo of the fault
boundary, where l(0) = lo is the initial half thickness of
the fault zone. Pore fluid pressure p and temperature q at y =
‘ + l are equal to their ambient values po and qo.

2.1. Stress Equilibrium

[8] The stresses developed in the fault/crustal block
system are a shear stress t, a normal stress s, and whatever
reaction stresses are needed to maintain zero deformation in
planes perpendicular to the y direction. Because we neglect
inertia and any spatial dependence is only on y, equilibrium
requires that t and s be uniform throughout the layer. We
measure time and slip on the fault from the point at which
the shear stress is to at a normal stress so. The material in
the fault zone (0 � y � l) undergoes inelastic loading
whereas the material in the crustal block (l < y � ‘ + l)
behaves elastically. Thus, the stress in the crustal block is
given by elastic relation

t ¼ to þ G _g‘t � d=‘ð Þ ð1Þ

where G is elastic modulus.
[9] The relation between the stress and slip in the fault

zone is taken to have the simple form (which is explained in
more detail by Rudnicki and Chen [1988])

t ¼ to þ tf lt dð Þ þ mo s0 � s0o
� �

ð2Þ

where tf lt(d) (with tf lt(0) = 0) gives the slip dependence
under constant effective normal stress s0 = s0o. The third
term in (2) corresponds to the change in frictional resistance
due to the changes in effective normal stress, s0 = s � p,
where s is the total normal stress and p is the pore fluid
pressure. The friction coefficient mo is assumed here to be
constant but, may, in general, depend on effective normal
stress, slip, slip history, temperature, and fluid pressure.
Because equilibrium requires that the stress in the layer be
uniform, expressions (1) and (2) must be equal

G _g‘t � d=‘ð Þ ¼ tf lt dð Þ þ mo s0 � s0o
� �

ð3Þ

2.2. Pore Fluid Flow

[10] Fluid mass conservation for the fault zone can be
expressed as

lo
_zþ q ¼ 0 ð4Þ

where _z is the average volumetric rate of fluid content
variation per unit reference volume (averaged over the
thickness of the fault zone and q is the fluid exchange
between the layer and the adjacent crustal block. (The
superposed dot denotes the derivative with respect to time).
For constant mean stress, the rate of fluid content variation _z
can be expressed as [e.g., Coussy, 1995]

_z ¼ _p

K 0 � b0 _qþ _f p ð5Þ

where q is temperature, _fp is inelastic rate of change of
porosity f, K 0 is an effective fluid bulk modulus, and b0 is the
effective fluid thermal expansion coefficient. The effective
bulk modulus K 0 can be expressed as follows in terms of the
drained (constant pore pressure) bulk modulus K, the fluid
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bulk modulus Kf and two additional bulk moduli K 0
s and K 00

s

[Rice and Cleary, 1976; Detournay and Cheng, 1993]

1

K 0 ¼
1

K
� 1

K 0
s

þ fo

Kf

� fo

K 00
s

ð6Þ

where fo is initial porosity. Similarly, b0 can be expressed as
[McTigue, 1986; Coussy, 1995]

b0 ¼ fo bf � bs
� �

ð7Þ

where bf and bs are the expansion coefficients of the fluid
and solid constituents, respectively.
[11] Slip on the fault is accompanied by inelastic changes

in porosity f p. Although, in general, compaction ( _fp < 0) is
possible, porosity changes due to slip on frictional surfaces
or well-consolidated fault zones appear to be primarily
dilatant. Dilation may be due to a variety of processes,
such as microcrack opening in or near the fault zone, uplift
in sliding over asperity contacts, or grain rearrangement. As
noted by Rudnicki and Chen [1988], dilation that is a
simple, nondecreasing function of the slip f p = f p(d) is
consistent with experiments.
[12] According to Darcy’s law, fluid flux q is proportional

to the negative of the pore pressure gradient, but following
the studies of Rudnicki and Chen [1988] and Segall and
Rice [1995], we simplify this relation in a manner consistent
with the one degree of freedom approximation used here. In
particular, the fluid flux from the fault zone is assumed to be
proportional to the difference of fault zone pressure p and
the remote far-field ambient pressure, po,

q ’ k
p� po

‘k
ð8Þ

where ‘k is a length scale that has to be chosen to reflect
pore fluid diffusion on the timescale of interest. This

diffusion length ‘k is bounded by the crustal block thickness
‘ and, presumably, much larger than fault half thickness l,
at least if slip rates are not too high. An implication of the
approximation (8) is that the pore fluid pressure is uniform
in the fault zone. This is reasonable if the fault zone is
composed of gouge (crushed rock) with permeability much
higher than the intact rock in the adjacent crustal block.
Substituting (5) and (8) into (4) yields a fluid continuity
equation for the slip layer

_fp þ _p

K 0 � b0 _q ¼ �k
p� po

lo‘k
ð9Þ

2.3. Energy Conservation

[13] In a manner similar to (4), energy conservation for
the fluid-infiltrated fault zone layer, averaged through the
half thickness l, can be expressed as

loC _q ¼ �Qþ Yp ð10Þ

where _q is the rate of temperature change, C is heat capacity
of the gouge, Q is the heat flux at the slip layer boundary,
y = l, and Yp is the thickness averaged rate of mechanical
energy dissipation due to inelastic deformation. This form
of the energy balance neglects contributions to the rate of
energy storage from elastic strain of the solid skeleton and
pore pressure changes by comparison with the thermal heat
storage C_q [McTigue, 1986; Coussy, 1995].
[14] The thickness averaged rate of mechanical energy

dissipation is given by

Yp ¼ t_d ð11Þ

In general, there may be an additional term from the product
of the effective normal stress and the thickness change.

Figure 1. Sketch of the problem.
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Because the ratio of dilation (or compaction) to slip is small,
this term is negligible by comparison with t_d. The heat flux
Q, which satisfies Fourier’s law, is approximated in the
same way as the fluid flux (8)

Q ’ c
q� qo
‘c

ð12Þ

where c is thermal conductivity of the crustal rock and ‘c is
the lumped parameter (analogous to ‘k in (8)) which
characterizes the thermal diffusion length for timescale of
interest. Substituting (11) and (12) into (10) yields the form
of the energy conservation for the slip layer

loC _q ¼ t_d� c
q� qo
‘c

ð13Þ

2.4. Qualitative Discussion of Slip Governing
Equations

[15] The evolution of slip on the fault is governed by (3),
(9), and (13). In this subsection, we rearrange these equa-
tions to illustrate the main effects that will be discussed in
more detail in the remainder of the paper.
[16] Differentiating (3) with respect to time and assuming

constant total normal stress s = so, yields

G

‘
þ dtflt

dd

� �
_d ¼ G _g‘ þ mo _p ð14Þ

If the pore fluid pressure is constant, then the slip rate _d is
simply proportional to the imposed strain rate _g‘ with the
proportionality factor depending on the fault stress versus
slip relation. As long as dtf lt/dd is positive (slip strengthen-
ing) or not so negative (slip weakening) that the square
bracket multiplying the slip rate in (14) becomes negative,
the slip rate will be positive and finite. As dtf lt/dd becomes
more negative, the value of the bracket decreases and the
ratio of the fault slip rate _d to the imposed strain rate _g‘
becomes large. This ratio becomes unbounded if dtf lt/dd is
sufficiently negative as to equal�G/‘ and the coefficient of _d
in (14) is zero. This corresponds to an unstable, dynamic slip
event. In other words, an inertial instability occurs when the
stress on the fault decreases faster due to slip than the
adjacent material can unload elastically. If we had not
neglected inertia or included a damping term [Rice, 1993;
Segall and Rice, 1995], the slip rate would become large (of
the order of wave speeds) but not unbounded. Equation (14)
shows that an increase in pore fluid pressure ( _p > 0) increases
the slip rate and a decrease ( _p < 0) decreases the slip rate.
[17] Using (13) to eliminate the temperature rate _q from

(9) yields an expression for the rate of change of pore
pressure:

_p ¼ K 0 b0t
loC

� dfp

dd

� �
_d� 1

tk
p� poð Þ � K 0b0

tc
q� qoð Þ ð15Þ

where tk = lo‘k/kK
0 and tc = lo‘cC/c are timescales of pore

fluid and thermal diffusion, respectively. If both tk and tc
are large (undrained, adiabatic conditions), then the last two
terms in (15) can be neglected. Because K0_d is positive, the
sign of the pore pressure change is governed by the sign of
the quantity in the square bracket. The first term b0t/loC
reflects the tendency of shear heating to increase the pore

pressure; the second term dfp/dd will also tend to increase
the pore pressure if negative (compaction) but tends to
decrease it if positive (dilation). Note, however, that the
shear stress t also depends on the pore pressure through the
effective normal stress (2) and is decreased by increasing
pore pressure. Thus, pore pressure increases caused by shear
heating will tend to diminish the rate of pore pressure
change. Solutions developed later will demonstrate the
importance of this effect.
[18] Substitution of (15) into (14) yields

G

‘
þ dtf lt

dd
� moK

0b0t
loC

þ moK
0 df

p

dd

� �
_d ¼ G _g‘ �

mo
tk

p� poð Þ

� moK
0b0

tc
q� qoð Þ ð16Þ

As discussed in connection with (15), the last two terms
reflect the contributions of fluid mass flux and heat
conduction and, as discussed in connection with (14), the
vanishing of the coefficient of _d corresponds to the onset of
an inertial instability. Because the slip rate must be positive
and the right-hand side of (16) is initially positive ( p = po
and q = qo), the term in square brackets multiplying the slip
rate must also be positive initially. If not, slip is inherently
unstable or the point of instability has already been passed
in the slip history. Rudnicki and Chen [1988] began their
calculations at peak stress on the fault, dtf lt/dd = 0, assumed
dilation (dfp/dd > 0) and neglected thermal coupling (b0 =
0). Consequently, the slip rate was initially positive and
remained so until instability. When thermal coupling is
included (b0 6¼ 0), it is possible that the bracket multiplying
_d is initially negative unless either or both dt f lt/dd and
dfp/dd are positive (slip hardening and dilation) and
sufficiently large. Here we also begin calculations at peak
stress. As a result the requirement of an initially positive slip
rate introduces the following restriction

G

‘
� moK

0b0t
loC

þ moK
0 df

p

dd

� �
d¼0

> 0 ð17Þ

Alternatively, we could view the requirement of initially
positive slip rate as restricting the initial value of dtf lt/dd to
be sufficiently positive (slip strengthening).

2.5. Particular Form of Tflt and F
p

[19] To complete the formulation, we adopt particular
forms of shear resistance slip dependence (tf lt(d)) and fault
dilation (fp(d)) used by Rudnicki and Chen [1988]. The
shear resistance is given by:

tf lt ¼ � to � trð Þg d=drð Þ ð18Þ

where to and tr (tr < to) are initial peak shear stress and
residual shear stress (under constant effective normal
loading s0 = s0o), respectively. The function g(d/dr) describes
the decrease of t from to to tr over the slip distance dr
(Figure 2a), i.e., g(0) = 0 and g(1) = 1. The inelastic change
of porosity is

fp ¼ fp
r f d=drð Þ ð19Þ

where the function f increases from zero to unity as its
argument increases from zero to unity, corresponding to an
inelastic increase of the porosity from zero to fr

p over the
slip distance dr (see Figure 2b).
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[20] Although the relation (19) has the same form as that
of Rudnicki and Chen [1988, equation (5)], they expressed
the dilation directly in terms of fault opening. Because the
opening was zero at the initiation of slip, the initial normal
strain rate was unbounded. As a consequence, so was the
initial pressure decrease for undrained deformation and
undrained deformation was always stable. The present
formulation removes this unrealistic feature, though at the
expense of requiring specification of the initial fault zone
width.

3. Normalized Equations

[21] The relevant timescales and relative magnitudes of
various parameters for in situ applications are most easily
determined by writing the equations in nondimensional
form. To do so, a characteristic slip time ts, pressure p

*
,

and temperature q
*
are defined as follows:

ts ¼
dr
_g‘‘

; p* ¼ G

mo

dr
‘
; q* ¼

p*
C

dr
lo

ð20Þ

in addition to the characteristic times for pore fluid and
thermal diffusion defined following (15). Using these, the
dimensionless time T, slip �, stress �t, pressure change �
and temperature change � are given by

T ¼ t

ts
; � ¼ d

dr
; �t ¼

t
p*

; � ¼ p� po

p*
;� ¼ q� qo

q*
ð21Þ

Equations (9), (3), and (13) can then be written in the
dimensionless form

T ��þ 2

3
Ag �ð Þ ¼ �� ð22Þ

�f 0 �ð Þ _�þ _�� B _� ¼ � 1

�
� ð23Þ

_�� �t
_� ¼ � 1

�c
� ð24Þ

where the superposed dot now denotes the derivative with
respect to the nondimensional time T and the expression for
dimensionless shear stress �t is given by

�t ¼ �o
t þ mo T ��ð Þ ð25Þ

The coefficients in these equations are the following six
dimensionless parameters:

� ¼ tk

ts
; �c ¼ tc

ts
; � ¼ fp

r

p* K 0ð Þ�1
;

B ¼
q*b

0

p* K 0ð Þ�1
; A ¼ 3

2

to � tr
mop*

; �o
t ¼

to
p*

;

ð26Þ

where
1. � is the ratio of the timescale for pore fluid diffusion to

that of imposed strain
2. �c is the ratio of the timescale for heat fluid diffusion

to that of imposed strain;
3. � is a measure of residual fault inelastic dilation

relative to pore fluid compressibility;
4. B is a measure of the thermal expansivity of the pore

fluid relative to the pore fluid compressibility;
5. A is a measure of frictional stress drop in the course of

the slip; and
6. �t

o is a measure of peak shear stress, which quantifies
the absolute shear stress level.
[22] The case � � 1 (�c � 1) corresponds to ‘‘drained’’

(‘‘isothermal’’) conditions: diffusion of pore fluid between
the fault and its surroundings (heat exchange) occurs rapidly
compared with the timescale of slip. Therefore, there is no
change in the pore pressure (temperature), � = 0 (� = 0), in
this limit. The case of � � 1 (�c � 1) corresponds to the
‘‘undrained’’ (‘‘adiabatic’’) slip regime. In this regime, pore
fluid diffusion (heat exchange) is very slow on the timescale
of the slip, and, therefore, can be neglected.
[23] Substituting the expressions for � (22) and _�(24)

into (23) and combining the result with (24) yields a system

Figure 2. Fault constitutive relations: (a) decrease of shear stress t on the fault with the slip d under
constant effective normal stress (s0 = s0o) (2) and (b) fault gauge dilation: inelastic changes in porosity fp

with the slip d (19).
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of two ordinary differential equations for the normalized
slip � and temperature difference �

_� ¼ 1

�

N T ;�;�ð Þ
D T ;�ð Þ ð27Þ

_� ¼ �t
_�� 1

�c
� ð28Þ

The numerator N and denominator D on the right-hand side
of (27) are specified by

N ¼ ��þ � 1� B
�c

�

� �
ð29Þ

D ¼ �f 0 �ð Þ þ 1� 2

3
Ag0 �ð Þ � B�t; ð30Þ

where the pressure � and shear stress �t are functions of T
and � given by (22) and (25), respectively. In terms of the
nondimensional parameters, the requirement of initially
positive slip rate (17) becomes

2�þ 1� B�o
t > 0 ð31Þ

where we have used f 0(0) = 2 for the form of the dilatancy
function used in the calculations (see (A1) in Appendix A).
This condition can be expressed as a requirement that the
dilatancy must exceed a minimum value given by

�min ¼ � 1� B�o
t

2
ð32Þ

[24] Slip instability corresponding to an unbounded slip
rate ( _� ! 1) occurs when the denominator of (27) D(T,
�) vanishes but the numerator N(T, �, �) does not. The
instability corresponds to the onset of dynamic slip and
earthquake nucleation. Stick ( _� = 0) is also a possibility if
the numerator of (27) vanishes when the denominator
does not.

4. Typical Values of the Problem Parameters

[25] The model, despite its simplicity, contains a number
of material, geometric and loading parameters, but, as
discussed above, these enter a smaller set of nondimen-
sional groups. Although the model is simple enough that it
is possible to evaluate the response for a wide range of
parameters, we constrain that range to a realistic variation
for faults in situ. This section discusses the numerical values
of dimensional parameters, corresponding values of dimen-
sionless constants governing the solution, and the variation
of some of the relevant parameters with depth. For the most
part, we choose mechanical and hydraulic parameters con-
sistent with those used by Rudnicki and Chen [1988] and
Segall and Rice [1995] and thermal parameters similar to
those of Lachenbruch [1980] and Mase and Smith [1987].

4.1. Dimensional Parameters

[26] Following the study of Rudnicki and Chen [1988],
we take G = 30 GPa, kG = 0.1 m2 s�1, mo = 0.6, dr = 0.1 m,

to � tr � 10 MPa, _g‘ � 10�15 s�1 as representative in situ
values for the crustal shear modulus, effective fluid mobility
(diffusivity), friction coefficient, residual slip distance, fric-
tional stress drop, and tectonic shear strain rate, respectively.
As Rudnicki and Chen [1988] discuss in more detail, in situ
values of the diffusivity vary over several orders of magni-
tude. A number of observations suggest that the value 0.1
m2 s�1 is reasonable near active faults but values an order of
magnitude larger or smaller are widely observed. Similarly,
the residual sliding distance is poorly constrained by obser-
vations. The value used here is considerably larger than
values determined from laboratory specimens in order to
reflect the larger-scale fault roughness and inhomogeneity
that exists in the field.
[27] Consider the thermal properties of the gouge mate-

rial. Lachenbruch [1980] gives a value of 0.24 cal (gC)�1

for the specific heat (per unit mass) of gouge. (Mase and
Smith [1987] use an equivalent value in different units.)
Multiplying by a typical rock density, 2.7 g cm�3, yields a
value for the specific heat (per unit volume) of gouge C � 3
MPa C�1. Lachenbruch [1980] cites the range of (0.7–1.2)
� 10�2 cm2 s�1 as reasonable for thermal diffusivities of
gouge zone material but suggests that the lower value is
more appropriate for disaggregated material. Mase and
Smith [1987] use a value comparable to the lower end of
the range given by Lachenbruch [1980] (6.65 � 10�3 cm2

s�1). The thermal diffusivity corresponds here to the ratio
c/C. Thus, multiplying the lower end value of Mase and
Smith [1987] by C = 3 MPa C�1 yields c = 2N/sC.
[28] The choice of the length ‘ is inevitably uncertain

since it arises from approximating a fault in a continuum as
a one degree of freedom, spring-mass system but Rudnicki
and Chen [1988] suggest values in the range of ‘ � 102 to
103 m. Values of the fault thickness in the range lo � 10�2

to 1 m, are reasonable. Chester et al. [1993] report values of
about 0.1 m for a portion of the San Andreas fault. Values
much smaller than 1 cm are not feasible and, on the other
hand, values much larger than 1 m would contradict the
view of a fault as a zone of localized deformation.
[29] The residual value of the inelastic porosity fr

p is
taken to be in the range 10�4 to 10�2. This range is
consistent with that estimated by Rudnicki and Chen
[1988] (their �o/do) from laboratory experiments of Teufel
[1981] and with values of the dilatancy parameter used by
Segall and Rice [1995] (their �).
[30] The pore fluid compressibility Kf

�1 and thermal
expansivity bf that enter the effective compressibility
(K0)�1(6) and expansivity b0 (7) are functions of the pressure
and temperature and, hence, will evolve with the slip. The
magnitude of the changes is, however, likely to be small
compared with values at the ambient pressure and temper-
ature. The solutions to be presented generally support this
supposition although very near instability or for hydrauli-
cally or thermally isolated faults, the changes can be
sufficiently large that they should be included in a more
elaborate model. We do, however, include variations of Kf

�1

and bf with depth because of variations of the ambient
pressure po and temperature qo. Assuming hydrostatic con-
ditions, the pore pressure gradient is about 10 MPa km�1

and a representative geothermal gradient is 20–25C km�1

[e.g., Henyey and Wasserburg, 1971; Lachenbruch and
Sass, 1973]. Assuming the pore fluid is liquid water, we
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can calculate the variation of Kf
�1 and bf with depth from

these gradients using existing water property data (Figure 3)
[e.g., Wagner and Kruse, 1998]. The fluid compressibility
Kf

�1 varies by a factor of 2, from approximately 0.4 to 0.8
GPa�1 and the expansivity bf varies by one order of
magnitude from about 10�4 to 10�3 C�1 over the depth
range of 0–10 km (Figure 3).
[31] For the values of the initial gouge zone porosity fo

and the bulk modulus K, we take those used by Segall and
Rice [1995] in their simulations: fo = 0.05 and K = 2 GPa
(K corresponds to b�1 of Segall and Rice [1995]). They
suggest these values are appropriate estimates for gouge
zone properties at seismogenic depths that are consistent
with laboratory experiments. For these values K�1 in (6)
exceeds foKf

�1 by at least one order of magnitude and if, in
addition, K�1 � foK

0
s, foK

00
s, as is likely for gouge zone

material, then K0 � K follows from (6). Mase and Smith
[1987] give bs = 2 � 10�5 C�1. Using this value with fo =
0.05 and bf in the range 10

�4 to 10�3 C�1 in (7) yields b0 �
fobf, with values ranging from 5 � 10�6 to 5 � 10�5 C�1.
[32] The normal stress so is assumed to be constant

during slip but variation with depth according to the
lithostatic gradient is included. As discussed by Chambon
and Rudnicki [2001], alterations of normal stress by slip on
planar faults are generally small except near the free surface.
For a lithostatic gradient of approximately 30 MPa km�1

and a hydrostatic variation of pore pressure with depth of 10
MPa km�1, the gradient of residual shear stress tr = mo(so �

po) is estimated as 10 MPa km�1. If the frictional stress
drop, to � tr � 10 MPa, is independent of depth, then the
peak stress is calculated to be to = 10 + 12d MPa, where d
is the depth in kilometers. Although it might be expected
that the stress drop to � tr also decreases with depth as
conditions change from brittle to more ductile, we take it as
a constant. As discussed by Rudnicki and Chen [1988],
there is some evidence from laboratory tests that the stress
drop decreases with increasing confining stress but the
observed decrease is small. In addition, stress drops inferred
seismically show little systematic depth variation although
seismic stress drops do not correspond directly to the
frictional stress drop to � tr.

4.2. Scaling and the Values of Dimensionless
Parameters

[33] Using the estimates above we can calculate the
characteristic pressure p

*
and temperature q

*
(20) and the

nondimensional parameters (26) �, �c, �, B, A, and �t
o.

Using G = 30 GPa, mo = 0.6, dr = 0.1 m and crustal block
thickness ‘ = 103 m yields p

*
= 5 MPa. Using this value of

p
*
, C = 3 MPa C�1, and lo = 0.1 m yields q

*
= 1.7C.

Both the values of p
*
and q

*
are an order of magnitude

larger for the smaller estimate of the crustal block thickness
‘ = 102 m.
[34] Because the characteristic temperature q

*
depends

inversely on the fault zone thickness, lo, q* may be an order
of magnitude larger (17C) or smaller (0.17C) for the range

Figure 3. Plot of ambient Kf
�1 and bf versus depth d (assuming existing water properties data [Wagner

and Kruse, 1998] and that ambient fluid pressure and temperature vary along hydrostatic and geothermal
gradients).
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of fault zone thicknesses cited above, 10�2 to 1 m. Several
authors [Lachenbruch, 1980; Cardwell et al., 1978; Mase
and Smith, 1987] have noted the strong dependence of
predictions of fault zone temperature rises on the assump-
tions about the (poorly constrained) fault zone width. To
some extent, this strong dependence results from the
appearance of the volumetric heat capacity C in (20). An
alternative interpretation is to regard the product Clo as an
effective heat capacity for the fault surface. Although this
might seem simply to exchange uncertainty about fault
width for uncertainty about the product Clo, this product
can be regarded as possessing a finite limit as the fault zone
width goes to zero and, hence, does not exhibit the pathol-
ogy resulting from taking lo very small with C finite.
[35] Using p

*
= 5 MPa with K0 = 2.0 GPa and a value for

the residual inelastic porosity in the middle of the range
cited above, fr

p = 10�3, yields � = 0.4. The value of �
could be an order of magnitude larger or smaller for the
cited range of fr

p and an order of magnitude smaller for ‘ =
102 m. For the same value of p

*
and 10 MPa for the

frictional stress drop to � tr (with mo = 0.6), A = 5.
Rudnicki and Chen [1988] argue that, generally, A is of
order unity for admissible crustal block thickness variations
‘ of the order of 102 to 103 m.
[36] The ratio �/�c is a characteristic velocity for heat

transfer divided by that for fluid transfer:

�

�c
¼ ‘k c=Cð Þ

‘c kGð Þ
G

K 0 ð33Þ

The fluid diffusivity kG = 103 cm2 s�1 exceeds by five
orders of magnitude the range of thermal diffusivity c/C
suggested by Lachenbruch [1980], (0.7–1.2) � 10�2 cm2

s�1. Hence, for G = 30 GPa and K0 = 2 GPa, as suggested in
the preceding subsection, � will be much less than �c unless
‘k exceeds ‘c by four orders of magnitude. Given the small
ratio of thermal to fluid diffusivity, this seems very unlikely.
Both of the timescale ratios � and �c are proportional to the
tectonic strain rate _g‘, the product l0‘ and either ‘k (for �) or
‘c (for �c). Since both ‘k and ‘c must be bounded by ‘,
setting ‘k � ‘c � ‘ yields upper estimates for � and �c.
Using ranges of l0 (10

�2 to 1 m) and ‘ (102 to 103 m) and
values of the other parameters discussed in the preceding
subsection, yields

� � 10�10 to 10�6; �c � 10�6 to 10�2 ð34Þ

Although the estimates vary over four orders of magnitude,
both � and �c are much less than one and selecting values of
‘k and ‘c less than ‘ only reduces their magnitude. Since ‘k
and ‘c appear only in � and �c, the analysis does not depend
at all on their particular values (so long as they do not
greatly exceed ‘). Furthermore, despite the uncertainty in
individual parameters entering � and �c, their magnitudes
are certainly small. Consequently, conditions in the fault
zone will be nearly drained (�� 1) and isothermal (�c � 1)
for much of its history. This, of course, is consistent with the
notion that the timescale of tectonic straining is much longer
than those for heat and fluid mass transfer (unless the fault
is thermally and hydraulically isolated, a case we examine
in section 5.3). The analysis of the companion paper
(Garagash and Rudnicki, submitted manuscript, 2002)
exploits the smallness of � and �c.

[37] For p
*
= 5 MPa and to = 10 + 12d MPa, where d is

the depth in kilometers, as discussed above, the dimension-
less peak stress is

�o
t ¼ 2þ 2:4d ð35Þ

The dimensionless thermal expansion B (26) is given by

B ¼
q*fobf
p*=K

0 ¼ 20 q*bf ð36Þ

where q
*
is in the range between 17C (lo = 1 cm) and

0.17C (lo = 1 m) and the thermal expansion coefficient bf
[C�1] is a function of depth. For a depth of the slip of 8 km,
�t
o = 21.2 (35) and bf � 1.1 � 10�3 C�1 (see Figure 3).

Values of B(36), at this depth, are in the range between 0.34
and 0.0034 corresponding to the range of characteristic fault
temperatures between q

*
= 17C and q

*
= 0.17C (or fault

thickness between lo = 1 cm and lo = 1 m), respectively.
[38] The condition that the initial slip rate be positive (31)

can be expressed as a requirement that the dilatancy exceeds
a minimum value �min. The value of �min given by (32) can
then be expressed as a function of depth by using (35) and
(36) and the depth dependence of bf (Figure 3). For �min <
0, the slip rate at peak stress (initial slip rate) is positive for
any (nonnegative) dilatancy �. Because B and �t

o increase
with depth, so does �min. Consequently, there exists a
maximum depth, depending on the characteristic temper-
ature, below which slip weakening is inherently unstable
(i.e., initial slip rate is negative) if � < �min. If slip initiates
before rather than at peak stress, as assumed here, the initial
slope of the slip weakening relation dtf lt/dd must exceed a
minimum (positive) value for stable slip at depths below
this maximum (see (16)). For p

*
= 5 MPa and sufficiently

low characteristic temperatures (e.g., q
*
= 1.7C) or, equiv-

alently, for sufficiently wide fault zones (l o = 10 cm), the
values of bf and Kf

�1 in the entire depth range from 0 to 10
km (Figure 3) are such that the initial slip rate is positive
regardless of the fault dilatancy. On the other hand, for large
characteristic temperatures (e.g., q

*
= 17C), or narrow fault

zones (lo = 1 cm), slip is inherently unstable for small
amounts of dilatancy (0 < � < �min) at all but very shallow
depths (less than about 2 km). Thus, the fault thickness (or,
more precisely, its product with C) is a crucial parameter for
evaluating slip stability (at least in the small dilatancy case):
an increase by one order of magnitude (from lo = 1 cm to lo =
10 cm) results in change from initially unstable to initially
stable slip at almost all depths down to 10 km for small
dilatancy �.

5. Limiting Cases

[39] In this section, we consider a number of limiting
cases. These accurately describe the response over some
portion of the slip history. In addition, they illuminate
certain important effects that frictional heating can have
on the slip and its stability that will be helpful in under-
standing more complex cases.

5.1. Slip in the Absence of Strength Weakening and
Dilation

5.1.1. Analysis and Stability Considerations
[40] The limiting case of no inelastic strength weakening,

A = 0, and no dilation of the slip layer, � = 0, will apply
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when the amount of sliding exceeds the residual amount of
slip dr, d > dr (� > 1). This also corresponds to the
dilationless case considered by Lachenbruch [1980] but
includes fluid and heat transport. In this case, the dimension-
less pressure � and slip� are related by� =�� T (22) and
(27) and (28) can be reduced to the following two equations
in terms of � and � (rather than � and �, as before)

D _� ¼ � 1

�
�þ B �t �

1

�c
�

� �
ð37Þ

D _� ¼ � 1

�
�t�þ �t �

1

�c
�

� �
ð38Þ

where, according to (25) and (30) with A = � = 0,
respectively,

�t ¼ �o
t � mo�; D ¼ 1� B�t ð39Þ

Recall that coefficient D also appears in an equation for the
slip rate (27), D _� = N/�, with N given by (29).
[41] Equation (37) shows that as long as D > 0 shear

heating tends to cause an increase in the pore pressure,
which can, however, be offset by fluid diffusion. The
increase in the pore pressure causes reduction of the shear
resistance, and, since the shear stress must equal the
resistance, of the shear stress �t(39). The reduction in shear
stress increases the coefficient D. This simple observation
suggests that instability corresponding to the unbounded
slip rate (D = 0) can only take place when D is negative at
some moment of slip history.
[42] This conjecture is readily verified by noting that (37)

and (38) have the steady slip solution, �ss = 0, �ss = �c�t
o,

and _�ss = 1. This corresponds to thermal conduction that
exactly compensates for shear heating to maintain the
temperature increase and no change in pore pressure.
Solutions of (37) and (38) linearized about this steady state
have the form of constants multiplied by exp(aT/�), where a
satisfies a quadratic equation (see Appendix B for more
details). For � � 1, the solutions for a are �(�Do)

�1 and
��c

�1, where Do = 1 � B�t
o. Hence if Do > 0, both

solutions for a are negative and any small perturbations
from the steady state solution decay exponentially to zero.
Alternatively, if Do < 0, this linear analysis shows that no
steady sliding is possible as any small perturbation from the
steady state grows exponentially with time.
[43] The restriction that the initial slip rate be positive

((31) with � = 0) requires that Do > 0 if the initial temper-
ature and pressure equal their ambient values, i.e., when � =
�o = 0 and � = �o = 0. However, the no weakening, no
dilation case may be preceded by an episode during which
the temperature and pressure do not equal their ambient
values. For� 6¼ 0 and� 6¼ 0, it is possible to have a solution
for positive slip rate withDo < 0. The analysis in Appendix B
shows, however, that any such solution (not just one near
steady state) evolves either to instability in the form of an
unbounded slip rate ( _� ! 1) or to arrest ( _� = 0). (As will
be discussed in more detail in the companion paper (Gara-
gash and Rudnicki, submitted manuscript, 2002), arrest
appears to be an anomaly resulting from over simplification
of the description of friction.) Interestingly, solutions with
_� > 0 andDo < 0 require� > 0 and, hence, a pore pressure in

excess of ambient. Such a situation could occur following
pressure buildup in a thermally and hydraulically sealed,
nondilating fault zone [Blanpied et al., 1992], fault compac-
tion [Sleep and Blanpied, 1992] or the arrival of a pressure
pulse from depth [Rice, 1992].
[44] The condition Do < 0 implies that the ambient level

of shear stress exceeds the critical value,

�o
t > B�1 slip instabilityð Þ ð40Þ

or equivalently in the dimensional form

to >
G=moð ÞC
K 0b0

lo

‘
ð41Þ

Since to and b0 (among other parameters) are increasing
with depth, the condition (41) suggests decreasing stability
with depth. The conclusion just stated requires that � be
small and, hence, that drainage from the fault be rapid
compared with the imposed deformation rate. As discussed
above, this will generally be the case, but, if the fault zone is
hydraulically sealed [Blanpied et al., 1992], drainage will
not be possible and solutions for large � will be appropriate.
5.1.2. Interpretation in Terms of the Physical
Parameters
[45] Consider the interpretation of the slip instability

condition (40) or (41) in terms of the physical parameters.
As discussed previously, the ambient dimensionless stress
�t
o and its critical value B�1 depend on the depth of the slip.

For particular choice of parameters of the fault system
corresponding to the characteristic pressure p

*
= 5 MPa,

the depth dependence is prescribed by (35) and (36) where
variation of dimensional pore fluid properties with depth are
given by the plot on Figure 3. It is easily verified that B�1

(�t
o) is decreasing (increasing) with depth. For the various

values of characteristic temperature q
*

= {1.7C, 3.3C,
17C} (corresponding to the values of fault thickness lo =
{10, 5, 1 cm}) (see section 4), the instability condition (40)
is satisfied when depth d > d* with d* � {1.6, 6.2, 10} km.
Consequently, slip is stable in depth range 0–10 km
(unstable except at shallow depths) for sufficiently low
(high) characteristic temperature or, equivalently, for suffi-
ciently wide (narrow) fault zone. Thus, the fault thickness is
a crucial parameter in evaluation of slip stability: increase
by one order of magnitude (from lo = 1 cm to lo = 10 cm)
yields change from unstable to stable behavior (in the
context of zero weakening and dilatancy) at almost all
depths in the considered range.
[46] It is instructive to estimate physical values of various

quantities considered including values of pressure and tem-
perature rise at instability over the corresponding ambient
levels. As an example, consider the case q

*
= 3.3C (lo = 5

cm) for which the critical depth is d* � 6.2 km. The values
of relevant dimensionless parameters are as follows: for the
stable slip at depth d = 4 km, {�t

o, B�1, 103�ss} = {11.6,
20.6, 8.7}, and, for the unstable slip at depth d = 8 km, {�t

o,
B�1, 103�ss} = {21.2, 14.8, 16}. For d = 8 km, pressure rise
and temperature rise at instability can be computed from the
solutions of Appendix B and scaling (21) as p � po � 53.5
MPa and q � qo � 635C. These large values suggest that
pore fluid properties can be altered significantly from their
ambient values in the course of the slip leading to the
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instability. These alterations (presently not accounted for in
the model) can affect the slip evolution toward the instability
(or even the instability itself ) and, therefore, should be taken
into consideration in the further work.

5.2. Fully Drained Slip (��� = 0)

[47] Because � � 1 (34) most of the time the slip is so
slow compared to the pore fluid diffusion rate that the pore
pressure does not change from its ambient value. In the
limit, � = 0, (23) indicates that the pore pressure remains
constant, � = 0 and, according to (22), the solution for the
slip � is given in implicit form

T ¼ Td �ð Þ ¼ �� 2

3
Ag �ð Þ or _� ¼ 1� 2

3
Ag0 �ð Þ

� ��1

ð42Þ

Multiplication of (24) by _��1 from (42) yields an equation
for temperature � variation with the slip �

d�

d�
¼ �t �

1

�c
� 1� 2

3
Ag0 �ð Þ

� �
ð43Þ

According to (25) and (42), �t is a function of� only, �t =
�t
o � mo 2

3
Ag(�). Thus, the solution of (43) with the initial

condition � (0) = 0 is

� ¼ �d �ð Þ ¼
Z �

0

�t uð Þ exp � Td �ð Þ � Td uð Þ
�c

� �
du ð44Þ

where Td (�) in the exponent is time as a function of the slip
in the drained solution (42). Note that when �c ! 0
(corresponding to the slip time much larger than the
temperature diffusion time, ts � tc, see (26)), and the slip
rate is finite, T 0

d (�) > 0, (44) yields zero temperature
alteration, � = 0, i.e., temperature is equal to its ambient
value at all times during the slip.
[48] For A < 1, with g given in Appendix A1 the slip and

the slip rate in the drained solution (42) remain bounded for
all times. For A � 1, we observe, following the study of
Rudnicki and Chen [1988], that the drained solution (42),
(44) leads to an infinite slip rate at T = T

*
, � = �

*
, where

T
*

and �
*

are functions of A defined in Appendix A
((A2)–(A3)). The drained solution for the dimensionless
slip time T(42) (Figure 4a) and dimensionless temperature
rise � (44) (Figure 4b) are shown in Figure 4 versus the
dimensionless slip � for a pair of values of the weakening
parameter A = {8/9, 9/8} and �t = 10, mo = 0.6, and �c =
0.01. As was discussed above, Figure 4 shows that drained
solution is stable for A = 8/9 < 1 and it breaks down at T =
T
*
9 0.14 and � = �

*
9 0.33 for A = 9/8 > 1. Although

the entire relation (42) for A = 9/8 is shown on Figure 4,
only those portions of the plot where the time T is
monotonically increasing (solid line) are physically mean-
ingful. Figure 4 also shows that the temperature initially
rises as the slip rate increases, reaches a maximum, and
decreases to a constant asymptotic value corresponding to
the steady slip. For a characteristic temperature q

*
in the

range between 17C (lo = 1 cm) and 0.17C (lo = 1 m), the
maximum � � 0.8 in the drained solution for A = 8/9
corresponds to the maximum temperature rise q � qo = q

*
�

in the range 13.2–0.132C, respectively. For a representa-
tive geothermal gradient of 20–25C km�1, the estimated
temperature rise due to the shear heating is small compared
to ambient value qo at all but shallow depths. This result

supports the neglect of the effect of the slip-induced temper-
ature alterations on the pore fluid properties (Kf and bf) (see
section 4).
[49] The slip rate singularity for A � 1 does not, how-

ever, necessarily lead to slip instability if conditions are not
completely drained. For rapid, but finite drainage, the
assumption that � _� � 1 is a good one for most of the slip
history but breaks down when _� becomes comparable to
��1 as T ! T

*
in (42). Consequently, it is necessary to

consider the full equations to account for high slip rates.
Analysis of the stability of accelerating (A � 1) slip under
conditions of rapid fluid drainage � � 1 is given in the
companion paper (Garagash and Rudnicki, submitted manu-
script, 2002).

5.3. Fully Undrained Adiabatic Slip (��� = 111, ���C = 111)

5.3.1. Solution
[50] As noted in the discussion of the fully drained case,

the slip rate may become sufficiently rapid that even though
� � 1, the product � _� is order one. In other words, the slip
is occurring on a timescale comparable to that of fluid
drainage from the fault. For more rapid slip, there will be
insufficient time for drainage and conditions will approach
undrained. A similar discussion applies for thermal con-
duction: for rapid slip, conditions will approach adiabatic.
This undrained, adiabatic limit may also be relevant for
smaller values of the slip rate if the fault zone is hydrauli-
cally sealed and thermally isolated from the surrounding
material [Blanpied et al., 1992]. In the limit � ! 1 and
�c ! 1, (27) and (28) with (29) yield

D _� ¼ 1; _� ¼ �t
_� ð45Þ

where D is the function of T and � given by (30), and �t is
given by (25). Because D is a linear function of T through
dependence on �t, the first of (45) can be integrated to
provide time T as a function of the slip � in undrained
solution, T = Tu(�),

Tu �ð Þ¼
Z �

0

�f 0 uð Þþ1� 2

3
Ag0 uð Þ� B �o

t � mou
� �� �

e�moB ��uð Þdu

ð46Þ

The integral in (46) can be carried out explicitly but the
result is not recorded here because of its length. The
pressure, � = �u(�), is found from substituting (46) into
(22) and the temperature � = �u(�) from integration of the
second equation in (45).
[51] For � � 1, the effects of frictional weakening and

dilatancy saturate and the solution assumes the relatively
simple form

Tu �ð Þ ¼ �� �o
t

mo
þ e�moB ��1ð Þ Tu 1ð Þ � 1� �o

t

mo

� �� �

�u �ð Þ ¼ �o
t

mo
� 2

3
A� e�moB ��1ð Þ Tu 1ð Þ � 1� �o

t

mo

� �� �
ð47Þ

�u �ð Þ ¼ �u 1ð Þ þ 1

B 1� e�moB ��1ð Þh
h i

Tu 1ð Þ � 1� �o
t

mo

� �� �

For large slip � (although instability may occur first), the
exponential terms in (47) vanish, yielding an asymptotically
constant slip rate, _� = 1, constant pressure�u(1) =�t

o /mo�
(2/3)A and temperature (for B > 0). The residual value of the
pressure for B > 0 is equal to the normalized residual
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strength of the fault (18) �u(1) = tr/(mop*), and, therefore,
is always nonnegative. It corresponds to the maximum
pressure attained during undrained adiabatic slip if the
pressure decreases upon the slip initiation. (The latter
requires 2� > B�t

o). Because the fault is assumed to be
adiabatic (no heat loss) and undrained (no fluid loss), it may
be surprising that the temperature and pore pressure
approach a constant finite value for large slip �. This result
is, however, explained by noting that the shear stress on the
fault asymptotically approaches zero, �t = 0 (see (25) and
(47)). Thus, in this limit, the fault is slipping steadily at the

far-field rate under zero shear stress. In the thermomecha-
nical uncoupled case, B = 0, the pressure for slip beyond
residual is constant and equal to its minimum value, �u(��
1) =��, while the temperature increases linearly for large�
rather than approaching a constant value. This minimum
value provides the lower bound to the pressure change
during undrained slip for the coupled case B > 0.
[52] The features of the undrained adiabatic solution are

illustrated in Figure 5. The time T, pressure rise � and
temperature rise � are plotted against slip � for A = 2, � =
7, �t

o = 10 and mo = 0.6 and three values of B = {0, 0.075,

Figure 4. Plots of (a) dimensionless slip time T and (b) dimensionless temperature rise � versus
dimensionless slip � in the drained solution for two values of A = {8/9, 9/8} and �t

o = 10, mo = 0.6, and
�c = 0.01. Drained slip instability occurs for A = 9/8 at � = �

*
.
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0.1}. The slip rate remains bounded for the lower two values,
but becomes infinite for B = 0.1. The pressure � initially
decreases with slip due to the fault dilatancy (Figure 5b) and
reaches its minimum value, bounded from below by the
value ��, when the decreasing rate of dilatancy is balanced
by thermal expansion. Thereafter the pressure increases with
the slip to reach its positive asymptotic value�t

o/mo� (2/3)A.
The temperature increases monotonically with the slip (Fig-
ure 5c). These constant asymptotic values of pressure and
temperature for B > 0 are attained only after slip distances of
about 102dr. The large slip asymptotic values of the pressure
� � 10 and temperature � � 102 (Figures 5b and 5c)
correspond to large dimensional pressure and dimensional
temperature rises of about 50 MPa and 330C (for the choice
of p

*
= 5MPa and q

*
= 3.3C). In contrast to the fully drained

slip, the alteration of the pore fluid properties at large
amounts of undrained adiabatic slip can be significant and
should be included in more elaborate modeling.
5.3.2. Stability Considerations and Parametric
Dependence
[53] As seen from Figure 5, the undrained slip rate can

become unbounded with sufficient shear heating. However,
even when slip rate remains bounded instability may occur
by either cavitation or hydraulic fracture. The former is
caused by dilatant pore pressure reduction at early stages of
the slip and the latter by pore pressure increase (for B > 0)
due to the shear heating in the later stages of the slip (see
Figure 5b).
5.3.3. Instability Due to Cavitation
[54] As noted by Rudnicki and Chen [1988], if pore

pressure drops below the cavitation limit, instability occurs
because of a severe reduction in pore fluid bulk modulus.
For the temperature range characteristic of the shallow crust,
the cavitation limit can be approximated by zero. Thus, the
minimum value of the pore pressure is bounded from below
by its value for zero thermomechanical coupling B = 0,

pinf ¼ po � �p* ¼ po � fp
rK

0 ð48Þ

Therefore, a sufficient condition for the cavitational insta-
bility is that pinf � 0 (this condition is also necessary for no
thermomechanical coupling B = 0). For � = 7 considered in
Figure 5, the characteristic value of pressure p

*
= 5 MPa

and hydrostatic pore pressure po gradient of 10 MPa km�1,
this condition is met for depths shallower than 3.5 km.
5.3.4. Instability Due to Hydrofracture
[55] The dimensional form of the maximum value of the

pressure attained for large slip and B > 0 is

pmax ¼ po þ
�o

t

mo
� 2

3
A

� �
p* ¼ po þ tr=mo ð49Þ

If this value exceeds the least compressive stress, smin, then
hydrofracture occurs. Although this condition is simple to
evaluate, it is necessary to know the stress state and fault
orientation at the particular site.
5.3.5. Instability With Unbounded Slip Rate
[56] Slip instability with unbounded slip rate _� = 1

takes place whenever T 0
u(�) = D(Tu(�), �) = 0 (45). Thus,

undrained slip is stable if the latter equation has no real
positive roots. For � > 1, (47) indicates that T 0

u(�) > 0 if
Tu
0(1) > 0. Thus, slip instability (Tu

0(�) = 0) cannot occur for
� > 1. For � � 1, the roots of Tu

0(�) = 0, which give the

Figure 5. Plots of (a) time T, (b) pressure �, and (c)
temperature � versus slip � for various B = {0, 0.075, 0.1}
and A = 2, � = 7, �t

o = 10, mo = 0.6 in log–log scale (T and
� versus �) and semilog scale (� versus �). (Physically
meaningless parts of solution after the instability are shown
by the dashed line.)
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boundaries of the domain of stable slip, can be determined
explicitly (see Appendix C for details). Figure 6 plots the
slip stability domain in the parameter plane of dilatancy (�)
against slip weakening (A) for four values of thermome-
chanical coupling parameter B = {0, 0.05, 0.075, 0.1}.
[57] When slip is uncoupled from temperature changes

(B = 0), the stability domain lies above the dashed line
given by � = 2(A �

ffiffiffiffi
A

p
). For A < 1 slip is stable in the

fully drained case and, hence, is also stable in the undrained
case for any amount of dilatancy. For a fixed value of the
weakening A > 1, slip is unstable in the fully drained case
but can be stabilized by sufficiently large dilatancy. Sim-
ilarly, for a fixed value of the dilatancy �, sufficiently strong
slip weakening will cause instability. This result differs from
that of Rudnicki and Chen [1988] who found that undrained
response was always stabilized by even a very small amount
of dilatancy as long as the pressure drop was not sufficient
to cause significant reduction in the pore fluid bulk modulus
Kf. This feature of their analysis is due to the neglect of the
initial thickness of the fault zone (assumed to be infinites-
imally thin) and the normal elastic stiffness of the fault
zone.
[58] Figure 6 demonstrates that the region of stable slip

decreases monotonically with the thermomechanical cou-
pling B. The stability domain shrinks to a point as B
approaches the critical value B1 = 1/(�t

o � mo), given by
the solution of the instability condition D = 0 for A = 0, � =
�min and � = 1 (the value of slip at instability for this case).
The limiting point is (0, �1) where �1 is the minimum
dilatancy value for slip initiation �min(32) evaluated at B =
B1. Consequently, undrained slip is unstable for any
amount of dilatancy, � � 0, and slip weakening, A � 0, if

B � B1 � 1

�o
t � mo

ð50Þ

or in the dimensional form

to � G
dr
‘
þ G=moð ÞC

K 0b0
lo

‘
ð51Þ

For the choice of parameters of Figure 6, �t
o = 10, mo = 0.6,

the critical normalized thermal expansion is B1 � 0.1064.
For p

*
= 5.0 MPa, K0 = 2.0 GPa and q* = 1.7C, the

corresponding value of b0 = 1.6 � 104 C�1. For b0 = f0bf
and f0 = 0.05, the value of bf is 3.1 � 10�3. This is about a
factor of 2 larger than the largest values shown in Figure 3.
This suggests this condition will not be met ordinarily but
may be possible for locally or temporarily high values of b0,
etc.
[59] As B is increased from zero, the minimum value of �

for stability (at a fixed value of A) increases expanding
the unstable domain. This effect is anticipated because the
increase in pressure due to heating competes with the
decrease due to dilatancy. Less obvious is the emergence
of an upper boundary to the stable region (in terms of �) as
soon as B > 0. In other words, for a fixed value of
weakening A, an increase in dilatancy does not continue
to stabilize slip: there is a maximum value of � for which
slip is stable. Furthermore, if A is large enough, slip
becomes unstable for any � � 0. The emergence of the
upper stability boundary in terms of � can be explained
along the following lines. The pore pressure drop due to

fault dilatancy increases the effective confining stress and,
consequently, the frictional resistance of the fault. This is a
stabilizing effect on the slip. On the other hand, the same
increase of shear stress due to dilation facilitates shear
heating (proportional to �t). Shear heating tends to increase
the pressure and, therefore, to destabilize the slip. These two
competing effects of dilatancy cause the appearance of the
upper � stable limit. Indeed, dilatancy counteracts the
destabilizing effect of fault frictional strength weakening
(quantified by A) before both effects saturate (� < 1).
Because both effects vanish when slip � approaches unity,
the increase in �t due to past fault dilation can be sufficient
for shear heating to destabilize the slip.
[60] Similarly to the stability dependence on the dilatancy

� discussed above, dependence of the slip stability on the
fault weakening A is also nonmonotonic. That is for fixed
nonzero values of thermomechanical coupling B and dila-
tancy� (larger than the value given by the intersection of the
upper branch of the stability boundary for constant B withA
= 0 axis in the (A, �) plane on Figure 6), the slip is unstable
for small enough as well as large enough values of weakening
A. The latter effect is easily anticipated, as larger weakening
tends to destabilize the fault. The former effect corresponding
to the existence of the lower boundary to the stable region in
terms of A is less obvious, but can be explained along the
same lines as the dilatancy effect in the preceding paragraph.
Indeed, a smaller amount of fault weakening allows the fault
to sustain its frictional resistance in the course of the slip. This
is a stabilizing effect. On the other hand, higher shear stress
sustained in the course of the slip (as compared with
situations with larger fault weakening) causes higher levels
of shear heating. Higher shear heating tends to increase the
pore pressure and, therefore, destabilize the slip. These two

Figure 6. Slip stability domain the parameter plane of
dilatancy (�) against slip weakening (A) for four values of
thermomechanical coupling parameter B = {0, 0.05, 0.075,
0.1} and �t

o = 10, mo = 0.6. The stability domain lies above
the dashed line for the case B = 0. For B > 0, the stable
domain is finite and bounded by the curves shown. The
stability domain shrinks to the point (A = 0, �1 � 0.032) as
B ! B1 � 0.1064.
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competing effects of the weakening cause the appearance of
the positive lower A stable limit.
5.3.6. Illustrative Examples
[61] Different effects of increasing dilatancy or increasing

weakening on slip instability with unbounded slip rate, as
discussed above, are illustrated in Figure 7. Figures 7a–7c
show the undrained solution for three values of dilatancy
� = {2, 7, 10} and a fixed value of weakening A = 2 (see
the points indicated by straight crosses on Figure 6); and
Figures 7a0–7c0 show the undrained solution for a fixed
value of dilatancy � = 7 and three values of weakening A =
{0, 2, 5} (see the points indicated by inclined crosses on
Figure 6). The other parameters are fixed for both sets in
Figure 7: thermal coupling B = 0.075, friction coefficient mo
= 0.6, and initial shear stress �t

o = 10. The solution with (A,
�) = (2, 7) is common to the both sets and falls within the
stability region for B = 0.075 (Figure 6).
[62] Consider first the solutions for various dilatancy

values at fixed weakening A = 2 (Figures 7a–7c). Insta-
bility for � = 2 occurs well inside the slip interval 0��� 1
and signifies that this level of dilatancy is not sufficient to
overcome the destabilizing effect of fault frictional weak-
ening. Indeed, Figure 7b shows that the dilatant pressure
drop for the unstable case � = 2 is smaller than that for the
stable slip with the higher value of dilatancy � = 7. On the
other hand, the relatively small temperature increase � at
slip instability for � = 2 (Figure 7c) indicates that frictional
weakening rather than shear heating is the primary cause of
instability for small values of dilation and A = 2. Slip is also
unstable for � = 10, but now the instability takes place near
� = 1 (Figure 7a). This indicates that dilatancy is high
enough to counteract the effect of fault weakening during
nearly all of the interval 0 � � � 1. However, dilatancy
also increases the shear resistance and, consequently, the
shear heating, high enough for instability to take place as
dilatancy vanishes (� approaches 1). Instability for the case
� = 10 occurs at a temperature � significantly higher than
in the small dilation case � = 2 (Figure 7c), and slightly past
the minimum value of pressure � (Figure 7b, corresponding
to the onset of fault pore fluid repressurizing, _� � 0, after
dilatant pressure drop, _� < 0).
[63] Similar discussion pertains to the solutions for var-

ious weakening at fixed dilatancy � = 7 (Figures 7a0–7c0).
Notably, instability for larger value of weakening A = 5
occurs well inside the slip interval 0 � � � 1 (Figure 7a0),
and indicates that frictional weakening rather than shear
heating is the primary instability mechanism. On the other
hand, instability for smaller value A = 0 takes place near
� = 1 (Figure 7a0), which indicates that instability is caused
by the shear heating at the stages of the slip when dilatancy
effect vanishes (as � ! 1).

6. Concluding Discussion

[64] This paper has studied the effect of shear heating on
slip stability for three sets of limiting conditions: (1) no
dilation and no frictional weakening, (2) fully drained
conditions implying that the fault is hydraulically equili-
brated with the surrounding rock at all times, and (3) fully
undrained adiabatic conditions.
[65] The first case isolates the effect of shear heating.

Frictional heating causes the pore fluid in the gouge zone to

expand and, when this expansion is not alleviated by flow,
the pore pressure increases. This increase decreases the
effective normal stress and, consequently, the resistance to
slip. Reduction of the resistance to slip is destabilizing, but,
the reduction also reduces the level of shear stress (equal to
the resistance by equilibrium) that drives frictional heating.
Consequently, we have shown that, if the thermal pressur-
ization is not too large, then there is a solution for steady
slip at the tectonic rate with no pore pressure change and
shear heating that is exactly compensated by heat flow from
the fault zone. This solution, however, becomes unstable
with respect to an arbitrary slip perturbation when the initial
value of the normalized shear stress �t

o exceeds the nor-
malized ratio of the fluid compressibility and thermal
expansivity B�1. Since the ambient shear stress and pore
fluid thermal expansion increase with depth (and other
parameters may also depend on depth), the occurrence of
this instability depends on the depth.
[66] Because the rate of imposed tectonic straining is so

much slower than the rate of fluid exchange between the
fault and the surroundings, the fully drained case is a good
approximation for most of the slip history. This approxima-
tion breaks down if the slip weakening and shear heating are
sufficient to cause slip instability in the fully drained case.
In order to analyze the approach to instability and determine
whether it does, in fact, occur, it is necessary to relax the
assumption that the response is fully drained although we
can still exploit the smallness of the tectonic strain rate by
comparison with the rates of fluid and heat transfer. The
analysis of this case is presented in the companion paper.
[67] Fully undrained and adiabatic conditions apply for a

fault zone that is hydraulically and thermally isolated from
the surrounding rock mass. They will also apply if the slip
rate approaches instability and becomes more rapid than the
rates of fluid and heat exchange. In the absence of shear
heating, Rudnicki and Chen [1988] found that stability could
be prevented in the undrained case by an arbitrarily small
amount of dilatancy, at least if the ambient pressure was
sufficient to prevent cavitation. Because we include a finite
initial thickness to the fault zone (absent in the analysis of
Rudnicki and Chen [1988]), we find that a finite magnitude
of dilatancy, related to the amount of slip weakening, is
necessary to prevent instability. In the absence of shear
heating, increased dilatancy tends to inhibit instability and
more rapid decrease of stress with slip (slip weakening) tends
to promote instability. To a certain extent, this is also the case
when shear heating is included. These effects have been
discussed previously by Lachenbruch [1980] and Mase and
Smith [1987], although, as noted earlier, these analyses do
not include an explicit model of instability. The analysis here
shows, however, that with shear heating, increased dilatancy
can promote instability and increased slip weakening can
inhibit instability. The identification of these effects is sig-
nificant because they are opposite to those usually associated
with dilatancy and slip weakening. They are related to the
dependence of shear heating on the absolute stress level (not
just its change.) In short, the increase of effective compres-
sive stress caused by dilatancy increases the rate of shear
heating and the decrease of shear stress caused by slip
weakening decreases the rate of shear heating. Although it
is difficult to state precisely appropriate values for material
and transport properties, these effects appear for even small
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amounts of shear heating and occur in a range of other
parameters that is reasonable for faults at depths up to 10 km.
[68] Because shear heating depends on the absolute stress

level, it is inherently depth dependent. In addition, the

occurrence of instability is related not only to strength
parameters (e.g., peak stress and slip weakening) but also
to the thermal and hydraulic properties of the pore fluid.
Since the latter are also depth dependent, the depth variation

Figure 7. (a)–(c): Dependence of the slip stability in undrained regime on the fault dilatancy: (a) time T,
(b) pressure rise �, and (c) temperature rise � versus slip � for various � = {2, 7, 10} and fixed A = 2
(see points marked by the straight crosses on the (A, �) plane, Figure 6). (a0)–(c0): Dependence of the slip
stability in undrained regime on the fault weakening: (a0) T, (b0) �, and (c0) � versus � for fixed � = 7
and various A = {0, 2, 5} (see points marked by the inclined crosses on Figure 6). Fixed values of the
other parameters are B = 0.075, �t

o = 10, and mo = 0.6. Physically meaningless parts of the slip after an
instability (marked by a dot) are shown in dashed lines.
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of slip instability (earthquakes) that has been attributed to
the depthwise variation of strength [Sibson, 1982, 1983] or
rate and state friction parameters [Tse and Rice, 1986], may
also depend significantly on the depth variation of thermal
and hydraulic properties.

7. Selected Nomenclature
G Elastic modulus of the crustal rock
C Heat capacity of the fault gouge
K0 Effective bulk modulus of the gouge (6)
f Function specifying inelastic dilation of the

fault zone with the slip
g Function specifying frictional stress de-

crease with the slip
‘ Half thickness of the crustal block

p � po (�)
1 Pore pressure variation in the fault zone

q � qo (�) Temperature variation in the fault zone
p
*
, q
*

Characteristic pore pressure and tempera-
ture

t (T ) Time
ts, tk, tc Characteristic timescales of slip, pore fluid

diffusion, and thermal diffusion
d (�) Fault slip

dr Residual slip distance
_g‘ Tectonic shear strain rate

�, �c Dimensionless fluid and heat exchange
parameters

l, lo Current and initial half thickness of the fault
zone

mo Friction coefficient
t (�t) Shear stress on the fault

to (�to) Initial shear stress on the fault
to � tr (A) Frictional stress drop (slip weakening)

b0 (B) Thermal expansion of pore fluid (thermo-
mechanical coupling)

fr
p (�) Measure of fault inelastic dilation

Appendix A: Form of Functions g and f

[69] The particular forms of the functions g and f,
characterizing fault weakening behavior and fault dilation,
respectively, are taken after the study of Rudnicki and Chen
[1988] as

f �ð Þ ¼ 2���2; g �ð Þ ¼ �2�3 þ 3�2 for 0 � � � 1

f �ð Þ ¼ g �ð Þ ¼ 1 for � > 1 ðA1Þ

This choice is obviously consistent with modeled fault
weakening and dilation (see Figure 2).
[70] Critical values of time T

*
and slip �

*
, �** appear-

ing in the fully drained solution with A > 1 (see section 5.2
and Figure 4) for the choice of functions f and g given by
(A1) can be expressed as follows

T* ¼ 1

2
1� 2

3
Aþ 2

3
A 1� 1

A

� �3=2
" #

ðA2Þ

�* ¼ 1

2
1� 1� 1

A

� �1=2
" #

; �** ¼
�

1ð Þ
**
; for 1 < A � 4

3

�
2ð Þ
**
; for A >

4

3

8>><
>>:

ðA3Þ

with

�
1ð Þ
**

¼ 1

2
þ 1� 1

A

� �1=2

; �
2ð Þ
**

¼ T* þ 2

3
A ðA4Þ

Note that �
**

is a continuous function of A(A3) as �
**
(1)

=
�
**
(2) = 1 at A = 4/3 (A4).

Appendix B: Solutions Near and Away From the
Steady State Slip in the Absence of Dilatancy and
Frictional Weakening

B1. Solution Near the Steady State

[71] Equations (37) and (38) suggest the existence of a
steady slip solution, _� = _� = 0 and _� = 1:�ss = 0 and �ss =
�c�t

o. The solution of the equations linearized near steady
state has the form

�; _�
� �

¼ C1e
a1T=�e1 þ C2e

a2T=�e2 ðB1Þ

where C1,2 are arbitrary constants and a1,2 and e1,2 are
eigenvalues and corresponding eigenvectors, respectively.
Under the condition � < 1, the eigenvalues and eigenvectors
are

a1 ’ � �Doð Þ�1; e1 ’ 1=�o
t; 1

� �
a2 ’ ���1

c ; e2 ’ 0; 1f g
ðB2Þ

If Do > 0, both eigenvalues are negative, a1,2 < 0, in the
phase plane (�, �) and the steady state is a stable nodal
point. If Do < 0, the eigenvalues are of different sign, a1 > 0,
a2 < 0, and the steady state is a saddle point with the
unstable direction given by e1. Thus, in the former case the
steady state solution is stable with respect to small pertur-
bations (i.e., solution trajectories in its vicinity converge),
whereas in the latter case the steady state is unstable with
respect to small perturbations (solution trajectories are
repulsed from it via unstable eigendirection e1). Solution
trajectories near the steady state on the phase plane (�, �)
are shown qualitatively on Figures B1a, B1a0, B1b, and
B1b0 in stable (Do > 0) and unstable (Do < 0) cases, respect-
ively. For � � 1, a1 � a2 and, consequently, in the normal
(‘‘outer’’) scaling for � (Figures B1a and B1b) it appears
that there is almost no evolution in eigendirection e2
(coinciding with � axis). Analysis of the solution away
from the steady state is in order.

B2. Solution Away From the Steady State

[72] When � � 1, terms of order � can be neglected in
(37) and (38) whenever � = O(1), i.e., away from the steady
state zero value, yielding

d� ¼ �td�; D _� ¼ �� ðB3Þ1

Parenthesis (�) indicates corresponding dimensionless quantity.
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Figure B1. Qualitative sketch of slip solution trajectories in the pressure–temperature plane (�, �) in
the absence of fault weakening and dilation A = � = 0 and for �� 1: (a) and (a0) stable steady state � = 0,
� = �ss (Do > 0) and (b) and (b0) unstable steady state (Do < 0). Subfigures labeled with prime
correspond to the pressure rescaling with �, � ! �/�, and show details of the solution trajectories in the
vicinity of the steady state. Domain of positive slip rate _� > 0 in the (�, �) plane (shown by the shade of
gray) is bounded by lines � = �D and � = �N (�), which correspond to the unbounded and zero slip rate,
respectively. Arrows indicate evolution in time and nonphysical parts of solution trajectories
corresponding to negative slip rate are shown by dashed lines.
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Upon integration with initial conditions: �jT=To = �o, �jT=To
= �o, system (B3) yields the relation between the
temperature and the pressure on the fault

���1 ¼ �o
t�� mo

�2

2
ðB4Þ

and the evolution in time in the implicit form

Do ln
�

�o

����
����þ moB ���oð Þ ¼ � T � To

�
ðB5Þ

where �1 = �o � (�t
o�o � mo�o

2/2) is a value of � at which
the solution trajectory in the phase plane (�, �) would
intersect � = 0 (recall that solution (B4) is not valid for j�j
� 1).
[73] According to (B4), solution trajectories in the phase

plane are simply parabolas shifted along � axis (Figures
B1a and B1b). Even though solution (B4) and (B5) is not
valid in the vicinity of � = 0, it still possesses correct
behavior if extended to this vicinity, such that, according to
(B5), it takes infinite time to approach (Do > 0) or get away
from (Do < 0) the stable separatrix � 9 0. Deviation of the
solution from (B4) and (B5) can be seen only in the close
vicinity of � = 0 (see Figures B1a0 and B1b0).

B3. Slip Stability in the No-Dilatancy, No-Weakening
Case

[74] Based on the analysis of preceding paragraphs,
Figure B1 shows a qualitative sketch of solution trajectories
of (37) and (38) in the pressure–temperature plane (�, �)
for � � 1: (a)–(a0) stable steady state case Do > 0 and (b)–
(b0) unstable steady state case Do < 0 (arrows indicate
evolution in time). (Subfigures labeled with a prime corre-
spond to the pressure rescaling with �, � ! �/�, which
shows solution details in the immediate vicinity of the
steady state for � � 1). The domain of positive slip rate
_� > 0 in the (�, �) plane (shown by the shade of gray in
Figure B1) corresponds to N/D > 0 in (27), which in terms
of the pressure is

�D
<>�<>�N �ð Þ with �D ¼ � 1� B�o

t

Bmo
;�N �ð Þ ¼ � 1� B�

�c

� �
ðB6Þ

The above critical values of pressure correspond to the
bounds of the domain of positive slip rate with _� = 1 at
� = �D and _� = 0 at � = �N (�) (a small value of order �)
(B6). Nonphysical parts of solution trajectories corre-
sponding to negative slip rate (outside of the shaded
domain) are shown by dashed lines. Figure B1a shows
that slip evolves toward the steady state solution for any
initial (perturbed from the steady state) state characterized
by positive slip rate (i.e., characterized by initial values of
pressure and temperature corresponding to a point in the
shaded domain). Due to the rapid drainage, � � 1,
evolution of slip for Do > 0 (Figure B1a) from an initially
perturbed state corresponding to � = O(1) can be
approximated, first, by relaxation of the pressure to O(�)
values accompanied by the build up of temperature

(following the approximate solution away from the steady
state (B4) and (B5)), and, second, by relaxation of
temperature toward the steady state value �ss accompa-
nied by small (O(�)) changes in pressure. Details of this
second part of the slip evolution (in the vicinity of the
� = 0 state) are shown on Figure B1a0. For the case Do <
0 (Figure B1b), steady state is unstable. Moreover, any
solution trajectory from an initially perturbed state char-
acterized by positive slip rate (shaded domain of Figures
B1b and B1b0) evolves to either unbounded (� = �D) or
zero slip rate (� = �N(�)). It is interesting to note that
under conditions of rapid drainage considered here, � � 1,
the finite O(1) perturbations from the steady state with
positive slip rate, which are the only physically admissible
ones, correspond to � < 0 (see shaded domain on Figure
B1a) in the case when the steady state is stable, Do > 0,
and to � > 0 (see shaded domain on Figure B1b) in the
case when the steady state is unstable, Do < 0. Thus,
admissible perturbations correspond to the pore fluid flow
from the crustal block into the fault for stable slip and
vice a versa for the eventually unstable slip. In both cases,
slip evolution corresponds to increase of the dimension-
less pore pressure �, up to the zero steady state value in
the former case and up to the value at instability, �D, in
the latter case.

Appendix C: Stability Boundaries for Undrained
Adiabatic Slip

[75] This appendix gives some details of the determina-
tion of the stability boundaries for undrained, adiabatic
response. As discussed in the text, instability cannot occur
for � > 1. To examine the possibility of an instability for
� � 1, note that from (46), the inverse of dimensionless slip
rate for � � 1 can be written as follows

T 0
u �ð Þ ¼ 8A

moB
� a

moB
þ�þ c

moB
e�mooB�

� �

where the constant coefficients a and c are

a ¼ 1þ moB
2

þ moB
4A �� moB

2

� �
; c ¼ aþ m2oB

2

4A �� �minð Þ

ðC1Þ

and �min is defined in (32). The solution of Tu
0 (�) = 0 for

B > 0 is then given by

�ins ¼
aþW zð Þ

moB
; z ¼ �c e�a ðC2Þ

where w = W(z) is the Lambert product log function
(defined as the solution of the equation z = wew). The root
�ins is real for z � �e�1 (and complex otherwise). The
undrained slip is unstable if �ins(C2) is real and lies
between 0 and 1. This will be the case only if

�e�1 � z � z1 ðC3Þ

where z = z1 corresponds to�ins = 1 (C2). The equations z =
�e�1 and z = z1 specify the boundaries of the domain of
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stable undrained slip. Note that the other boundary case�ins

= 0 corresponds to � = �min(32) and, therefore, is
inconsequential, because we assume, � > �min, for positive
initial slip rate. The upper stability domain boundary in
Figure 6 corresponds to �ins = 1 (or z = z1) and the lower to
z = �e�1.
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