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a b s t r a c t

Self-diffusion in crystalline silicon is controlled by a network of elementary steps whose activation
energies are important to know in a variety of applications in microelectronic fabrication. The present
work employs maximum a posteriori (MAP) estimation to improve existing values for these activation
energies, based on self-diffusion data collected at different values of the loss rates for interstitial atoms to
the surface. Parameter sensitivity analysis shows that for high surface loss fluxes, the energy for exchange
between an interstitial and the lattice plays the leading role in determining the shape of diffusion profiles.
At low surface loss fluxes, the dissociation energy of large-atom clusters plays a more important role.
Subsequent MAP analysis provides significantly improved values for these parameters.

© 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The mechanism of diffusion in silicon has been extensively in-
vestigated over the past few decades (Fahey, Griffin, & Plummer,
1989). One of the major driving forces comes from the technolog-
ical need to reduce the transient enhanced diffusion (TED) (Jain
et al., 2002; Shao, Liu, Chen, & Chu, 2003) of implanted dopants
during annealing while also increasing dopant activation — a dual
problem that poses a major impediment to the continuous minia-
turization of semiconductor devices. Although it is generally ac-
cepted that point defects such as interstitials and vacancies serve
as primarymediators of diffusion in silicon (Bracht, Haller, & Clark-
Phelps, 1998), these defects are difficult to monitor directly owing
to their low concentrations, making the study of specific diffusion
mechanisms very challenging. To circumvent this problem, mod-
els have been employed together with experimental diffusion data
to estimate the activation energies for the diffusion and reaction
of point defects and defect clusters in silicon (Bracht, Stolwijk, &
Mehrer, 1995; Chakravarthi & Dunham, 2001; Cowern, Janssen,
van de Walle, & Gravesteijn, 1990; Stolk et al., 1997). Some of the
key parameters have emerged from silicon self-diffusion data.

Progress toward the solution of the technological problem de-
pends heavily on the development of suitable diffusion-reaction
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models for point defects in silicon. In the most data-efficient im-
plementations, model identification should be an iterative process
involving the steps of optimal experimental design, experimental
data collection, parameter estimation, and hypothesis mechanism
selection. These steps need to be repeated until sufficiently accu-
rate parameter estimates are obtained (Braatz et al., 2006; Emery
& Nenarokomov, 1998; Walter & Pronzato, 1990). However, even
with the application of optimal experimental design, the accuracy
of the parameter estimates may still be limited unacceptably by
the physicochemical behavior of the process and various practi-
cal constraints in a particular experimental configuration. In such
cases, significantly improved estimates can often be obtained by
studying additional experimental configurations.

In past work, this laboratory has developed a model to
describe the transient enhanced diffusion (TED) of boron in silicon
(Gunawan, Jung, Seebauer, & Braatz, 2003; Gunawan, Jung, Braatz,
& Seebauer, 2003; Jung, Gunawan, Braatz, & Seebauer, 2004a).
Values of the model parameters were determined by parametric
sensitivity analysis, maximum likelihood (ML) estimation, and
maximum a posteriori (MAP) estimation. Although the model
provided good fits to boron diffusion and activation data that
existed at the time (Murto, 1999), the predictions for diffusion
profiles annealed at slow ramp rates left room for significant
improvement (Jung, Gunawan, Braatz, & Seebauer, 2003).

In other prior work (Kwok, Dev, Braatz, & Seebauer, 2005;
Seebauer et al., 2006), we studied the effect of surface adsorption
state on the surface generation and annihilation rates of self-
interstitials, using self-diffusion as a marker. Both the generation
and annihilation rates could be modulated though adsorption of
small quantities of atomic nitrogen. Those experiments provided
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a significantly expanded data set for examining the activation
energies of the rate processes that control self-diffusion. This paper
uses those data to refine the relevant model parameters through
parameter sensitivity analysis and MAP estimation.

Parameter sensitivity coefficients quantify the variations in
the model output in response to perturbations in its parameters.
The relative importance of various parameters in the model
indicates which parameters can be estimated most accurately
and should be included in the parameter estimation algorithm.
MAP estimation determines the most likely values of model
parameters when prior information is available. It utilizes Bayes
theorem to determine the refined probability density function
of the parameters by combining prior statistical information
and additional experimental data. By utilizing MAP estimation,
the prior information from previously studied systems were
augmented to new experimental data to obtain refined estimates
of various parameters.

2. Experimental methods

The new data employed here have already been described
elsewhere (Seebauer et al., 2006), but a brief description of
experimental methods is given here for convenience. Diffusion
data were collected using an isotopically-labeled 30Si tracer
implanted into an epitaxial matrix depleted in the 30Si isotope.
Experiments were performed in a turbomolecularly pumped
ultrahigh vacuum chamber with a base pressure in the low 10−9

torr range. The Si-isotope heterostructure consisted of a 0.5 µm
thick slightly p-type ([B] = 1015 cm−3) epitaxial Si depleted in 30Si
to 0.002% (compared to the natural abundance of 3.10%) grown on
natural silicon, which was also doped with boron, but to a level of
1019 cm−3. SiH4 enriched in the 30Si isotope to 90% was implanted
into the Si matrix. Nitrogen adsorption was accomplished by
exposure to ammonia (99.99%) at 800 ◦C. The degree of nitrogen
coverage was measured by Auger Electron Spectroscopy (AES) and
was controlled by exposure time. The as-implanted and annealed
profilesweremeasured ex situ by secondary ionmass spectroscopy
(SIMS).

Three specimens were prepared, with nitrogen coverages rang-
ing between 0 and 1.2 monolayer. Annealing was accomplished by
resistive heating at one of two conditions: 1000 ◦C for 120 min or
980◦C for 90 min.

3. Silicon Self-diffusion Model

The model employed in this work describes the diffusion of
the implanted 30Si tracer in an epitaxial Si matrix depleted in the
30Si isotope (Kwok et al., 2005). The model utilizes continuum
equations to describe the reaction and diffusion of interstitial
atoms and related defects in silicon. These equations have the
general form for species i:

∂Ci

∂t
= −

∂Ji
∂x

+ Gi, (1)

where Ci, Ji, and Gi denote the concentration, flux, and net
generation rate of species i, respectively. The net generation
Gi incorporates terms associated with cluster formation and
exchange between interstitials and the lattice. The reactions for the
clustering of interstitials in the model are

Im−1 + I ↔ Im, 2 ≤ m ≤ 5, (2)

where the index m denotes the number of atoms in the cluster.
The exchange between interstitial silicon and the lattice obeys the
reaction
30 Sii + 28 Sil ↔

30 Sil + 28 Sii. (3)
Fig. 1. Experimental and simulated 30Si profiles using the surface loss probability
S as the only adjustable parameter determined by maximum likelihood (ML)
estimation.

Including the Poisson equation, themodel consists of 21 highly stiff
coupled partial differential equations (PDEs), with the maximum
cluster size restricted to five due to limitations of the FLOOPS
simulator (Mark Law, 2005). The five-atom dissociation energy is
equated to that for very large defects, with the advantages and
limitations of this approximation discussed elsewhere (Gunawan,
Jung, Braatz, et al., 2003).

The effect of adsorbate coverage on the surface annihilation rate
of interstitials is quantified by the surface loss probability S, which
is incorporated in the boundary condition as

−D
∂C

∂x

∣∣∣∣
x=0

= JtotalS, (4)

where Jtotal denotes the total impinging flux of interstitials. The
actual flux at the surface is the product of the total impinging flux
and the surface loss probability.

The initial condition for each simulation runwas an experimen-
tal as-implanted profile, with the assumption that 20% of the im-
planted 30Si enters as substitutional sites. The initial condition for
the interstitial 28Si was set based on the “+1 model” (Giles, 1991).
Values of surface loss probability S at different degrees of nitrogen
coverage were determined by maximum likelihood (ML) estima-
tion with S as the only adjustable parameter. Fig. 1 shows the ex-
perimental as-implanted and annealed profiles aswell as the simu-
lation fit for three sets of conditions. The samplewith highest nitro-
gen coverage (sample 3) shows the most profile spreading, while
the clean surface sample (sample 1) shows the least. The ML esti-
mates of the surface loss probability S and the values of key activa-
tion energies are summarized in Table 1. The more diffused profile
corresponds to a smaller surface loss probability S.

4. Description of analytical methods

4.1. Parameter sensitivity analysis

Parameter sensitivity analysis quantifies the influence of
perturbations in model parameters on the model outputs, and
has been widely applied in the analysis and design of chemical
systems (Leis, Gallagher, & Kramer, 1987; Van Voorhees & Bahill,
1995). The analysis determines which model parameters need to
be estimated or calculated most accurately for the model to have
maximum predictive value, and which parameters can be largely
ignored. Fortunately, the parameters having high sensitivities to
measurements can also be determined most accurately by MAP
techniques.

This laboratory has applied sensitivity analysis to the activation
energies of the elementary kinetic steps governing in the TED of
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Table 1
Parameter estimates with maximum likelihood estimation of the surface loss probability S

Parametersa Value Standard deviation 95% confidence interval half-width Method Referenceb

E2 (cluster dissociation–size 2) 1.4 eV 0.03 0.06 ML G03a
E3 (cluster dissociation–size 3) 2.192 eV 0.012 0.023 MAP G03a
E4 (cluster dissociation–size 4) 3.055 eV 0.002 0.004 MAP G03a
Elarge (cluster dissociation–large) 3.7 eV 0.1 0.2 ML G03a
Ediff (Si interstitial diffusivity) 0.72 eV 0.03 0.06 ML G03a
Eex (exchange between interstitial and substitutional Si) 1.02 eV 0.30 0.59 ML S06c

S1 (surface loss probability, sample 1) 4.15 × 10−2 2.6 × 10−3 5.2 × 10−3 ML K05
S2 (surface loss probability, sample 2) 7.11 × 10−4 7.4 × 10−6 1.4 × 10−5 ML K05
S3 (surface loss probability, sample 3) 2.36 × 10−4 1.4 × 10−6 2.7 × 10−6 ML K05
a Past estimates of activation energies relied on density functional theory calculations and data from isolated experiments reported in the literature, aswell as experimental

profile data collected by the authors and their collaborators.
b G03a =Gunawan, Jung, Seebauer, et al. (2003); S06 =Seebauer et al. (2006); K05 =Kwok et al. (2005).
c Value not stated explicitly in the reference.
boron in silicon (Gunawan, Jung, Braatz, et al., 2003). As the sili-
con self-diffusion system shares similar elementary reactions with
the boron model (e.g., interstitial diffusion and cluster dynamics),
some of the activation energies in the silicon self-diffusion model
are the same as for the boron system (see Table 1). However, the
sensitivity coefficients can be functions of the particular system
and the corresponding experimental conditions. Hence, parame-
ters that exhibit relatively small sensitivity coefficients in one sys-
tem may be important in another. In such cases, the accuracy of
the aggregated parameter estimates can be improved by combin-
ing the information from multiple experimental systems.

Both the boron TED system and the silicon self-diffusion system
entail the diffusion of species under supersaturation of defects.
However, the two systems are different in several ways. Onemajor
difference lies on the boundary condition. In the boron system, the
silicon surface was covered with screen oxide during experiment,
giving a boundary condition reasonably close to a perfect reflector
(i.e., S = 0) (Jung, Gunawan, Braatz, & Seebauer, 2004b). For the
self-diffusion model, the surface dangling bonds were partially
saturated with adsorbate to give a boundary condition lying
between the two extremes of perfect sink and perfect reflector.

The annealing program employed was different, too. The boron
experiment utilized a “spike anneal” program. The sample was
heated up and cooled down rapidly such that it was kept at high
temperature (> 600◦C) for short time (∼20 s). “Soak annealing”
was used in the self-diffusion experiment, which kept the sample
at high temperature for much longer time (∼90 min).

The differences between the two systems may result in large
differences in the sensitivities of the model outputs to the same
model parameter. For example, the soak anneal programemployed
in the self-diffusion model would be expected to improve the
sensitivities of model outputs to parameters involved in the
reaction and diffusion that have larger time constants, while the
difference in the boundary condition may result in a change of the
dominating reaction/diffusion mechanism in the system.

The matrix F of sensitivity coefficients includes the partial
derivatives of the variables βk with respect to the dependent
variables Pj (Tomović & Vukobratović, 1972):

Fj,k = F(Pj;βk) =
∂Pj(βk)

∂βk
, (5)

where Fj,k denotes the sensitivity coefficient of the jth measure-
ment to the kth parameter. In this work, the sensitivity coefficients
were estimated by the finite difference method:

F(Pj;βk) ≈
1Pj
1βk

=
Pj(βk + 1βk) − Pj(βk − 1βk)

21βk
. (6)

The total sensitivity for the kth parameter is the sum of squares of
the sensitivity coefficients over the entire depth of the 30Si profile:

Φk =

Nd∑
p=1

1
σ2
p

C
30 Si
p,βk+1βk

− C
30 Si
p,βk−1βk

21βk


2

, (7)
where Nd is the total number of data points in the 30Si profile,
and 1βk/βk = 0.1. The individual values of F are weighted
by the corresponding measurement covariance at the pth depth,
σ2
p . A higher value of the total sensitivity Φk implies a stronger

influence of the corresponding model parameter βk on the final
30Si profile. The data points with smaller measurement covariance
are weighted more strongly in determining the total sensitivity.
The standard deviation at each depth σp was estimated by the
measurement of n different SIMS profiles on the same specimen,
yielding

σp =
1

n − 1

√√√√ n∑
q=1

(Cp,q − Ĉp)2, (8)

where Ĉp is the average concentration over the n measurements
for the pth depth. The standard deviation on a relative basis (i.e.,
normalized by concentration) obeyed the following square-root
relation:

σp

Ĉp

= a1
1√
Ĉp

+ a2, (9)

where a1 and a2 denote constants equal to 4.4×108 and 2.7×10−2,
respectively (Kwok et al., 2005). Eq. (9) indicates that the relative
measurement error decreased with the square root of the signal
strength.

As experiments were performed under various degrees of
adsorbate coverage, the sensitivity analysis was repeated for
various values of the surface loss probability S. This helped
elucidate the effect of surface boundary condition on the governing
diffusion/reactionmechanism in the system. The results also canbe
used to guide experimental design if particular parameters need to
be refined in future studies.

4.2. Maximum a posteriori (MAP) estimation

A closer inspection of Fig. 1 indicates that the profile obtained
by the ML estimate of the surface loss probability S is twice
as far as the experimental profile from the as-implanted profile
for sample 1, for a depth between 30 and 55 nm. This large
relative error for sample 1 suggests that improved estimation
may be required for the activation energies in Table 1, for the
model to describe profile spreading for high values of the surface
loss probability. This motivates the application of maximum a
posteriori (MAP) estimation, which determines the most likely
values of parameters when prior information is available (Beck
& Arnold, 1977; Sparacino, Tombolato, & Cobelli, 2000). MAP
estimation optimally combines prior statistical information of
the parameter estimates with additional experimental data to



2244 C.T.M. Kwok et al. / Automatica 44 (2008) 2241–2247
obtain improved a posteriori estimates. For this application MAP
estimation can be equivalently posed as a minimization problem:
min
β̄,Sj

j=1,···,d

(β̄ − µ)TV−1
µ (β̄ − µ)

+

d∑
j=1

(
Yj − Pj(β̄, Sj)

)T
V−1

ε,j

(
Yj − Pj(β̄, Sj)

)
, (10)

where β̄ denotes the vector of estimated parameters that are the
same for all profiles, µ is the vector of corresponding a priori
parameter estimates, Vµ is the prior parameter covariancematrix, d
is the total number of SIMSprofiles, Sj is the surface loss probability,
Yj is the vector of experimental observations, Pj is the vector
of model predictions, and Vε,j is the measurement covariance
matrix for the jth profile. The a priori parameter estimates are
shown in Table 1, and were estimated from density functional
theory calculations, isolated experiments from the literature,
and previous experimental concentration profiles as cited in the
table. Assuming the measurement errors at different depths are
uncorrelated, the covariance matrix of the jth measurement is
diagonal with nonzero elements given by[
Vε,j

]
pp = σ2

p,j, (11)

where σp,j is the standard deviation of the jth depth profile
determined by (9). A complete set of as-implanted and annealed
profiles at different surface conditions was collected at the same
location on different specimens. A systematic shift in each set
of profiles was identified for each spatial location, which was
corrected before applying ML and MAP estimation. This did not
correct biases within 1 nm of the surface, which were sufficiently
large for that data to be of limited value for parameter estimation
purposes, so these data points were excluded from the parameter
estimation (Kwok et al., 2005). The remaining data points indicated
that themeasurement error depended upon isotope concentration
as described by (9).

Assuming the accuracies of the individual prior parameter
estimates are independent of one another, the prior parameter
covariance matrix can be expressed as a diagonal matrix with
nonzero entries given by

Vµ,kk = σ2
β̄k

, (12)

where σβ̄k
is the standard deviation in the prior estimate of the

kth parameter. No prior information was assumed for the surface
loss probability Sj, which varies with the adsorbate coverage that
is different for each profile. In the case where only the surface
loss probabilities are estimated, (10) gives maximum likelihood
estimates.

For computational efficiency, the elements within β̄ are
chosen to exclude activation energies to which the model has
little sensitivity (based on the results of sensitivity analysis).
The objective function in (10) is formulated as the sum of
weighted squared differences between the experimental profile
concentrations and the model predictions for all available profiles.
The values of various activation energies in β̄ are independent of
the experimental conditions, while the values of Sj are a function
of nitrogen coverage.

All of the estimated parameters can be embedded into a single
vector,

βT
=

[
β̄T, S1, · · · , Sd

]
, (13)

with an estimate of the covariance of (β∗
− βtrue) given by

cov(β∗
− βtrue) = Vβ∗

≈

FT


Vε,1 0 0

0
. . . 0

0 0 Vε,d


−1

F +

(
V−1

µ 0
0 0

)
−1

, (14)
where β∗ and βtrue denote the best estimate and the true value
of the vector of parameters, respectively, and each 0 is a matrix
of zeros of compatible dimensions. The matrix F is the sensitivity
matrix of

P = [P1, · · · , Pd]
T (15)

with respect to the vector of parameters β, computed from (6).
The accuracy of the parameter estimates are quantified by a

hyperellipsoidal confidence region given by

Eβ =

{
β : (β − βtrue)V

−1
β∗ (β − βtrue) ≤ χ2

α(p)
}
, (16)

where α denotes the confidence level and χ denotes the chi-
squared distribution with p degrees of freedom. The confidence
region can be visualized by approximate confidence intervals
(Matthews, 1997):

β∗

k −

√
χ2

α(p)Vβ∗,kk ≤ βtrue,k ≤ β∗

k +

√
χ2

α(p)Vβ∗,kk. (17)

The confidence intervals are a poorer representation of
the hyperellipsoidal confidence region when the off-diagonal
elements in Vβ∗ are large relative to its diagonal elements, in which
case the correlation between the parameters is significant.

5. Results and discussion

5.1. Sensitivity analysis

Values of the total sensitivities for different surface loss
probabilities are shown in Table 2. The results are:

(1) The energetics of exchange between interstitial and substitu-
tional silicon, Eex, have a large influence on the final concen-
tration profile for high values of the surface loss probability S
(10−2 and 10−4). The total sensitivity decreases as S decreases.

(2) The total sensitivities of cluster energetics mostly increase as
the surface loss probability S decreases. For small S (10−6 and
10−8), the profile is most sensitive to the cluster energetics for
large clusters (E4 and Elarge).

(3) The profile is sensitive to the activation energy for Si interstitial
diffusivity, Ediff , over the entire range of the surface loss
probability S.

In Si implanted to significant levels of interstitial supersatura-
tion as described above, the self-diffusion behavior is determined
primarily by the interplay between the interstitials, the surface,
and the reservoirs that render interstitials immobile, i.e., lattice
sites and interstitial clusters. A high value of the surface loss proba-
bility S implies a high flux at the surface. As interstitials of both 28Si
and 30Simove toward the surface, interstitial 30Siwill be selectively
immobilized by the exchange reaction with lattice sites described
in (3), owing to a higher concentration of substitutional 28Si than
30Si. Continuous removal of the interstitial 28Si at the surface drives
the exchange reaction (3) to the right hand side, resulting in more
30Si kicked into lattice sites. Owing to this selective removal of in-
terstitial 28Si over 30Si, a high value of the surface loss probability
S results in a less diffused final 30Si profile (see Fig. 1).

The results of the sensitivity analysis can be rationalized
as follows. For all values of the surface loss probability, the
highest reaction rates are associated with the forward and reverse
exchange reaction (3) for nearly the entire annealing process
(see Fig. 2). As discussed above, for high values of the surface
loss probability S, the forward exchange reaction (3) that moves
interstitial 30Si into lattice sites dominates during the early stages
of annealing (Fig. 2(c)). As this is the highest reaction rate, for
high S the profile spreading is very sensitive to the activation
energy for the kick-in reaction (Eex). For low values of the surface
loss probability S, the lack of an efficient surface sink leads to
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Fig. 2. Simulated spatially-averaged reactions rates for the (a) exchange reaction between interstitial and lattice atoms and (b) cluster dissociation and association for
S = 10−6 . The corresponding plots for S = 10−2 are (c) and (d). The reaction rate is integrated over the entire profile and divided by the corresponding depth to obtain the
average. The net exchange rate is the absolute value of the difference between the forward and backward exchange reactions in (3).
Table 2
Total sensitivity coefficients Φ of activation energies at various surface loss
probabilities

Parameter Total sensitivity, Φ
S = 10−2 S = 10−4 S = 10−6 S = 10−8

E2 2.9 2.2 4.3 × 103 6.1× 104

E3 0.83 7.4 8.7 × 103 6.4× 104

E4 11. 6.0 × 103 2.5 × 105 8.4× 104

Elarge 2.0 × 102 7.9 × 104 9.3 × 105 1.1× 106

Ediff 2.2 × 105 1.5 × 104 4.1 × 103 6.3× 104

Eex 2.3 × 105 1.7 × 104 39. 27.

concentrations of interstitials that are orders-of-magnitude higher
in the bulk silicon, such that the forward and reverse reaction rates
(3) very quickly reach quasi-steady-state values that are nearly
equal and constant throughout the annealing (Fig. 2(a)), with the
net reaction rate being∼1000× smaller than the absolute rates for
most of the annealing. For reactions that occur at a quasi-steady-
state, the species concentrations depend primarily on the ratio of
the forward and reverse reaction rate constants rather than their
absolute values (Fogler, 2004). Varying the activation energy for
the kick-in reaction (Eex) has the same effect on the forward and
reverse exchange reaction rates (3); thus changing the value of Eex
has a low effect on profile spreading for low values of the surface
loss probability S.

The rates for all reactions, including the cluster reactions, are
much higher for low values of the surface loss probability S (see
Fig. 2(a), (b)). This is consistent with the total sensitivities for the
activation energies associated with cluster reactions (E2, E3, E4,
Elarge) being higher for low S.

The magnitude of the total sensitivity for Ediff agrees with
physical intuition. It is reasonable to expect that the diffusivity
of the silicon interstitial would play an important role on the
final annealed profile regardless of the mechanism that render
interstitials immobile. Hence the total sensitivity of Ediff is high for
all values of the surface loss probability S.
Based on the results of ML estimation with the surface loss
probability S as the only adjustable parameter (see Table 1),
the available experimental data gave values of the surface loss
probability S lying between 10−4 and 10−1. In this regime, the
concentration profiles are relatively insensitive to the dissociation
energy of small clusters (see Table 2). As a result, E2 and E3
were not included in the parameter set for maximum a posteriori
estimation, resulting in the vector of parameter estimates

βT
=
[
E4, Elarge, Eex, Ediff, S1, S2, S3

]
. (18)

According to the results of the sensitivity analysis, if the values
of E2 and E3 need to be determined more accurately in the future,
then the experiments should be performed under conditions in
which the surface boundary condition is close to that of a perfect
reflector, that is, experimental conditions in which the surface loss
probability S is small.

The concentration profiles were not very sensitive to Elarge and
Ediff in previous experimental systems (which is why the standard
deviations from past parameter estimation studies are relatively
large in Table 1), but are very sensitive to these parameters in
the present system (see Table 2). This indicates that incorporating
the experimental results from the present system with prior
information should result in more accurate estimates of these
parameters.

The dissociation energy of the second largest cluster, E4,
shows moderate sensitivity for S ≈ 10−4 (see Table 2).
Although a prior parameter estimation study for boron diffusion
experiments estimated a standard deviation of 0.002 eV for
the estimate of this parameter, this value is too small for use
in the MAP estimation for this silicon self-diffusion study. In
the boron system, there are three kinds of clusters, namely
pure B clusters, pure Si clusters, and mixed B-Si clusters. The
dissociation energy for clusters of size bigger than two was
assumed to be solely size-dependent. This assumption is probably
only an approximation. Results from first-principles calculations
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Table 3
Maximum a posteriori (MAP) estimates

Parameter MAP estimate Standard deviation 95% confidence interval half-width

E4 3.1087 eV 0.012 0.044
Elarge 3.7749 eV 0.0034 0.013
Ediff 0.7642 eV 0.0031 0.012
Eex 0.9636 eV 0.0031 0.012
S1 6.72 × 10−2 3.0 × 10−4 9.9 × 10−4

S2 5.77 × 10−4 4.8 × 10−6 1.6 × 10−5

S3 2.19 × 10−4 1.2 × 10−6 4.1 × 10−6
Fig. 3. Experimental and simulated 30Si profiles using refined estimates of the
surface loss probability S and various energetics determined by maximum a
posteriori (MAP) estimation. Fits are noticeably better than in Fig. 1.

(Lenosky, Sadigh, Theiss, Caturla, & Rubia, 2000) and the tight-
binding method (Luo & Clancy, 2001) indicate that the identity
of atoms in a cluster affects the value of the formation energy. In
addition, it is unlikely that the dissociation of these three groups
of clusters is of same importance in affecting the final boron
profile. The estimated high accuracy of the estimate of E4 may
have been due to a high sensitivity of the concentration profiles to
the dissociation of a certain group of clusters. These issues suggest
that the prior standard deviation for E4 used in the current MAP
estimation should be increased; we used 0.1 eV, which is the same
as that of Elarge. This makes the refined a posteriori estimate of E4
a more defensible value for pure Si clusters. In the next section
the refined value is compared to the prior estimate to quantify the
validity of the “size-dependent-only” assumption.

5.2. Maximum a posteriori (MAP) estimation

MAP estimates of the model parameters and the associated
95% confidence intervals are shown in Table 3. Fig. 3 shows the
simulated profiles using the refined parameters. The simulated
profiles withMAP estimates are closer to the experimental profiles
than when a priori estimates are used (see Fig. 1), especially for
the atomically clean surface (sample 1, for depth between 20 and
55 nm). Values of the MAP estimates of the activation energies
are reasonably close to the prior estimates, but with confidence
intervals significantly tightened. With the exception of E4, each
activation energy estimate lies within the 95% confidence region
of the prior estimate, suggesting that the values of the model
parameters are consistent in the various experimental systems
studied. Note that the MAP estimates of S lie outside the 95%
confidence region of the prior estimate. This suggests that the
estimated values of S are sensitive to the values of other parameters
in the model. The modification of other parameters by MAP
estimation affects the best estimate of S.

As discussed above, the error bound in the prior estimate of
E4 (the dissociation energy of the second largest clusters) was
loosened in the present study. Even so, the refinedMAP estimate is
larger than the prior estimate and is outside the original confidence
interval. This discrepancy suggests that the dissociation of clusters
may not depend solely on the number of atoms in the cluster,
as discussed earlier, but also on the composition of four-atom
clusters.

Another possible cause is the limitation of themodel to clusters
of no more than five atoms. This limitation seemed to cause little
difficulty when modeling the spike annealing of boron profiles
(Jung et al., 2004a). With the maximum cluster size restricted to
five, the dissociation energies of clusters are widely discretized
with E2 = 1.4 eV and E5 = Elarge = 3.7 eV. This wide discretization
causes a huge number of cluster dissociation events to occur
at a few specific temperatures. The model may therefore be
insufficiently able to simulate cluster dissociation at intermediate
temperatures, especially in soak anneal temperature programs.
Moreover, when four-atom clusters start to dissociate at around
700◦C, the released interstitials cannot re-associate to clusters
since five-atom clusters are not allowed to accrete interstitials.
This situation does not represent the actual physical picture where
the biggest size clusters can still accrete interstitials which results
in the formation of {311} defects (Cowern et al., 1999). In order
to obtain more widely applicable values for cluster activation
energies, refinement in the diffusionmodel to includemore cluster
sizes and additional experiments may be necessary.

6. Conclusions

The energetics in silicon self-diffusion were identified using
a combination of parameter sensitivity analysis and maximum a
posteriori (MAP) estimation. Refined parameter estimates were
obtained by combining information from multiple experimental
systems. The much higher sensitivity of the concentration profiles
in the new experimental system to the dissociation energy of
the largest clusters Elarge and the energetics of Si interstitial
diffusion Ediff enabled an order-of-magnitude improvement in the
accuracy of the estimates of these parameters, upon application
of MAP estimation. The greatest improvement in accuracy was in
the activation energy for the exchange between interstitial and
substitutional silicon, Eex, which had a very strong effect on the
concentration profiles for high values of the surface loss probability
S. The results also suggested that refinement in the model may
be necessary to obtain a more widely applicable parameter set for
cluster dissociation.
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