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Abstract
Inflammation is a key physiological response to infection and injury and, although usually beneficial, it can
also be damaging to the host. The liver is a prototypical example in this regard because inflammation helps
to resolve liver injury, but it also underlies the aetiology of pathologies such as fibrosis and hepatocellular
carcinoma. Liver cells sense their environment, including the inflammatory environment, through the
activities of receptor-mediated signal transduction pathways. These pathways are organized in a complex
interconnected network, and it is becoming increasingly recognized that cellular adaptations result from
the quantitative integration of multi-pathway network activities, rather than isolated pathways causing
particular phenotypes. Therefore comprehending liver cell signalling in inflammation requires a scientific
approach that is appropriate for studying complex networks. In the present paper, we review our application
of systems analyses of liver cell signalling in response to inflammatory environments. Our studies feature
broad measurements of cell signalling and phenotypes in response to numerous experimental perturbations
reflective of inflammatory environments, the data from which are analysed using Boolean and fuzzy logic
models and regression-based methods in order to quantitatively relate the phenotypic responses to cell
signalling network states. Our principal biological insight from these studies is that hepatocellular carcinoma
cells feature uncoupled inflammatory and growth factor signalling, which may underlie their immune evasion
and hyperproliferative properties.

Introduction
Inflammation is a mechanism for preserving homoeostasis
in response to noxious stimuli such as infection and injury.
Cells of the innate immune system drive the inflammatory
response, which typically begins when pro-inflammatory sti-
muli activate macrophages residing in the affected tissue
to produce chemoattractants that recruit neutrophils to the
site of inflammation. Neutrophils are white blood cells
that sense and eliminate pathogens. They carry out their
functions in part by release of oxygen radicals and degradative
enzymes whose leakage can cause collateral tissue damage [1].
Once the inflammatory stimulus is cleared, the inflammatory
response is damped by a process called resolution, which
is marked by the transition from neutrophil to monocyte
recruitment. Monocytes are blood-borne macrophages that
differentiate into macrophages once inside tissue. They serve
to clear debris and promote tissue repair. The inflammatory
response is therefore characterized by processes that cause
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both damage and repair. The damaging processes must be
sufficiently strong to eliminate the inflammatory stimulus,
but not too strong so as to cause excess tissue damage.
A maladapted inflammatory response can lead to chronic
inflammation, which is a hallmark of many complex diseases
such as cancer, fibrosis, cardiovascular disease and diabetes.
A better understanding of inflammation could therefore
improve therapeutic approaches to acute and chronic diseases.

The liver plays a central role in homoeostasis through its
functions in metabolism, detoxification and inflammation.
The liver is a key participant in the initial systemic
response to inflammation, called the acute-phase response,
because it synthesizes acute-phase proteins such as C-reactive
protein, serum amyloid A and fibrinogen [2]. Conversely,
components of the inflammatory response are important
in liver physiology and pathophysiology. The cytokine IL
(interleukin)-6, for example, serves to protect the liver when
it is injured and promotes its regeneration [3]. Inflammation
can contribute to pathological states of the liver, perhaps
best exemplified by chronic inflammation due to viral
infection (e.g. hepatitis B and C), toxic substance exposure
(e.g. aflatoxin-B1) or steatosis serving as a precursor to
HCC (hepatocellular carcinoma) [4]. HCC is the fifth most
prevalent cancer worldwide and is notoriously difficult to
treat, which underlies its status as the third most lethal
type of cancer [5]. The considerable burdens of liver disease
and diseases linked to chronic inflammation emphasize the
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need for investigating the interplay between the liver and
inflammation.

Cells adapt to their environments by the activities of
receptor-mediated signalling pathways. The biochemical
activities of these signalling pathways regulate gene ex-
pression, metabolism and/or cell structure in order to
modify cell physiology. For example, in the case of
hepatocytes during the acute-phase response, IL-6 released
by macrophages and stromal fibroblasts at the site of
inflammation acts hormonally on hepatocytes by binding
and activating a receptor complex leading to phosphorylation
and dimerization of the STAT3 (signal transducer and
activator of transcription 3) [6,7]. STAT3 is a transcription
factor that regulates the transcription of a number of
genes including many involved in the acute-phase response.
The communication between cells acting at the site of
inflammation and those of the liver exemplify how the cells
of multicellular organisms communicate in homoeostasis.

The activities of individual pathways such as IL-6/STAT3
have been well studied in liver cells. However, studies
of isolated pathways have limited applicability to the in
vivo situation in which cells are continually exposed to
multiple extracellular molecules leading to the simultaneous
activity of many signalling pathways. In inflammation,
for example, cells are exposed to multiple pro- and anti-
inflammatory cytokines [e.g. TNFα (tumour necrosis factor
α), IL-1, IL-4 or IL-10], growth factors, hormones and other
molecules. Intracellular signalling pathways cross-talk with
each other, effectively forming a network, but it is poorly
understood how intracellular signalling networks processes
the combinatorial action of multiple environmental cues.
Progress in this area will improve our understanding of
complex physiological responses such as inflammation and
help to guide the development of better therapeutics. In
the present paper, we review our studies of the intracellular
signalling systems of hepatocytes and HCC cells in response
to inflammatory environments using a systems approach. We
begin by explaining what a systems approach to biology
means followed by reviewing three studies in which we
used this approach to investigate liver cell signalling and
physiology in inflammatory contexts.

Scientific approach: ‘cue–signal–response’
experiments and mathematical modelling
A hallmark of engineering practice is applying a systems
approach to the design process. In this context, a ‘systems
approach’ denotes studying a system by applying diverse
inputs to the system and measuring the outputs. Mathematical
models are then used to quantify the relationship between in-
put and output. The parameters of the mathematical model are
tuned such that the desired outputs are obtained from the in-
puts expected under operating conditions. The engineer then
modifies the design to reflect these optimal parameter values.

We adopt a similar engineering approach in investigating
biological systems, with a difference being that we seek
to ‘reverse engineer’ the system by using input–output

relationships and selected measurements of the system to
constrain a model of the intracellular signalling network.
We implement an experimental paradigm called cue–signal–
response that reflects this input–system–output relationship
[8]. The input consists of molecules in the cell’s environment,
the system is the cell signalling network and the output
is the behaviour that the cell executes to adapt to
the input. In practice, a cue–signal–response paradigm
applied to hepatocyte physiology during inflammation
involves applying inflammatory cytokines and growth factors
(cues) to cultured hepatocytes or HCC cells, perturbing
intracellular signalling by inhibiting kinases with small-
molecule inhibitors, assessing intracellular signalling by
multiplexed measurement of phospho-protein levels (signals)
and measuring the secretion of cytokines (responses). Specific
cues include inflammatory cytokines such as IL-6 and IL-1
and inhibitors target kinases such as MEK [MAPK (mitogen-
activated protein kinase)/ERK (extracellular-signal-regulated
kinase) kinase], PI3K (phosphoinositide 3-kinase) and p38
MAPK. The cells are lysed at specific time points and
multiplexed bead-based flow cytometric immunoassays
based on Luminex xMAP technology are used to measure the
levels of ∼15 phosphorylated proteins including Akt, ERK
and STAT3. Similar assays are also used to measure the levels
of ∼50 secreted proteins in the cell culture medium.

The resulting dataset features thousands of data points,
which makes it challenging to interpret. Mathematical tools
are therefore used for downstream analyses. Classically,
ODEs (ordinary differential equations) have been the method
of choice for analysing cell signalling systems because
they make direct use of biochemical rate equations that
describe the kinetics of enzyme-catalysed reactions, protein–
protein interactions and transport processes. Disadvantages
of ODE models include their critical requirement for firm
specification of network topological interactions and their
reliance on adjustable parameters that must be robustly
estimated in order to effectively represent the system. As
the size of the model grows, so does the uncertainty in
the topology and the corresponding number of parameters,
which in turn increases the demand for more comprehensive
biological knowledge and intensive experimental data (as well
as computational power, although this is a lesser challenge at
this point). Although studying signalling from one or two
pathways with ODEs is feasible, the networks that we study
are too uncertain and large for ODEs to be practically useful.
We therefore use modelling techniques that represent the
system in a coarser-grained fashion. In so doing, we require
less data to obtain a quantitative insight into the system, albeit
less insight than could be obtained with ODEs.

Our studies feature two types of mathematical frame-
works, regression-based methods and logic-based methods.
Our implementation of these techniques has been reviewed
in detail elsewhere [9–11]. Briefly, regression models, such
as multiple linear regression and PLSR (partial least-squares
regression), are useful for quantifying the correlation between
variables in the context of one another. Regression models do
not incorporate information beyond the data itself, except
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Figure 1 Logic modelling workflow

A PKN is derived from literature, databases and/or existing data. Experiments are conducted to systematically perturb

and/or measure nodes distributed throughout the network. The data are then used by a model-optimization (i.e. data-fitting)

algorithm to tune the model topology and, if applicable, the model parameters, to minimize the discrepancy between the

model output and data. The resulting model is then analysed to derive insight into the biology of the system. Adapted from

[14] with permission under a Creative Commons Attribution Licence.

that the variables included in the model are specified by
the modeller. This prior specification makes the models
supervised, but they are also strictly empirical. Logic
modelling, in contrast, involves translating prior knowledge
or hypotheses about the system structure or function into
computable language. In this way, logic models are capable
of bringing a network diagram to operational function. We
investigate cell signalling networks using logic modelling
by first constructing a diagram of the network based on
published data [which we call a PKN (prior knowledge
network)], then collecting a cue–signal–response dataset
devoted to perturbing and measuring aspects of the network,
followed by using optimization algorithms to identify and
quantify the connections in the hypothetical network that
are most important for explaining the data (Figure 1). The
resulting fitted models can then be used for simulation or
analysis purposes. Irrespective of the modelling approach,

model predictions are experimentally validated. We have
used this workflow to obtain considerable insights into
the systems-level operation of cell signalling networks in
effecting phenotypic responses in diverse contexts, which we
discuss in the following section.

Liver cell information processing during
inflammation
We applied our interdisciplinary approach to the issue
of epithelial cell signalling in inflammation by devising
logical and statistical modelling methods and applying
them to data from cultured liver cells exposed to inflam-
matory conditions. In the first paper from these studies,
Saez-Rodriguez et al. [12] extended Boolean logic methods
used previously to study biological networks from a
theoretical standpoint to allow the model to directly interface
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with experimental data. Specifically, their algorithm translates
a PKN, a database-derived PSN (protein signalling network)
map in this specific example, into a Boolean logic model
and optimizes the model topology to best fit experimental
data. In this example, the data comprised phospho-protein
levels of intracellular signalling intermediates in HepG2 HCC
cells exposed to inflammatory cytokines and inhibitors of
several kinases. Interestingly, they found that the resulting
optimal models consisted of substantially fewer connections
than found in the PKN. Remarkably, an empty model that
contained nodes but no edges connecting them, fitted the
data better than the PKN [12]. This result implies that the
comprehensive protein–protein interaction network maps
and PSNs commonly used to depict biological networks
do not necessarily reflect networks operating in a specific
cell type under specific conditions. This lack of fit stems
from two apparently paradoxical sources: (i) the networks
include too many interactions, presumably because they
are typically curated from multiple sources, cell types, time
points and experimental conditions; and (ii) the networks lack
interactions that are present and functional in the network
under study due to imperfect databases or incomplete
understanding of the biology. Indeed, by examining the data
points that the original optimal model failed to adequately fit,
Saez-Rodriguez et al. [12] tested new interactions to see which
ones best improved the fit. The existence of two candidate
interactions, one linking TRAF6 (TNF-receptor associated
factor 6) and MEK and another linking ERK and IRS-1
(insulin receptor substrate 1), was supported by published
evidence.

An alternative modelling approach was used by
Alexopoulos et al. [13], who performed a comparative
analysis of the intracellular signalling networks of healthy
and cancerous liver cells. A cue–signal–response dataset was
generated in which inflammatory cytokines and growth
factors were applied to primary human hepatocytes and
HepG2 HCC cells in concert with small-molecule inhibitors
targeting seven kinases from different signalling pathways.
Multiple linear regression analysis was used to estimate
the strength of relationships between the cytokines and
signals, the inhibitors and signals, and the signals and secre-
ted cytokines. The networks were defined by the relation-
ships featuring the highest regression coefficient magnitudes.
The networks for the primary hepatocytes and the HepG2
cells were then compared, revealing that HepG2 cells
displayed reduced responsiveness to inflammatory stimuli,
but increased responsiveness to pro-growth stimuli, relative
to the primary hepatocytes. In particular, alterations of NF-
κB (nuclear factor κB) signalling in HCC cells had profound
phenotypic consequences because primary hepatocytes
secreted a number of cytokines that the HCC cells did not.
These cytokines are thought to be involved in recruiting cells
of the innate immune system, which implies that HCC cells
modify the secretion patterns in order to avoid detection and
elimination by the immune system.

The above studies clearly demonstrate the utility
of Boolean logic and regression methods in exploring

how normal and healthy liver cells differentially process
environmental information. However, both modelling meth-
ods have important limitations. Specifically, Boolean logic
describes the activity of each node as either ‘on’ or ‘off’,
which ignores potentially important graded activity, and
regression models do not incorporate potentially valuable
prior knowledge. Morris et al. [14] addressed these limitations
by developing a novel logic-based modelling method called
cFL (constrained fuzzy logic), which incorporates prior
knowledge in the same manner as Boolean logic, but also
models quantitative behaviour. Specifically, this method con-
verts an input value from an upstream node into a continuous
value between 0 and 1 for the downstream node through a
sigmoidal transfer function [14]. This capability facilitates the
ability of the resulting trained models to fit weak responses.
The quantitative relationships between proteins are also
estimated, allowing for modelling of dose–response data,
which could prove valuable for pharmacological applications.

cFL was applied to the same dataset to which the Boolean
logic approach had been applied previously [12]. cFL was able
to capture interactions that were missed by Boolean logic [14].
This included the moderate levels of phosphorylation of JNK
(c-Jun N-terminal kinase) and c-Jun by TGFα stimulation.
This interaction was the only instance of growth factor
pathway cross-talk with inflammatory pathways observed in
measurements of HepG2 cells, which the previous studies
failed to detect [12,13]. Furthermore, stimulating HepG2
cells with IL-6 led to moderately increased phosphorylation
of several species, including Akt, MEK and p70 S6 kinase,
in addition to strong phosphorylation of its canonical
downstream STAT3 pathway [14]. The PKN did not include
links from the IL-6 receptor that allowed for the observed
moderate phosphorylation levels [14]. In the case of Boolean
logic, the resulting lack of fit of these data points did not
adversely affect the overall fit, presumably because a similar
absolute deviation resulted between the intermediate levels
of the measured phosphorylations and the model outputs of
0 or 1. In contrast, the cFL model was sufficiently sensitive
to this error that the model was deemed to inadequately fit
this data [14]. Morris et al. [14] followed up this result by
seeking to distinguish the pathway that most likely caused
the phosphorylations. To do so, they tested PKNs with
new interactions either between the IL6R (IL-6 receptor)
and PI3K or IL6R and Ras. Most of the resulting fitted
models contained the IL6R–Ras link, thus predicting that
the Ras/Raf/MEK pathway and not a PI3K-downstream
pathway mediated the phosphorylations [14]. This result was
validated with dedicated experiments.

Conclusions and future directions
We have performed a series of studies in which mathematical
models of proteomic data revealed important insights
into the signal transduction networks of healthy and
cancerous liver cells in inflammatory environments. Our
principal biological insight is that HCC cells feature
both decreased responsiveness to inflammatory stimuli and
increased responsiveness to growth factors relative to normal

C©The Authors Journal compilation C©2012 Biochemical Society



Signalling 2011: a Biochemical Society Centenary Celebration 137

hepatocytes, which could promote immune evasion and
increased proliferation. Our principal mathematical advances
include devising methods for formally fitting Boolean
logic models to data and creating a fuzzy logic method
useful for making quantitative models. For relatively small
networks such as the one studied here (i.e. downstream of
approximately five to seven receptors), cFL is a powerful
approach. Given the higher computational burden of cFL,
Boolean logic will still be needed to model larger networks
until more efficient algorithms are developed. We note,
however, that larger networks do not necessarily provide
additional predictive power because maximal predictivity
was observed with models featuring substantially reduced
numbers of edges from the initial PKN. This finding supports
the use of our functional biochemistry approach because it
provides data on components of the system that actually
carry out the cellular response. A distinctive feature of our
approach is that it requires broad sampling of network
states, which is achieved by applying diverse experimental
conditions (in our case, cytokines and inhibitors, but could
also include other treatments such as small interfering RNAs).
Attempting to process samples from hundreds of independent
experiments with other proteomics techniques such as MS
is currently unfeasible owing to technical limitations and
time and fiscal costs. Our approach therefore represents
a rational, efficient and informative means to elucidating
epithelial cellular signalling and physiology in inflammatory
contexts.

We emphasize that systems-level approaches can be
effectively used in vivo. A recent study from our laboratory
successfully extended previous systems-level analyses of
data collected from colon cancer cells in vitro [15–17]
by applying PLSR modelling to signalling measurements
taken from the intestines of mice treated systemically with
TNFα [18]. Determining the biological effects of TNFα is
not straightforward because stimulation of TNFα receptors
increases the activity of multiple downstream signalling
pathways, the quantitative integration of which determines
the ultimate biological outcome. In the case of mouse
intestinal epithelial cells in vivo, for example, TNFα was
found to promote apoptosis in cells of the proximal part
of the small intestine, but not in the distal part, with
the timing of apoptosis being dose-dependent [18]. TNFα

administration also affected cell proliferation in a region-
specific manner. PLSR modelling of signalling and phenotype
data revealed that the differential sensitivity of apoptosis
was due to quantitative differences in MAPK signalling
kinetics between the two intestinal regions and that growth
arrest was related to c-Jun and ATF (activating transcription
factor) activation as well as MAPK signalling kinetics [18].
Subsequent experiments validated the hypotheses generated
from the original dataset and model. This study demonstrates
that our systems-level approach can be applied successfully
to in vivo contexts, despite their added complexity compared
with in vitro cell-culture-based experiments.

We contend that our approach works irrespective of
the experimental system because cells integrate complex

contextual information into biochemical activities of sig-
nalling pathways that form the basis for phenotypic decisions.
The cell signalling network is complex, but manageable, such
that by measuring selected nodes across this network and
using mathematical models to infer the network output,
we are able to predict the ultimate biological outcome.
We therefore anticipate systems-level approaches becoming
broadly applicable to the study of cellular signalling.
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