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Existing subspace-based direction finding methods for multiple-input multiple-output (MIMO) radar assume perfect knowledge
about the dimension of the signal or noise subspace, which is hard to be established without prior knowledge of the signal
environment. In this paper, an efficient method for joint DOA and DOD estimation in bistatic MIMO radar without estimating
the number of targets is presented. The proposed method computes an estimate of the noise subspace using the power of R (POR)
technique.Then the two-dimensional (2D) direction finding problem is decoupled into two successive one-dimensional (1D) angle
estimation problems by employing the rank reduction (RARE) estimator.

1. Introduction

MIMO radar employs multiple transmit antennas for trans-
mitting several orthogonal waveforms and multiple receive
antennas for receiving the echoes reflected by the targets
[1–3]. MIMO radar can exploit the waveform diversity to
form a virtual array with increased degrees of freedom
(DOFs) and a larger aperture compared to the traditional
phased-array radar. It has been shown that MIMO radar
can provide enhanced spatial resolution, achieve better target
detection performance, and significantly improve the system’s
parameter identifiability [1–6].

Many direction findingmethods have been proposed (see
[7–11] for details) for MIMO radar. In [9], the estimation
of signal parameters via rotational invariance technique
(ESPRIT) was used for angle estimation in bistatic MIMO
radar. The multiple signal classification (MUSIC) [12] algo-
rithm, one of the most representative subspace methods,
can also be used for direction finding in bistatic MIMO
radar. However, the requirement of 2D search of 2D-MUSIC
for spectral peaks leads to much higher computational
complexity. To mitigate this problem, many joint DOA and
DOD estimation methods have been proposed (see [8, 10, 11]

for details). The aforementioned direction finding methods
for bistatic MIMO radar are based on the noise or signal
subspace. Thus, the number of targets, that is, the dimension
of the signal subspace, has to be known a priori. The
most representative algorithms for estimating the number of
sources are Akaike information criterion (AIC) and mini-
mum description length (MDL) [13]. However, experimental
evidence shows that the two criteria cannot give accurate
estimation results for a small sample size and a low signal-to-
noise ratio (SNR) [14–16]. Hence, the existing subspace-based
direction finding methods for bistatic MIMO radar may be
unrealistic. To avoid source number estimation, in [17], the
Capon estimator of [18] was used for direction finding in
MIMO radar. However, the Capon estimator cannot achieve
resolution as high as that of the MUSIC algorithm [13].

In this work, we address the problem of joint DOA and
DOD estimation in bistatic MIMO radar without estimating
the number of targets. To eliminate the need to estimate
the dimension of the noise subspace explicitly, the POR
technique is employed to compute an estimate of the noise
subspace.The POR technique requires the inverse of the sam-
ple covariance matrix. Due to finite sample effect, however,
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the sample covariance matrix may be either singular or ill-
conditioned. To guarantee that the sample covariance matrix
is invertible, a completely automatic diagonal loading (ADL)
method introduced in [19], which computes the diagonal
loading (DL) level automatically from the received data
without specifying any user parameter, is utilised to estimate
a well-conditioned sample covariance matrix. In addition,
based on the RARE estimator for direction finding in partly
calibrated arrays [20], the 2D angle estimation problem is
then decoupled into two successive 1D angle estimation
problems.

This paper is organised as follows. In Section 2, the signal
model for bistatic MIMO radar is provided. In Section 3,
a brief overview of 2D-MUSIC, ESPRIT, and reduced-
dimension MUSIC (RD-MUSIC) for direction finding in
bistatic MIMO radar is given. The proposed method is given
in Section 4. Simulation results are presented in Section 5 and
conclusions are drawn in Section 6.

2. Signal Model for Bistatic MIMO Radar

Consider a bistatic MIMO radar system with a ULA of 𝑀
antennas used for transmitting and aULAof𝑁 antennas used
for receiving. The 𝑀 transmit antennas are used to transmit
𝑀 orthogonal waveforms. Consequently, the output of the
matched filters of MIMO radar at the 𝑛th snapshot can be
written as [4, 8]:
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are the transmit and receive steering vectors for 𝜃
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is the overall transmit-receive or virtual array manifold, and
n[𝑛] is the received complex-valued white noise with a power
𝜎
2.
Due to the time-varying properties of the reflection

coefficients and the fact that the Doppler frequencies satisfy
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and are well-separated, we assume that all

target-reflected signals and noise are uncorrelated. Then the
data covariance matrix can be expressed as
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where 𝐸[⋅] and [⋅]
𝐻 denote expectation and Hermitian
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the remaining eigenvectors U
𝑛
are the noise subspace. In

practice, the sample covariance matrix of (4),
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𝑥
=

1

𝐿

𝐿

∑

𝑛=1

x [𝑛] x [𝑛]𝐻 , (5)

is used, where 𝐿 is the number of snapshots.

3. Review of 2D-MUSIC, ESPRIT,
and RD-MUSIC

3.1. 2D-MUSIC. The 2D-MUSIC algorithm can be con-
structed as [8]:
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The 𝑃 largest peaks of 𝑓(𝜓, 𝜃) indicate the DOA and DOD
estimates of the targets. 2D-MUSIC algorithm requires a 2D
search, which yields a high computational cost.

3.2. ESPRIT. For ESPRIT-based estimator [9], it is based on
the signal subspace U

𝑠
. Let U

𝑠,1
be the subset of U

𝑠
, which

relates from the first to the (𝑀 − 1)th transmit antennas,
and U
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𝑠
, which relates from the second

to the 𝑀th transmit antennas. We then have the following
relationship:
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diagonalmatrix, with 𝑒
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𝑡
sin(𝜃
𝑙
)/𝜆 being its 𝑙thmain diagonal

element. Thus, the DODs can be found from the eigenvalues
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of (U𝐻
𝑠,1
U
𝑠,1
)
−1U𝐻
𝑠,1
U
𝑠,2
. Similarly, by using the rotational

invariance property between the receive steering vectors
associated with the first 𝑁 − 1 and last 𝑁 − 1 antennas,
the DOAs can be obtained easily using the ESPRIT-based
method.

3.3. RD-MUSIC. To reduce the computational complexity of
the 2D-MUSIC algorithm, the RD-MUSIC algorithm was
proposed [8]:
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Using the Lagrange method, the solution to the problem
(8) is given by
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, we can

compute the DOD estimate corresponding to each DOA
estimate of {�̂�

𝑙
}
𝑃

𝑙=1
(see [8] for details).

The RD-MUSIC undergoes the following limitations.
First, the RD-MUSIC fails when multiple targets share the
same DOA but have different DODs. Second, it cannot be
always guaranteed that the matrix Q(𝜓) is invertible. It can
be proved that the matrix Q(𝜓)may be either singular or ill-
conditioned.

Proof. In the ideal case of exactly known R
𝑥
, the DOAs and

DODs can be found from the following equation:
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Since a
𝑡
(𝜃) ̸= 0, (11) can hold true only if the matrix Q(𝜓)

drops rank; that is,

rank {Q (𝜓)} < 𝑀. (12)

From the above analysis, it follows that the matrixQ(𝜓)may
be either singular or ill-conditioned. Therefore, a small DL
factor should be loaded into Q(𝜓) to guarantee that it is
invertible.

4. Proposed Method

4.1. Estimating Noise Subspace. To avoid the need of source
number estimation, the POR technique estimates the noise
subspace of R

𝑥
based on R−𝑚

𝑥
[21]. Consider the following

equation:
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where 𝑚 is a positive integer. Clearly, (𝜎2/(𝜆2
𝑙
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2
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2
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lim
𝑚→∞

𝜎
2𝑚R−𝑚
𝑥

= U
𝑛
U𝐻
𝑛
. (14)

Therefore, the POR technique obtains an estimate of the noise
subspace without knowledge about the number of targets.

It should be noted that the POR technique is not applica-
ble when 𝐿 < 𝑁𝑀, because if 𝐿 < 𝑁𝑀 snapshots are used to
form R̂

𝑥
,𝑀𝑁− 𝐿 eigenvalue estimates are zero [22]. In such

a case, R̂
𝑥
is rank deficient and is not invertible. To overcome

this problem, we suggest using the ADL method introduced
in [19] to estimate an enhanced covariance matrix. The
essence behind the ADL is to replace the sample covariance
matrix by an enhanced estimate obtained via a shrinkage
method. The shrinkage-based covariance matrix estimate is
a general linear combination of the sample covariance matrix
and the identity matrix [19, 23]:
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𝑥
, (15)
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𝑥
and R̂
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𝑥
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where tr(⋅) and ‖ ⋅ ‖
𝐹
denote the trace operator and the Frobe-

nius norm, respectively. As suggested in [19, 23], the estimates
of 𝛼 and 𝛽 can be obtained as
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where
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4.2. Performing Angle Estimation. Substituting R̃−𝑚
𝑥

into (11)
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Note that if rank(R̃−𝑚
𝑥

) ≥ rank(a
𝑟
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in general, Q̂(𝜓) is a full rank, and the reduction of the rank
of Q̂(𝜓) will take place on the true DOAs [20]. In this case,
the minimal eigenvalue of Q̂(𝜓)will tend to have a minimum
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𝑙
, 𝑙 = 1, . . . , 𝑃 [24].

Therefore, the 𝑃 highest peaks of

1

M [Q̂ (𝜓)]
(21)

indicate the DOAs, where M[⋅] denotes the operator that
yields the minimal eigenvalue of a matrix.

After obtaining the DOA estimates, we then utilise an
appropriate modification of the spectral MUSIC algorithm to
obtain the DOD estimates. By exploiting the DOA estimates
{�̂�
𝑙
}
𝑃

𝑙=1
given by (21), the corresponding DODs {𝜃

𝑙
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𝑃
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𝑙
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It is worth noting that two successive 1D searching are
required only for finding the angle estimates of (𝜓

𝑙
, 𝜃
𝑙
)
𝑃

𝑙=1
,

leading to significant reduction of its computational cost

compared with the traditional 2D spectral searching algo-
rithms.

4.3. Cramér-Rao Bound. In this subsection, we derive the
stochastic Cramér-Rao bound (CRB) for joint DOA and
DOD estimation by extending the results of [20].

Define the 2𝑃 × 1 vector 𝜂 = [𝜓
𝑇
, 𝜃
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The snapshots are assumed to satisfy the following sto-
chastic model:

x [𝑛] = N {0,R
𝑥
} , (24)

where N{⋅, ⋅} is the complex Gaussian distribution. The
unknown parameters of the problem include the elements
of the vector 𝜂, the noise variance 𝜎2, and the parameters of
the source covariancematrix {S

𝑖𝑖
}
𝑃

𝑖=1
and {Re{S

𝑖𝑗
}, Im{S

𝑖𝑗
}; 𝑗 >

𝑖}
𝑃

𝑖,𝑗=1
.

Considering the problem with respect to the parameters
of the source covariance matrix and the noise variance, the
2𝑃 × 2𝑃 Fisher information matrix can be written as [20]:
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After straightforward derivations using (25) and combining
them in a compact matrix form, the CRB matrix can be
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Figure 1: RMSEs of angle estimation against input SNR.
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Figure 2: Spatial spectrum of DOA estimation.

5. Simulations

In this section, simulations are carried out to investigate the
performance of the proposedmethod compared with the 2D-
MUSIC, ESPRIT-based of [9], RD-Capon of [17], and the RD-
MUSIC of [8]. We consider a bistatic MIMO radar system
where a ULA of 𝑀 = 8 antennas is used for transmitting
and a ULA of 𝑁 = 8 antennas is used for receiving. Both
of these ULAs are arranged with half-wavelength spacing
between adjacent antennas. Three noncoherent targets with
the same signal-to-noise ration (SNR) are located at angles
(𝜓
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1
) = (15

∘
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∘
), (𝜓
2
, 𝜃
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) = (25
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, 20
∘
), and (𝜓
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(35
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, 30
∘
), respectively. The additive noises are spatially and

temporallywhite.The input SNRof the 𝑙th source is defined as

10log
10
(𝜎
2

𝑙
/𝜎
2
). All results are averaged over 500 simulation

runs. Define the root mean squared error (RMSE) as

1

𝑃

𝑃

∑

𝑙=1

√
1

500

500

∑

𝑛=1

(𝜗
𝑙
− 𝜗
𝑛,𝑙
)
2

, (31)

where 𝜗
𝑛,𝑙
is the estimate of DOA/DOD 𝜗

𝑙
of the 𝑛th run.

Figure 1 shows the effect of the parameter 𝑚 on the
performance of the proposed method for 𝐿 = 100. As shown,
the proposed method with a small 𝑚 has better estimation
accuracy at the low SNR region. As the input SNR increases,
the proposed method with a large 𝑚 outperforms the one
with a small 𝑚. Figure 2 presents the spatial spectrum of
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Figure 3: RMSEs of angle estimation against the number of snapshots.
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Figure 4: RMSEs of angle estimation against input SNR.

DOA estimation of the RD-MUSIC, the RD-Capon, and the
proposed method. It can be clearly seen that the proposed
method with 𝑚 > 1 and the RD-MUSIC achieve similar
resolution, which is higher than that of the RD-Capon. From
the results of Figures 1 and 2, in the following examples we
will choose𝑚 = 2 for the proposed method.

Figure 3 shows the RMSEs of angle estimation against the
number of snapshots for SNR = 20 dB. Clearly the proposed
method has achieved similar performance as the 2D-MUSIC.
Figure 4 shows the RMSEs as a function of SNR for 𝐿 = 100.
It can be seen from Figure 4 that as the input SNR increases,
the estimation performance of the proposed method is close
to that of the 2D-MUSIC. In addition, compared to the RD-
MUSIC, more accurate DOD estimation is obtained by the
proposed method at the expense of high computational cost.

To see more clearly the performance of the proposed
algorithm, we plot RMSEs against separation angle between
the second and third targets in Figure 5, where SNR = 20 dB
and 𝐿 = 100, respectively. Three targets are assumed to be
located at (𝜓

1
= 15
∘
, 𝜃
1
= 10
∘
), (𝜓
2
= 25
∘
, 𝜃
2
= 20
∘
), and

(𝜓
3

= 25
∘
+ Δ, 𝜃

3
= 20
∘
+ Δ), where Δ varies from 4

∘ to
20
∘. It is observed that as the separation angleΔ increases, the

performance of the proposedmethod and the 2D-MUSIC are
very similar.

6. Conclusions

The problem of joint DOA and DOD estimation in bistatic
MIMO radar has been studied. To avoid the need of source
number estimation, the POR technique is utilised to compute
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Figure 5: RMSEs of angle estimation against angular separation.

an estimate of the noise subspace. We then apply the spectral
RARE technique to transform the complicated 2D searching
process into two 1D searches. The effectiveness of the pro-
posed method has been demonstrated by simulation results.
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