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Harmonic Wave Propagation in 
Nonhomogeneous Layered 
Composites 
A new method for analyzing plane wave propagation in a periodically layered, 
elastic, nonhomogeneous composite body is proposed. The nonhomogeneity con
sidered is a variation of the material properties within each composite layer. Results 
from probability theory are used to arrive at the two fundamental solutions of the 
governing second order ordinary differential equations. Floquet's wave theory is 
combined with a Wronskian formula to yield the dispersion relationship for this 
nonhomogeneous composite. Numerical results show that the presence of material 
nonhomogeneity affects the range of frequencies which can pass through the com
posite unattenuated. 

1 Introduction 

Problems of wave propagation in layered elastic composites 
have attracted a great deal of attention from researchers dur
ing recent years [1-6]. Several studies [7-9] have used Flo
quet's theory for one-dimensional wave propagation or 
Bloch's theory for three-dimensional wave propagation. These 
investigations have shown that when the wavelength of a har
monic wave is comparable to the characteristic length of the 
composite layers, successive reflection and refraction of the 
waves from the interfaces between layers leads to a significant 
dispersive effect. Such phenomena cannot be predicted by so-
called "effective modulus" theories. For anti-plane or plane 
strain waves, the dispersion relationship can be interpreted 
geometrically as a surface in the wave number-frequency 
space. The important feature that was discovered is the 
presence of pass bands and stop bands, i.e., regions in the fre
quency spectrum where harmonic waves are either propagated 
freely or attenuated, respectively. The curves on the surface 
which define the boundary between the pass bands and stop 
bands divide the surface into so-called Brillouin zones. 

The analyses made by Delph, Herrmann, and Kau [7-9] and 
by other researchers were performed with the assumption that 
the material properties within each layer of the composite were 
homogeneous. However, considering realistic manufacturing 
processes and/or naturally occurring variations it may not be 
reasonable to expect a uniform distribution of the elastic con
stants and mass density throughout each composite layer. It is 
the purpose of this paper to present a general method to 
analyze the sitution in which the cells in the periodically 
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layered composite structure are nonhomogeneous, i.e., the 
elastic constants and mass density depend on the spatial coor
dinates within each layer. 

This method is based on a procedure of representing the 
solution of the governing second order ordinary differential 
equations by means of a technique taken from probability 
theory. Combining Floquet's wave theory with properties of a 
special Wronskian formula, the dispersion relationship for 
wave propagation in certain nonhomogeneous composites is 
derived. Numerical calculations pertaining to the dispersion 
relationship for nonhomogeneous composites have shown that 
the presence of a material nonhomogeneity within each layer 
of the composite alters the width of the stop band and affects 
the dissipative characteristics of the medium. 

2 Derivation of the Dispersion Relationship 

The system under consideration consists of an infinite se
quence of two alternating layers, each of which are taken to be 
nonhomogeneous and elastic. Perfect bonding is assumed be
tween the adjoining layers. A unit cell is defined as the union 
of any two adjacent layers. As shown in Fig. 1, the two 
lamellae of the N-th unit cell have variable Lame moduli 
[\„,(x), tsm(x)i , [\j-(x), Hf{x)}, variable mass densities 
{p,„{.x), pf(x)], and thicknesses [2hm, 2hf], where the 
subscripts m and / refer to "matrix" and "fiber" layers, 
respectively. 

Let u, v, and w be the three Cartesian components of the 
displacement vector in the x, y and z directions, respectively. 
The layers lie in the.y-z plane. Consideration will be given only 
to waves propagating in a direction normal to the layers. For a 
one-dimensional longitudinal strain wave propagtaing in the 
x-direction, only the u component of displacement is nonzero. 
Therefore, we take 

u = u(x,t) v=w = 0 (2.1) 

where the function u(x, t) satisfies the equation of motion 
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Fig. 1 Geometry of nonhomogeneous layered composite 

d2u 8 / ^ du \ 
(2.2) 

where D(x) = \(x) + 2\x.(x). The material properties /?(*) 
and /o (x) satisfy periodicity conditions 

D(x + d)=D(x) p(x + d)=P(x) (2.3),_2 

where rf = 2(hm + hf) represents the thickness of one unit 
cell, while 

D„,(x), for matrix 
D(x) = 

and 

(2.4) 

P(*) = 
(>m (*) -

(2.5) 

for /ffter 

for matrix 

[pf(x), for fiber 

The global coordinate x is replaced with two local coor
dinates, xm and xf, in the N-th unit cell, as shown in Fig. 1. 
Thus, (2.2) holds in each layer 

Pm (xm ) 
d2u„ 

mKm' dt2 dx, 

d2U 
Pf(*f) 

" /_ 
dt2 

(pm(x,„) -£-) (0<xm<2hm) (2.6), 

-•klP'W-it) (0=S*'SS2*') (2-6)2 
•V 

The solutions of (2.6),_2 are taken in the form of harmonic 
plane waves as 

Dm(0) i * 
(2.7), 

(2.7)2 

where o> is the circular frequency measured in radians per 
second, Um(xm) and Uf(xf) are two unknown functions 
representing the amplitude of vibration. The longitu
dinal wave speeds will be denoted by cm = VZ>,„/p„ and cy = 

We next introduce nondimensional parameters and non-
dimensional dependent and independent variables according 
to 

2hf 2hn 
Uf 

2hf 
Um=-

2h„ 

fi=-

V-

2wh 'L „__ 
Lfo 

<"fo 

2hf DAO) Dm(0) 
(2.8) 

Df(*f) = 
Df(xf) 
DM) 

Urn \Xm ) 

D,„(0) 
Dm(xm) 

where cm? = -JDJOypJO) and cf0 = VS/OJ/p/O) represent 
the longitudinal wave speeds at the interface between the 
matrix and fiber, respectively. The stresses in the matrix and 
fiber layers are indicated by a,„ and oy, respectively. Using 
these nondimensional quantities and substituting (2.7),_2 into 
(2.6),_2, the equations of motion are reduced to a system of 
second order Sturm-Liouville ordinary differential equations 

dP-Tj - — 
"•-+Vm(x„„Q)Um dx2 

CPU, 

= 0 (2.9), 

dx) 
+ VAxf,Q)Uf = 0 (2.9)2 

with variable coefficients given by 

fi27T*2 1 
Vmlxm,Q)=-

^m \ %m ) 
2 dx,.. 

i / i dDmy 
4\D,„ dx.J 

d I 1 dDm\ 

x ^D dx ' 

(2.10), 

Vf{xI,Q)=-^r-
2 dx, 

/ I dD,\ 

\Df dxt) 

4 \Df dxf' 
(2.10)2 

where ir* = IT • 
hmc m^fo 

hfcmo 

For convenience, we now revert to mathematical notations 
introduced initially to indicate the corresponding nondimen
sional quantities, thereby dropping the barred notation. It is 
hoped that this will not confuse the readers. Furthermore, 
since both independent variables x,„ and xf vary between (0, 
1), there is no need to distinguish between them. In the follow
ing derivation, we will let x stand for both xm and xf. 

Let Umi (x, fi) and Ufi(x, Q) (i = 1, 2) be the two fun
damental solutions of (2.9),_2> respectively, satisfying the 
boundary conditions 

£/„„(0,Q)=[/m2(l,Q) = £/y,(0,Q) = £7,2(1,0)= l (2.11), 

t/„„(l,n)=[/m2(0,fi) = C/yl(l,Q) = t//2(0,fi) = 0 (2.11)2 

Since the coefficients Vm (x, 0) and Vf (x, Q) vary with x, 
determination of analytical expressions for the fundamental 
solutions is not a simple task. However, when fi is not an 
eigenvalue of (2.9),_2, a method recently developed by Chung 
[10] which uses probability theory allows the solutions Umi (x, 
Q) and Ufi (x, fi) to be expressed in closed-form as 

L/Ml(*,0) = j exp(jo
T Vm(Bl,Q)dt)dpx 

t/m2(x,G) = { i exp(jo
T Vm(B„Q)d?jdP

x (2.12), 

UfiOc.Q) = | B o exp(|Q
T Vf(B„Q)dt)dpx 

Ufl.(?c,Q) = \ , exp(Jo
T Vf(B„Q)dt)dpx (2.12)2 

and 
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where [BT: T > 0 ] stands for a Brownian motion process, r 
means the first exit time from the interval (0, 1), andyj* is the 
probability distribution of the process [Bt: t>0] starting at x. 
In fact, using a random walk instead of Brownian motion, a 
second order finite difference scheme can be formulated to 
calculate the fundamental solutions (2.12),.2 very accurately. 
This procedure will be illustrated in a separate paper. 

Complex forms of the fundamental solutions are given in 
terms of Umi (x, 0) and Ufi (x, 0) by 

cU.ml(x,Q)=Uml(x,Q) + iUm2(x,Q) (2.13), 
<U„,2(x,Q)= Uml(x,Q)~iUm2(x,Q) (2.13)2 

% (x,Q) = Ujt <x,Q) + iUflfr.Q) (2.14), 
cU.nfr,Q)=UflQc,Q)-iUnQc,Q) (2.14)2 

They must satisfy the boundary conditions 

m ^ o . o ) = ^,,,2(0,0) = ^ ( 0 , 0 ) =01^(0,0) = 1 (2.15) 

and 
t U m l ( l ,0 )= 'U / 1 ( l ,0 )= i , 

01^(1,0) = 0 1 ^ ( 1 , 0 ) = - / (2.16),.2 

The general solution for the displacement in the matrix layer 
of the N-th unit cell can be written in the form 

M m ( X , Q ) = -
1 

[yl„,tUml(x,n) 

+ Bm^Lm2(x,U)]e-^ (2.17) 

where A m and Bm are nontrivial complex constants yet to be 
determined. Using the stress-strain relations, the stress in the 
matrix layer of the N-th unit cell is given by 

du„, 1 
]e-,slT (2.18) ,=D„ 

dx yjDm{x) 
\Amam\ +Bmam2l 

where 
aml =D„,<Vi;„l(x,n)-- D^ml0c,Q) (2.19), 

aA =Df^}i(x,Q)~jD}^n(x,Q) 

an = Df<Vij2(x,U) - — DfUJ20c,Q) 

(2.22), 

(2.22), 

To complete specification of the problem, continuity of 
displacement and traction must be enforced at the interface 
between matrix and fiber layers, which leads to 

and 

« /( l )f i)=| t /m(0,0) oy(l,Q)=r/am(0,Q) (2.23), 

« ^ 0 , 0 ) = | M „ ( 1 , 0 ) o^0,Q)=ijffm(l,Q) (2.24), 

where £ = hm/hf and i\ = pmocjno/pfocj0. Moreover, u) and af 
represent the displacement and stress in the fiber layer of the 
(TV + l)-th unit cell, respectively. 

According to Floquet's one-dimensional wave theory, (2.7)2 

with its periodic variable coefficients admits quasi-periodic 
recurrence relations for the displacement and stress between 
two adjacent cell units as follows 

uf(0,Q)=uf(0,Q)eikd o)(0,a)=of(0,Q)eikd (2.25),_2 

where k = ky + ik2 is the complex Floquet wave number. 
Combining continuity conditions (2.24),_2 with (2.25),_2, we 
obtain 

uf(Q,U)eikd = ^um(\M) of(0,Q)e*d = v<Tm(l,Q) (2.26),_2 

Substitution of expressions (2.18) and (2.21) for the stresses 
a,„ and ay into (2.23)2 and (2.26)2, respectively, yields a set of 
four homogeneous algebraic equations from which the 
unknown constants Amy Bm, Aj, and Bj can be determined. A 
nontrivial solution for these constants exists if the corres
ponding determinant of the matrix of coefficients vanishes. 
Setting the determinant equal to zero leads to the following 
dispersion equation 

le 

eeikd 

<u;,(i ,0)+i/3m 

(ti;1(0,0)-|8 (B)e'** 

— le 

eeikd 

11^(1,0) -ipm 

(%'m2(0,Q)-Pm)eikd 

- 1 

— i 

-111,(1,0)-ify 

- 1 

i 

-1^(0,0) + fy 

-'U.£(1,0)+//S/ 

= 0 (2.27) 

, =DmWm2(xM)-l- D'm<VLm2(x$) (2.19)2 

The prime represents a derivative of the associated quantity 
with respect to x. Similarly, in the fiber layer of the N-th unit 
cell, the displacement and stress take the forms 

uf(x,Q) = - 7 = = ^ [/1/llfl(*,£!) +B/%f2(x,Q)]e~'ilT (2.20) 
JDJX) 

where three new parameters have been introduced as 

1 1 
Pf = -D!{0) f3m=-D'm{0) (2.28),. 

We see from (2.27) that the dispersion relationship depends on 
derivatives of the complex fundamental solutions tUm,-(JC, 0) 
and llyy (x, 0) evaluated at the end points x=0 and x=l. 
These derivatives are related to the corresponding derivatives 
of the real valued fundamental solutions as follows 

<u;„,(o,fi) = (7/„,(o,fi)+/t//„2(o,fl) 11^(0,0) = t/;,(o,n) -/t/;2(o,o) 
%;,(i,o) = u;nl(i,U)+iu;n2(\,u) 11^(1,Q) = c/;,(i,o) -»i/^(i,Q) 
ai/1(o,n) = c//\(o)n)+;t//i(o,n) oi^o.fl) = c//\(o,n)-/t/^(o,Q) (2-29) 

11/, (1,0) = £//(!,0) + 11/̂ (1,0) 1l£(l,0) = £# (1,0)-/£/£(!,0) 

du '/. 1 

where 

OV/i + Vy2>e" 
- ;SJT 

Before expanding the determinant (2.27), we will examine 
some important features of the fundamental solutions Uml (x, 

(2.21) fi) and I//,(x, 0). Henceforth, we assume that the material 
properties in each layer of any unit cell are symmetric with 
respect to the midplane of that layer. 

110/VOI.53, MARCH 1986 Transactions of the ASME 
Downloaded From: https://appliedmechanics.asmedigitalcollection.asme.org on 06/28/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



Proposition 1. If the coefficient Vf(x, 0) in (2.9)2 is sym
metric with respect to the midplane x = 0.5 in the interval (0, 
1), such that 

Vf(x,Q) = Vf(l-x,Q) (2.30) 

then the derivatives of the fundamental solutions U^x, 0) 
and Ufzix, 0) at both ends x = 0 and x = 1 satisfy 

£/;, (1,0) +£7^(0,0) = 0 £7̂ , (0,0) +£7^(1,0) = 0 (2.31)j_2 

Proof: The Wronskian Wf[Ufl, £7^] of the fundamental 
solutions Uflix, Q) and Up[x, 0) is defined as 

UflQc,Q) Un0c,Q) 

U}i(pc,Q) U^xfi) 

Furthermore, due to the symmetry of V/(x, 0) and based on 
the basic behavior of the Wronskian, we have 

Ufl(x\Q) = 0 (2.42) 

Obviously 

Ufl(l,Q)=0=> UA(0,Q) = 0 (2.43) 

However, this conclusion is in contradiction to the original 
assumption (2.11),, and therefore £7/,(l, 0) must not vanish. 
The same argument can be made concerning £/,'„, (1, 0). 

Proposition 3. If Q is not an eigenvalue of (2.9), the 
derivatives Un(0, 0) and [7/,(l, 0) can be expressed in the 
form 

W, lUfl.Uj fit (2.32) £#(0,0) = 

t//,(l,Q) = 

b2Ui(l,Q)-biU2(l,Q) 

a 2 H,(1 ,0 ) -0 ,^ (1 ,0 ) 

a2b1-aib2 

(2.44), 

(2.44)2 

dWf 

~~dx 
= 0 ( 0 < x < l ) 

Thus 

Wf(0,Q) = fVf(l,Q) 

or written in expanded form 

UA(0,Q) 1/^(0,0) 

£7^,(0,0) 1/^(0,0) 

t/y,(l,0) £7^(1,0) 

t/^u.n) t/^a.Q) 

(2.33) 

(2.34) 

(2.35) 

fl2M,(l,fi)—a1M2(l,0) 

where the functions u,(x, 0) ((' = 1, 2) are solutions of the 
following initial value problems 

cP-u, 
^•+K /(jf,Q)« l = 0 (/= 1,2) 

u,(0,0)=a, u,X0,Q)=b, 

(2.45), 

(2.45)2 

Therefore, according to the boundary conditions (2.11),_2, 
(2.35) is equivalent to (2.31),. Using the symmetry condition 
(2.30), (2.31)2 is easily confirmed. The same argument follows 
for the behavior in the matrix layer. 

Making use of (2.29) and (2.31), the dispersion relationship 
(2.27) reduces to the simple form12 

e2ikd+F(Q)eikd + 1=0 (2.36) 

whereF(fi) is called the "spectrum function" and is given by 

where (a,, b{) and (a2, b2) are two pairs of arbitrary constants 
satisfying the condition 

axb2-a2bx^*Z (2.46) 

Proof: We form the Wronskians Wf[uu £7̂ ,] and Wf [u2, 
Ufl], and then use (2.34), which leads to 

fV/[u1,Ufl] = ul(0,U)U}1(0,Q)~u;(P,Q)Ufi(0,Q) 

= K,( l ,a )C#( l ,0) -« 1 ( l ,0) t fy i ( l ,0) (2.47), 

W/[u2,Ufl] = u2(0,Q)U}1(0,a)-ui(0,Q)U/l(p,Q) 

= «2(1,0)£7;,(1,0)-«2 '(1,0) £7^(1,0) (2.47)2 

F(Q)=-

( c # ( l , 0 ) ) + e 2 ( f / ; , ( l , n ) ) - ( l / / , ( 0 ,Q)+e t / ; 1 (0 ,Q) - j8 / - e j8 m ) ' 

et /A(i ,Q)t/ ; ,( i ,o) 
(2.37) 

The derivatives of the first fundamental solutions Uml(x, 0) 
and Ufl {x, 0) must be known at the ends x = 0 and x = 1 in 
order to determine the function F(0) . For this reason, we pre
sent two basic properties of these derivatives. 

Proposition 2. If 0 is not an eigenvalue of (2.9),_2, then 
the derivatives C/^,(l, 0) and £7^,(1, 0) must not vanish. This 
will insure that F(Q) remains bounded. 

Proof: If the independent and dependent variables are 
transformed according to 

x* = \-x Ufl(x*,n) = Ufl(l-x,Q) (2.38) 

and the symmetry condition (2.30) is used, (2.9)2 takes the 
form 

Invoking the boundary conditions (2.11),„2 and initial condi
tions (2.45)2, (2.47),_2 reduces to 

fljt/^O.O)-II,(1,0)C#(1,0) = 6 , (2.48), 

fl2L^,(0,O)-«2(l,O)[/^(l)O)=fc2 (2.48)2 

If 0 is not an eigenvalue of (2.9), we can select the constants a, 
and a2 such that 

a,M2(l ,0)-a2H, ( 1 , 0 ) ^ 0 (2.49) 

cP-U} 

dxf 
+ Vf(x*,ti)U}=0 (2.39) 

On the other hand, according to (2.11),_2 and (2.38), we find 
that 

£7/1(l,0) =0 => £7j?,(0,O) = 0 (2.40) 

Therefore, if £7/, (1,0) is to vanish, according to (2.38), Uj^* 
(0,0) must vanish also, i.e., 

C/y(0,Q)=0 (2.41) 

The existence and uniqueness theorem states that if 0 is not an 
eigenvalue of the ordinary differential equation (2.39), and 
homogeneous boundary conditions (2.40) and (2.41) are 
posed, then (2.39) has only a trivial solution 

Therefore, the algebraic equations (2.48),_2 have the unique 
solution given by (2.44),_2. From (2.44),_2 we conclude that 
the problem of finding the derivatives £7 ,̂(0, 0) and t//,(l, 0), 
which are needed to specify the dispersion relationship (2.27), 
reduces to solving the initial value problem (2.45),_2 to obtain 
the values of «, at the end x = 1. An identical procedure is 
followed to find the derivatives £7^,(0, 0) and £7^,(1, 0). 

In order to calculate stresses in the entire interval (0, 1), we 
need to find the derivatives of the fundamental solutions 
[/,„,• (x, 0) and Ufi (x, 0). They can be calculated by the follow
ing procedure. 

Proposition 4. If 0 is not an eigenvalue of (2.9)M we can 
use Chung's method to express the derivatives of the first and 
second fundamental solutions Un(x, 0) and U^ix, 0) as 

Uiiix,0) = 
VAx.Q) 

VM,Q) 
( [ / / . (O .OJL^O) 
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+ u}l{i,a)L/l(x,a)) 

UfripcQ) = -
VAx.Q.) 

VAO,Q) 
(UUQMLjoix.Q) 

+ U}1(.0,Q)L/l(x,Q)) 

and likewise for [/,„, (x, fi) and Um2{x, fi) 

rv.. 
f/;„,(x,Q)=. K,„(0,fi) 

([//„, (0,fi)Z,m0(*,fi) 

+ t/;„1(i,fi)L,„1(x,fl)) 

t/;2(jf.o) = 

where 

V„(x,Q) 
([/,;,(!,fi)z,m0(x,fi) 

Km(0,0) 
+ t//„1(o,n)Lml(x,fi)) 

Lm0(x,Q) = \ exp(V H„, {B„Q)dt)dp* 
J [BT — 0] \ J 0 / 

Lmi(x,Q)=\ cxp(\T Hm{B„Q)dt)dp* 
J [BT — 1] \ J 0 / 

LyoOcO) = j fi _o exp(J^ Hf(B„Q)d?jdpx 

L/l(x,Q)=\ _ exP(jr
oHf(B„Q)dt)dpx 

The functions H,„ and /fy are given by 

#m(*,0) = K m ( x , 0 ) + y - ^ r [log F,„(x,fi)] 

1 

(2.50), 

(2.50)2 

(2.51), 

(2.51)2 

(2.52), 

(2.52)2 

(2.53), 

(2.53)2 

Hf(x,Q) = Vf(x,Q) + 

2 dx1 

4^[logKm(, ,fi)] 

1 d2 

2 dx2 [log Vf(x,Q)] 

T dx 
[log FfUQ)] 

(2.54), 

(2.54)2 

C//,(l, Q), 0/i(l , fl), C/^(0, fi), and C/^(1, O) are known after 
considering (2.31) and (2.44). 

Proof: We introduce a new function Yl (x, fi) by 

r,(*,0) = 
K,(0,Q) 

Kr(jt ,0) 
£^(Jf,0) (2.55) 

Substituting (2.55) into (2.9)2 and using the symmetry condi
tion Vf(0, fi) = Vf{\, fi), we obtain a boundary value problem 
for the unknown function Y{x, fi) as follows 

cPYf 

dx2 + H,(x,Q)Yl(x,Q) = 0 (2.56), 

7,(0,0) = L^(0,fi), F,(l,fi) = i/^(l,fi) (2.56)2 

Thus, following the same procedure that lead to (2.12),_2, we 
obtain the first and second fundamental solutions of the above 
boundary value problem as expressed in (2.50),_2 and 
(2.51),_2. 

3 Pass and Stop Bands in Nonhomogeneous 
Composites 

The most important feature regarding wave propagation in 
a periodically layered, elastic, homogeneous medium is the 
presence of stop band characteristics. Next we investigate how 
this characteristic is affected by specific material non-
homogeneities. 

When the basic dispersion relationship (2.36) is expanded, 
the following two equations emerge 

e 2 cos2k2d + F(n)e 2 cosA: , t f+ l=0 (3.1), 

e *2rfsinAr,cNe *2</cos kld+— F(fi) 1 = 0 (3.1)2 

where the complex Floquet wave number k has been decom
posed into a real part kx and an imaginary part k2, called the 
dispersion coefficient and dissipation coefficient, respectively. 
In order to find the specific dependence of kx and k2 on fi, 
(3.1)^2 possesses must be solved simultaneously. The solution 
depends on the magnitude of the function F(fi) as follows 

(1) When 

F(fi) < 1 

(3.1),.2 possesses the unique solution 

coskid= F(fi) 

(3.2) 

(3.3), 

k2d=0 (3.3)2 

Thus, the dissipation coefficient k2 vanishes, and the pass 
band in the dispersion spectrum consists of all nondimensional 
frequencies fi which satisfy (3.2). In other words, harmonic 
waves are propagated without attentuation for values of fi 
which satisfy (3.2). 

(2) When 

I— F(fi)|>l (3.4) 

then (3.1),„2 possess the solution 

kld = nir (« = 0,1,2, 

k7d= -log( 
F(fi) m i 

(3.5), 

(3.5)2 

Here the dissipation coefficient k2 does not vanish. Therefore, 
when the frequency fi results in (3.4) being satisfied, harmonic 
waves are attenuated as they pass through the medium. This is 
the proof of the presence of stop bands, and (3.5)2 predicts 
how the dissipation coefficient depends on the frequency. 

We have assumed that the nondimensional frequency fi is 
not an eigenvalue of (2.9),_2, so that the function F(fi) must 
be finite. We now examine the case when fi becomes an eigen
value of (2.9), or (2.9)2. In the following, we refer to the 
eigenvalue as fi*. 

Proposition 5. U'n (1, fi) and Ufa (1, fi) tend to infinity if 
and only if fi tends to fi*. 

Proof: Let u* = u* (x, fi*) be one of the eigenfunctions 
corresponding to fi*. According to the definition of the eigen
value, we must have 

w*(0,fi*) = w*(l,fi) = 0 (3.6) 

If we further assume that 

w, =«*(x,fi*) «,=0 6,=M*'(0,f i*)^0 (3.7) 

From (2.44),^2, we find that when a, = 0 and w, (1, fi) = 0 

C/̂  (0 ,0)-oo £// ,( l ,n)-oo (3.8) 

On the other hand, for \u[ (0, fi*)l to become unbounded, it 
is seen from (2.44)2 that for any two nontrivial constants u2 

(0, fi) and u2 (1, fi), the expression 

w,(l,fi*)«2(0,fi)-M*(0,fi*)«2'(0,fi)-0 (3.9) 

Obviously, this is the case only if both u* (0, fi*) and u* (1, fi*) 
tend to zero simultaneously. This also means that fi must be 
one of the eigenvalues of (2.9),„2. 

The eigenfrequency fi* could reside in either the pass band 
or the stop band. This depends on the behavior of function 
F(fi) as fi tends to fi*. We take 
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= lim F(Q) 
n-n* 

(3.10) 

Therefore, as stated in (3.2), if IF* I < 2, $2* is in the pass 
band, otherwise, it falls in a stop band. For nonhomogeneous 
composites, there may exist a special eigenfrequency where 
IF* I becomes infinite. We would call such an eigenfrequency 
a pole in the frequency spectrum. If a pole would occur, the 
dissipation coefficient k2(0*) would become infinite. The 
amplitude of any harmonic waves would be immediately at
tenuated at this frequency. In the next section, we show by ex
ample that at this special frequency all eigenfrequencies for 
homogeneous layered composites lie entirely in the pass band. 
Therefore, a pole cannot exist for homogeneous composites. 
This raises a very natural question: For nonhomogeneous 
composites, can a pole actually occur? It has been proved that 
the derivatives of the first and second fundamental solutions 
Uji(x, $2) and Un(x, $2) become infinite at both ends x = 0 and 
x = 1 when $2 is one of the eigenfrequencies. In this case, the 
spectrum function F($2) is approximated by 

F($2)» 
(L^(1,0))2-(I/^(0,Q))2 

U'n(l,Q) 
- +const 

Efl(0,0) 
£//i(l,fl) 

(3.11) 

Thus, if I U}i(0, $2)1 * \Ufl(\, $2)1 as $2 tends to $2*, then 
F*(Q*) tends to infinity. This must indicate the presence of a 
"pole." A more detailed discussion on this interesting pro
blem is actually needed and will be addressed in another 
paper. In what follows, we give some examples to illustrate the 
differences in the behavior of the dispersion relationship be
tween homogeneous and nonhomogeneous composites. 

4 Examples and Discussion of Numerical Results 

Example 1. As a special case of the general theory 
presented above, we will calculate the spectrum function and 
associated dispersion characteristics for an elastic composite 
with homogeneous layers. In this case, the mass density and 
elastic moduli are constant within each matrix and fiber layer. 
We then have 

Km=7T*2$22, Vf=TT2Q2, (4.1), 

The first and second fundamental solutions of (2.7)^2 are 
given by 

sin 7r*$2(l —x) sin ir*Qx 
Uml(x,Q)= _;_ _ \ n Una(pc,Q)= ^ _mn (4.2),_2 sin 7r*$2 sin 7r*Q 

rr , ^ sin7r$2(l-x) n sin irQx 
Ufl(x,il)= , ; Un(x,Q)=- 4.3),_2 

sin ir$2 J sin 7r$2 
Therefore, the derivatives of the first two fundamental solu
tions Umi (x, $2) and U^ (x, $2) are given by 

cos 7r*$2(l-*) 
C//„l(Ar,$2) = -7r*$2 

{//,(JC,G) = -7T$2 

sin ir*$2 

cos TT$2(1 -x) 

(4.4), 

(4.4)2 sin 7rQ 

From (4.2),_2, (4.3),_2, and (4.4),_2, 

t/;„,(0,$2) = -7r*$2cot7r*$2, 

t/,;„(l,fi) = -ir*$2csc7r*$2 (4.5),_2 

6^(0,$2) = -ir$2cot7rQ t/^(l,$2) = -TTQ CSC TT$2 (4.6),_2 

Substituting (4.5),_2 and (4.6),_2 into (2.37), we find the spec
trum function has the form 

G($2) = — = cos TTQ COS -?r*$2 —X sin TTQ sin 7r*$2 

where X = - \P'»°C™ + pf°cf° I , 
2 L Pf„Cf0 Pmt>cmo J 
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(4.7) 
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Thus, based on previous arguments, we obtain the spectral 
behavior as follows 

cos kxd = 
G(Q), for IG($2)I<1 

J - l ) " , for 1G(0) I>1 

where n is a positive integer and 

K), for IG($2)I<1 

(4.8) 

k2d = (4.9) 

_ log ( lG(Q) l -V(G7Q)T r : : l ) . f o r IG(Q)I>1 
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Thus, when the relation lG(fi)l < 1 is satisfied, the cor
responding frequency is in the pass band. Otherwise, the fre
quencies are in the stop band. These results are the same as 
given by Lee and Yang [5] and Delph et al [7-8]. From these' 
solutions, we see that there are two sets of eigenfrequencies 

fi* n, Q*=n (4.10), 

at which both derivatives £//,(*, fi), and U'mX(x, Q) tend to in
finity at the boundaries x = 0 and x = 1. After substituting 
(4.10)1_2 into (4.7), we obtain 

G(Q})=(-l)ncos nir* 

G ( 0 * ) = ( - l ) " c o s — 

(4.11), 

(4.11)2 

For these eigenfrequencies, we always have 

l G ( 0 / ) l - s l , I G ( Q ' ) l s l (4.12),.2 

which means that for homogeneous, layered materials, all 
eigenfrequencies are in the pass band. 

Figure 2 shows the spectrum function G(fi) = - ViF(Q) 
versus Q for this composite. In this example we have assumed 
that h„,/hf = 0.25, Dm(0)/Df(0) = 0.02, and pm(0)/p/(0) = 
0.33. These values are the same as those used in the paper by 
Delph et al. [7]. Figures 3 and 4 show the dispersion relations 
Q versus kxd and fi versus k2d, respectively. Figures 5-8 show 
the behavior of the derivatives of fundamental solutions £/,'„, 
(0, 0), [/,;, (1, Q), U'n (0, U), and U'n (1, 0), respectively. 

Example 2. As an example of a nonhomogeneous elastic 
composite, we will consider the following variation of the 
material constants in each of the layers 

Pm (*) = !• 
Po 

D. 

[1+cos TT(2X-1)] 

and 

Dm(x) = \ [l + cos 7r(2x-l)] 

pf{x) = l + — [l+cos 7r(2x- l)] 

Df(x) = l + - — [l + cos 7r(2Ar- l)] 

(4.13), 

(4.13)2 

(4.14), 

(4.14)2 

where p0 and D0 axe, two positive parameters each less than 
unity. 

The spectrum function - F ( f i ) / 2 is shown in Fig. 2 for this 
nonhomogeneous composite. We have assumed the same 
values for the parameters h,„/hf, Dm(0)/Df(0), and 
p„,(0)/pf(0) as in Example 1. The parameters D0 and p0 were 
both chosen to be 0.5. Figures 3 and 4 show the dispersion 
relations, while Figs. 5-8 show the derivatives of the fun
damental solutions for this example. 

Example 3. As another example of a nonhomogeneous 
elastic composite, we will assume the following quadratic 
variation of the material constants 

Pm(x) = l+Pox(l-x) 

Dm(x) = \+D0x(\-x) 

(4.15), 

(4.15)2 

and 
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pf(x) = l+p0x(l-x) (4.16)! 

Df(x) = \+D0x(\-x) (4.16)2 

where p0 and D0 are two positive parameters each less than 
4.0. For this case, the values of all parameters were taken to be 
the same as in Example 2, except D0 and p0 were both equal to 
2.0. This meant that at x = 0.5, the magnitude of the material 
properties was the same as in Example 2. The spectrum func
tion, dispersion relations and the derivatives of the fundamen
tal solutions are shown in Fig. 2, Figs: 3 and 4, and Figs. 5-8, 
respectively. 

Figure 2 exemplifies the effect of material nonhomogeneity 
on the behavior of the spectrum function. The nonhomogene
ity is seen to affect both the amplitude and phase of the spec
trum function. Figures 3 and 4 show how the material 
nonhomogeneity changes the basic dispersion relationship. 
The vertical line segments in Fig. 3 are the stop bands and in
dicate the range of frequency where attenuation of the wave 
amplitude will occur. The nonhomogeneity is seen to affect 
the width of the stop bands, particularly at low frequencies. A 
sharp decrease of the attenuation coefficient k2d at low fre
quencies can be seen from Fig. 4. The material 
nonhomogeneities which have been considered are seen not to 
affect the high frequency behavior of the spectrum function 
and the corresponding dispersion relationship when compared 
to composites constructed of homogeneous layers. 

Figures 5 and 6 show the derivatives of the fundamental 
solutions U,'„i (0, fi) and U'mX (1, fi). Eigenfrequencies are in
dicated where the derivatives become unbounded. Figures 7 
and 8 show the derivatives Ufa (0, £2) and Ufa (1, 0). Here 
eigenfrequencies also exist. On comparing these results with 
Figs. 2 and 3, it is seen that the eigenfrequencies lie within the 
stop bands for the nonhomogeneous composites and within 
the pass bands for the homogeneous composites. In addition, 
a "pole" was not discovered during the calculation. Further 
studies to either discover or rule out the presence of such a 
feature is necessary. 

Our attention has focused only on the investigation of the 
dispersion relations for nonhomogeneous composites by com
bining Floquet's wave theory with Wronskian properties of 

the fundamental solutions of the associated differential equa
tions. We will defer the calculation of the vibrational mode 
shapes and discussion of further details of Chung's probabili
ty theory to a later paper. 
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