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1. Introduction

The fact that solutions of dynamic equations on time scales depend continuously on time scales is a problem that has
been investigated by several researchers. See [1,5,10], for instance. In these papers, the authors prove that the sequence
of solutions of the problem
xDðtÞ ¼ f ðx; tÞ; t 2 Tn;

xðt0Þ ¼ x0; t0 2 Tn

�
ð1:1Þ
converges uniformly to the solution of the problem
xDðtÞ ¼ f ðx; tÞ; t 2 T;

xðt0Þ ¼ x0; t0 2 T;

�
ð1:2Þ
whenever dðTn;TÞ ! 0 as n!1, where dðTn;TÞ denotes the Hausdorff metric or the induced metric from the Fell topology.
To obtain such results, the following conditions on the function f are usually assumed:

� There exists a constant M > 0 such that kf ðx; tÞk 6 M for every x in a certain subset of the phase space and every
t 2 ½t0; t0 þ g�T.
� There exists a constant L > 0 such that kf ðx; tÞ � f ðy; tÞk 6 Lkx� yk for every x and y in a certain subset of the phase space

and every t 2 ½t0; t0 þ g�T.

Here, our goal is to investigate the behavior of solutions of the same initial value problems over different time scales for
impulsive functional dynamic equations; that is, we prove that, under certain conditions, the sequence of solutions of the
system
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xðtÞ ¼ xðt0Þ þ
R t

t0
f ðxs; sÞDsþ

X
k2f1;...;mg;

tk<t

IkðxðtkÞÞ; t 2 ½t0; t0 þ g�Tn
;

xðtÞ ¼ /ðtÞ; t 2 ½t0 � r; t0�Tn

8><
>: ð1:3Þ
converges uniformly to the solution of the problem
xðtÞ ¼ xðt0Þ þ
R t

t0
f ðxs; sÞDsþ

X
k2f1;...;mg;

tk<t

IkðxðtkÞÞ; t 2 ½t0; t0 þ g�T;

xðtÞ ¼ /ðtÞ; t 2 ½t0 � r; t0�T;

8><
>: ð1:4Þ
whenever dðTn;TÞ ! 0 as n!1. Here, dðTn;TÞ denotes the Hausdorff metric. Our results apply to the Fell topology as well.
We also consider the following conditions on the function f:

� There exists a constant M > 0 such that
f ðxt ; tÞk k 6 M
for all t 2 ½t0; t0 þ g�T and all x in a certain subset of the phase space.
� There exists a constant L > 0 such that
Z u2

u1

f ðxt ; tÞ � f ðyt; tÞð ÞdgðtÞ
����

���� 6 L
Z u2

u1

kxt � ytk1 dgðtÞ
for all u1;u2 2 ½t0; t0 þ g�T and all x; y in a certain subset of the phase space.

Here, we consider the integral in the sense of Henstock–Kurzweil which is known to integrate highly oscillating functions
(see [9], for instance). Thus, the second condition on the indefinite integral of f allows the function f to behave ‘‘badly’’, e.g., f
may have many discontinuities or be of unbounded variation, and yet good results can be obtained, as long as its indefinite
behaves well enough. Alternatively, one could consider the Riemann or Lebesgue integral.

In order to obtain the continuous dependence result for impulsive functional dynamic equations on time scales involving
variable time scales with these conditions, we use a known correspondence between the solutions of impulsive functional
dynamic equations on time scales and the solutions of impulsive measure functional differential equations. We also use a
correspondence between these solutions and the solutions of measure functional differential equations. For details about
these correspondences, see [7].

Further, in order to ensure the convergence of solutions, we suppose some convergence over a operator sequence defined
in Section 3. This hypothesis cannot be suppressed as shown by Examples 5.1 and 5.2 in Section 5.

2. Impulsive measure functional differential equations

Let r;g > 0 be given numbers and t0 2 R. The theory of functional differential equations (see e.g., [8]) deals with problems as
_x ¼ f ðxt ; tÞ; t 2 ½t0; t0 þ g�; ð2:1Þ
where f : X� ½t0; t0 þ g� ! Rn, X � Cð½�r;0�;RnÞ and xt is given by xtðhÞ ¼ xðt þ hÞ; h 2 ½�r;0�, for every t 2 ½t0; t0 þ g�. The
integral form of (2.1) is given by
xðtÞ ¼ xðt0Þ þ
Z t

t0

f ðxs; sÞds; t 2 ½t0; t0 þ g�;
where the integral is in the sense of Henstock–Kurzweil.
The theory of measure functional differential equations deals with problems as
Dx ¼ f ðxt; tÞDg;
where Dx and Dg denote the distributional derivatives in the sense of L. Schwartz of the functions x and g, respectively. The
integral form is given by
xðtÞ ¼ xðt0Þ þ
Z t

t0

f ðxs; sÞdgðsÞ; t 2 ½t0; t0 þ g�; ð2:2Þ
where we consider the integral on the right-hand side to be Henstock–Kurzweil–Stieltjes (we write H–K–S, for short) inte-
grable with respect to a nondecreasing function g. See [6,7].

We assume that g is a left-continuous and nondecreasing function and consider the possibility of adding impulses at pre-
assigned times t1; . . . ; tm, where t0 6 t1 < � � � < tm < t0 þ g. For every k 2 f1; . . . ;mg, the impulse at tk is described by the
operator Ik : Rn ! Rn. In other words, the solution x should satisfy DþxðtkÞ ¼ IkðxðtkÞÞ, where DþxðtkÞ ¼ xðtkþÞ � xðtkÞ and
xðtkþÞ ¼ limt!tkþxðtÞ. This leads us to the problem
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xðvÞ � xðuÞ ¼
R v

u f ðxs; sÞdgðsÞ; whenever u;v 2 Jk for some k 2 f0; . . . ;mg;
DþxðtkÞ ¼ IkðxðtkÞÞ; k 2 f1; . . . ;mg;
xt0 ¼ /;

8><
>: ð2:3Þ
where J0 ¼ ½t0; t1�; Jk ¼ ðtk; tkþ1� for k 2 f1; . . . ;m� 1g, and Jm ¼ ðtm; t0 þ g�.
The value of the integral

R v
u f ðxs; sÞdgðsÞ, where u;v 2 Jk, does not change if we replace g by a function ~g such that g � ~g is a

constant function on Jk. This follows easily from the definition of the H-K-S integral (see [12], for instance). Thus, without loss
of generality, we can assume that g is such that DþgðtkÞ ¼ 0 for every k 2 f1; . . . ;mg. Since g is a left-continuous function, it
follows that g is continuous at t1; . . . ; tm. Under this assumption, our problem (2.3) can be rewritten as
xðtÞ ¼ xðt0Þ þ
R t

t0
f ðxs; sÞdgðsÞ þ

X
k2f1;...;mg;

tk<t

IkðxðtkÞÞ; t 2 ½t0; t0 þ g�;

xt0 ¼ /:

8><
>: ð2:4Þ
Alternatively, the sum on the right-hand side of (2.4) can be written in the form
X
k 2 f1; . . . ;mg;

tk < t

IkðxðtkÞÞ ¼
Xm

k¼1

IkðxðtkÞÞHtk
ðtÞ;
where Hv denotes the Heaviside function of ðv ;1Þ given by
HvðtÞ ¼
0 for t 6 v ;
1 for t > v :

�
ð2:5Þ
Thus, (2.4) becomes
xðtÞ ¼ xðt0Þ þ
R t

t0
f ðxs; sÞdgðsÞ þ

Xm

k¼1

IkðxðtkÞÞHtk
ðtÞ; t 2 ½t0; t0 þ g�;

xt0 ¼ /:

8><
>: ð2:6Þ
Now, we will define regulated functions, since they are a good framework for dealing with equations having discontin-
uous right-hand sides. A function f : ½a; b� ! X, where X is a Banach space, is called regulated, if the lateral limits
lim
s!t�

f ðsÞ ¼ f ðt�Þ 2 X; t 2 ða; b�; and lim
s!tþ

f ðsÞ ¼ f ðtþÞ 2 X; t 2 ½a; bÞ
exist. The space of all regulated functions f : ½a; b� ! X will be denoted by Gð½a; b�;XÞ and it is a Banach space under the usual
supremum norm kfk1 ¼ supa6t6bkf ðtÞk. The subspace of all continuous functions f : ½a; b� ! X will be denoted by Cð½a; b�;XÞ.

The following theorem represents an analogue of Gronwall’s inequality for the H-K-S integral. A proof of it can be found in
[[15], Corollary 1.43]. This result and the next one will be essentials to prove our auxiliary results.

Theorem 2.1. Let h: ½a; b� ! ½0;1) be a nondecreasing left-continuous function, k > 0; l P 0. Assume that w: ½a; b� ! ½0;1) is
bounded and satisfies
wðnÞ 6 kþ l
Z n

a
wðsÞdhðsÞ; n 2 ½a; b�:
Then wðnÞ 6 kelðhðnÞ�hðaÞÞ for every n 2 ½a; b�.
For a proof of the next result, see [15, Corollary 1.34]. The inequality below follows directly from the definition of the H-K-

S integral.

Theorem 2.2. If f : ½a; b� ! Rn is a regulated function and g : ½a; b� ! R is a nondecreasing function, then the integral
R b

a f dg exists
and
 Z b

a
f ðsÞdgðsÞ

�����
����� 6 kfk1ðgðbÞ � gðaÞÞ:
3. Dynamic equations on time scales

In this section, we present some basic concepts about the theory of dynamic equations on time scales. For more details
about it, the reader may consult [2,3,14].

A time scale is a closed and nonempty subset of R. Throughout this paper, we will denote it by T. For every t 2 T, we
define the forward and backward jump operators r;q : T! T, respectively, by
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rðtÞ ¼ inffs 2 T : s > tg and qðtÞ ¼ supfs 2 T : s < tg:
In this definition, we use the conventions inf ; ¼ sup T and sup ; ¼ inf T. If rðtÞ > t, then we say that t is right-scattered.
Otherwise, t is called right-dense. Analogously, if qðtÞ < t, then t is called left-scattered whereas if qðtÞ ¼ t, then t is called
left-dense. We also define the graininess function l : T! Rþ by
lðtÞ ¼ rðtÞ � t:
Given a pair of numbers a; b 2 T, the symbol ½a; b�T will be used to denote a closed interval in T, that is,
½a; b�T ¼ ft 2 T : a 6 t 6 bg. On the other hand, ½a; b� is the usual closed interval on the real line, that is,
½a; b� ¼ ft 2 R : a 6 t 6 bg. We define the set Tj which is derived from T as follows: If T has a left-scattered maximum m,
then Tj ¼ T� fmg. Otherwise, Tj ¼ T.

Definition 3.1. For f : T! R and t 2 Tj, we define the delta-derivative of f to be the number (if it exists) with the following
property: given e > 0, there exists a neighborhood U of t such that
jf ðrðtÞÞ � f ðtÞ � f DðtÞ½rðtÞ � s�j < ejrðtÞ � sj for all s 2 U:

We say d ¼ ðdL; dRÞ is a D-gauge for ½a; b�T provided dLðtÞ > 0 on a; bð �T; dRðtÞ > 0 on ð½a; bÞT; dLðaÞP 0; dRðbÞP 0, and

dRðtÞP lðtÞ for all ðt 2 ½a; bÞT. A partition P for ½a; b�T is a division of ½a; b�T denoted by
P ¼ fa ¼ t0 6 n1 6 t1 6 . . . 6 tn�1 6 nn 6 tn ¼ bg;
with ti > ti�1 for 1 6 i 6 n and ti; ni 2 T. We call the points ni tag points and the points ti end points. If d is a D-gauge for ½a; b�T,
then we say a partition P is d-fine if
ni � dLðniÞ 6 ti�1 < ti 6 ni þ dRðniÞ for 1 6 i 6 n:
In what follows, we give a definition of Henstock–Kurzweil delta integrable functions.

Definition 3.2. A function f : ½a; b�T ! R is called Henstock–Kurzweil delta integrable on ½a; b�T with value I ¼ HK
R b

a f ðtÞDt
provided given any e > 0, there exists a D-gauge d for ½a; b�T such that
I �
Xn

i¼1

f ðniÞðti � ti�1Þ
�����

����� < e
for all d-fine partitions P of ½a; b�T.
Now, we present some definitions which will be essential to our purposes. They were introduced in [16] and here, we use

the same notation as in [11]: Let
~rðtÞ ¼ inffs 2 T : s P tg for t 2 R:
It is clear that ~rðtÞ can be different from rðtÞ depending on T. Since T is a closed set, we have ~rðtÞ 2 T. Further, let
T� ¼
ð�1; sup T� if sup T <1;
ð�1;1Þ otherwise:

�

Given a function f : T! Rn, we consider its extension f ~r : T� ! Rn given by
f ~rðtÞ ¼ f ð~rðtÞÞ; t 2 T�:
4. Impulsive measure functional differential equations and impulsive functional dynamic equations on time scales

It is a known fact that there exists a correspondence between impulsive measure functional differential equations and
impulsive functional dynamic equation on time scales (see [7]).

An impulsive functional dynamic equation on time scales can be described by the system
xDðtÞ ¼ f ðx~r
t ; tÞ; t 2 ½t0; t0 þ g�T n ft1; . . . ; tmg;

DþxðtkÞ ¼ IkðxðtkÞÞ; k 2 f1; . . . ;mg;
xðtÞ ¼ /ðtÞ; t 2 ½t0 � r; t0�T;

8><
>: ð4:1Þ
where t1; . . . ; tm 2 T are points of impulses, t0 6 t1 < t2 < � � � < tm < t0 þ g, and I1; . . . ; Im : Rn ! Rn. The solution is assumed
to be left-continuous. The symbol x~r

t should be understood as ðx~rÞt; as explained in [6], that is, ðx~rÞt ¼ x~rðt þ hÞ ¼ xð~rðt þ hÞÞ,
for h 2 ½�r;0�. Also, the advantage of using x~r

t rather than xt stems from the fact that x~r
t is always defined on the whole inter-

val ½�r;0�, while xt is defined only on a subset of ½�r;0�. Alternatively, the above problem can be written more compactly in
the form
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xðtÞ ¼ xðt0Þ þ
R t

t0
f ðx~r

s ; sÞDsþ
X

k2f1;...;mg;
tk<t

IkðxðtkÞÞ; t 2 ½t0; t0 þ g�T;

xðtÞ ¼ /ðtÞ; t 2 ½t0 � r; t0�T:

8><
>: ð4:2Þ
The next result describes the correspondence between measure functional differential equations with impulses and
impulsive functional dynamic equations on time scales. It can be found in [7].

Theorem 4.1. Let ½t0 � r; t0 þ g�T be a time scale interval, t0 2 T;B � Rn, f : Gð½�r;0�;BÞ � ½t0; t0 þ g�T ! Rn;/ 2 Gð½t0 � r;
t0�T;BÞ. If x : ½t0 � r; t0 þ g�T ! B is a solution of the impulsive functional dynamic equation
xðtÞ ¼ xðt0Þ þ
R t

t0
f ðx~r

s ; sÞDsþ
X

k2f1;...;mg;
tk<t

IkðxðtkÞÞ; t 2 ½t0; t0 þ g�T;

xðtÞ ¼ /ðtÞ; t 2 ½t0 � r; t0�T;

8><
>: ð4:3Þ
then x~r : ½t0 � r; t0 þ r� ! B is a solution of the impulsive measure functional differential equation
yðtÞ ¼ yðt0Þ þ
R t

t0
f ðys; ~rðsÞÞd~rðsÞ þ

X
k2f1;...;mg;

tk<t

IkðyðtkÞÞ; t 2 ½t0; t0 þ g�;

yt0
¼ /~r:

8>><
>>: ð4:4Þ
Conversely, if y : ½t0 � r; t0 þ g� ! B satisfies (4.4), then it must have the form y ¼ x~r, where x : ½t0 � r; t0 þ g�T ! B is a solution of
(4.3).

5. Continuous dependence for impulsive functional dynamic equations on time scales

In this section, we present a continuous dependence result involving variable time scales for impulsive functional dy-
namic equations on time scales.

Our idea to prove a continuous dependence result for impulsive functional dynamic equations on time scales is to use
the correspondence between the solutions of these equations and the solutions of impulsive measure functional differ-
ential equations (see Theorem 4.1) and and the correspondence between the solutions of impulsive measure functional
differential equations and the solutions of measure functional differential equations, which is given below in
Theorem 5.2.

Let Tn be time scales for each n 2 N with corresponding forward jumps rn and ~rn. Assume that the distance dðTn;TÞ ! 0
as n!1. Here, we are considering the Hausdorff topology and Hausdorff metric in which the distance between two sets is
defined by
dðA;BÞ ¼ maxfsupfinffja� bj : b 2 Bg : a 2 Ag; supfinffja� bj : a 2 Ag : b 2 Bgg:
Now, our goal is to prove, under certain conditions, a result that guarantees that the sequence of solutions of the problem
x~rn
n ðtÞ ¼ x~rn

n ðt0Þ þ
R t

t0
f ððx~rn

n Þs; sÞd~rnðsÞ; t 2 T�n;

ðx~rn
n Þt0

¼ /~rn

8<
: ð5:1Þ
converges uniformly to the solution of the problem
x~rðtÞ ¼ x~rðt0Þ þ
R t

t0
f ðx~r

s ; sÞd~rðsÞ; t 2 T�;

x~r
t0
¼ /~r:

(
ð5:2Þ
Thus, after proving this result, using the correspondence between impulsive measure functional differential equations and
measure functional differential equations, we obtain an analogous result for measure functional differential equations with
impulses and therefore, using the other correspondence (Theorem 4.1), our main theorem concerning continuous depen-
dence for impulsive functional dynamic equations on time scales follows as well.

Now, assume O � Gð½t0 � r; t0 þ g�;RnÞ is open, P ¼ fyt ; y 2 O; t 2 ½t0; t0 þ g�g; f : P � ½t0; t0 þ g� ! Rn, and g : ½t0; t0 þ g� ! R

is nondecreasing and left-continuous function. We assume the following three conditions on the function f : P � ½t0; t0 þ g� ! Rn:

(A) The H-K-S integral
R t0þg

t0
f ðyt ; tÞdgðtÞ exists for every y 2 O.

(B) There exists a constant M > 0 such that
f ðyt ; tÞk k 6 M;
whenever t0 6 t 6 t0 þ g and y 2 O.
(C) There exists a constant L > 0 such that
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Z u2

u1

f ðyt; tÞ � f ðzt; tÞð ÞdgðtÞ
����

���� 6 L
Z u2

u1

kyt � ztk1 dgðtÞ
whenever t0 6 u1 6 u2 6 t0 þ g and y; z 2 O.
Theorem 5.1. Suppose f satisfies conditions (A), (B) and (C), and x~rn
n is a solution of the system
x~rn
n ðtÞ ¼ x~rn

n ðt0Þ þ
R t

t0
f ððx~rn

n Þs; sÞd~rnðsÞ; t 2 T�n;

ðx~rn
n Þt0

¼ /~rn

8<
: ð5:3Þ
and x~r is a solution of the measure functional differential equation given by
x~rðtÞ ¼ x~rðt0Þ þ
R t

t0
f ðx~r

s ; sÞd~rðsÞ; t 2 T�;

x~r
t0
¼ /~r:

(
ð5:4Þ
Moreover, suppose dðTn;TÞ ! 0 as n!1 and the sequence of functions f~rng1n¼1 converges uniformly to ~r as n!1. Also, sup-
pose the sequence of initial conditions f/~rng1n¼1 converges uniformly to /~r as n!1. Then, for every e > 0, there exists N > 0 suf-
ficiently large such that, for n > N, we have
kx~rn
n ðtÞ � x~rðtÞk < e for t 2 T�n \ T�: ð5:5Þ
Proof. Given e > 0 and since the sequence of functions f~rng converges uniformly to ~r, there exists N1 > 0 sufficiently large
such that for every n > N1, we obtain
k~rnðtÞ � ~rðtÞk < e for every t 2 T�n \ T�: ð5:6Þ
Moreover, since the sequence of functions /~rn converges uniformly to /~r, there exists N2 > 0 sufficiently large such that for
every n > N2, we have
k/~rn � /~rk < e for every t 2 T�n \ T�: ð5:7Þ
Also, for t 2 T�n \ T� and n > maxfN1;N2g, we have
x~rn
n ðtÞ � x~rðtÞ

�� �� ¼ x~rn
n ðt0Þ � x~rðt0Þ þ

Z t

t0

f ððx~rn
n Þs; sÞd~rnðsÞ �

Z t

t0

f ððx~rÞs; sÞd~rðsÞ
����

����
6 kx~rn

n ðt0Þ � x~rðt0Þk þ
Z t

t0

f ððx~rn
n Þs; sÞd~rnðsÞ �

Z t

t0

f ððx~rÞs; sÞd~rðsÞ
����

����
6 k/~rn � /~rk þ

Z t

t0

f ððx~rn
n Þs; sÞd~rnðsÞ �

Z t

t0

f ððx~rÞs; sÞd~rðsÞ
����

����
6 k/~rn � /~rk þ

Z t

t0

f ððx~rn
n Þs; sÞd~rnðsÞ �

Z t

t0

f ððx~rn
n Þs; sÞd~rðsÞ

����
����

þ
Z t

t0

f ððx~rn
n Þs; sÞd~rðsÞ �

Z t

t0

f ððx~rÞs; sÞd~rðsÞ
����

����
6 eþ

Z t

t0

Md½~rnðsÞ � ~rðsÞ� þ
Z t

t0

Lkðx~rn
n Þs � ðx

~rÞskd~rðsÞ;
where we used (B) and (C) for the last inequality. Thus, by Theorem 2.2, we obtain
kx~rn
n ðtÞ � x~rðtÞk 6 eþ 2eM þ

Z t

t0

Lkðx~rn
n Þs � ðx

~rÞskd~rðsÞ:
Using ðx~rn
n Þt0

¼ /~rn and ðx~rÞt0
¼ /~r and the uniform convergence /~rn ! /~r, we have, for n > N2,
kðx~rn
n Þs � x~r

s k1 ¼ sup
h2½�r;0�

kx~rn
n ðsþ hÞ � x~rðsþ hÞk 6 eþ sup

g2½0;s�
kx~rn

n ðrÞ � x~rðrÞk
and, therefore,
kx~rn
n ðtÞ � x~rðtÞk 6 eþ 2eM þ

Z t

t0

L eþ sup
g2½0;s�
kx~rn

n ðgÞ � x~rðgÞk
 !

d~rðsÞ:
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Then,
kx~rn
n ðtÞ � x~rðtÞk 6 eþ 2eM þ Leð~rðtÞ � ~rðt0ÞÞ þ

Z t

t0

L sup
g2½0;s�
kx~rn

n ðgÞ � x~rðgÞkd~rðsÞ:
By the Gronwall inequality (Theorem 2.1), we get
kx~rn
n ðtÞ � x~rðtÞk 6 eð1þ 2M þ ð~rðtÞ � ~rðt0ÞÞÞeLðgðtÞ�gðt0ÞÞ
and, since e > 0 is arbitrary, we have the desired result. h

Note that the hypothesis in Theorem 5.1 which guarantees that the sequence of functions f~rng1n¼1 converges uniformly to
~r as n!1 is necessary, since one cannot expect this to happen only using the fact that dðTn;TÞ ! 0 as n!1. Below, we
present an example that illustrates this.

Example 5.1. Let T ¼ ½0; a� [ ½aþ 1; b� and Tn ¼ ½0; aþ 1=n� [ ½aþ 1; b�, for every n 2 N. Then dðT;TnÞ ¼ 1=n! 0 as n!1.
However ~rnðaþ 1=nÞ ¼ aþ 1=n, for every n 2 N, while ~rðaþ 1=nÞ ¼ aþ 1. In other words, for every n P 2, there exists t such
that ~rðtÞ � ~rnðtÞP 1=2, which means that the sequence f~rng1n¼1 does not converge uniformly to ~r.

Even if we consider the Fell topology instead of the Hausdorff topology, the hypothesis of Theorem 5.1 guaranteeing the
uniform convergence of the sequence of functions f~rng1n¼1 is necessary. The next example illustrates this. Here, the notation
CLðMÞ represents the set of all closed, nonempty subsets of M.

Example 5.2. Assume R with the usual metric and CLðRÞ is endowed with the Fell topology. Then it is known that
Tn ¼ fzþ 1=n : z 2 Zg ! Z:
For details, see [5, Lemma 4]. Also,
~rn zþ 1=nð Þ ¼ zþ 1=n;
whereas ~r zþ 1=nð Þ ¼ zþ 1, which implies that ~rn does not converge uniformly to ~r.
Now, the next result describes a correspondence between measure functional differential equations and impulsive mea-

sure functional differential equations. A proof of it can be found in [7]. It will be necessary to prove an analogous result to
Theorem 5.1 for impulsive measure functional differential equations.

Theorem 5.2. Let m 2 N; t0 6 t1 < � � � < tm < t0 þ g;B � Rn; I1; . . . ; Im : B! Rn; P ¼ Gð½�r;0�;BÞ; f : P � ½t0; t0 þ g� ! Rn.
Assume that g : ½t0; t0 þ g� ! R is a regulated left-continuous function which is continuous at the points t1; . . . ; tm. For every
y 2 P, define
�f ðy; tÞ ¼
f ðy; tÞ; t 2 ½t0; t0 þ g� n ft1; . . . ; tmg;
Ikðyð0ÞÞ; t ¼ tk for some k 2 f1; . . . ;mg:

�

Moreover, let c1; . . . ; cm 2 R be constants such that the function �g : ½t0; t0 þ g� ! R given by
�gðtÞ ¼
gðtÞ; t 2 ½t0; t1�;
gðtÞ þ ck; t 2 ðtk; tkþ1� for some k 2 f1; . . . ;m� 1g;
gðtÞ þ cm; t 2 ðtm; t0 þ g�

8><
>:
satisfies Dþ�gðtkÞ ¼ 1 for every k 2 f1; . . . ;mg. Then x 2 Gð½t0 � r; t0 þ g�;BÞ is a solution of
xðtÞ ¼ xðt0Þ þ
R t

t0
f ðxs; sÞdgðsÞ þ

X
k2f1;...;mg;

tk<t

IkðxðtkÞÞ; t 2 ½t0; t0 þ g�;

xt0 ¼ /;

8><
>: ð5:8Þ
if and only if x satisfies
xðtÞ ¼ xðt0Þ þ
R t

t0

�f ðxs; sÞd�gðsÞ; t 2 ½t0; t0 þ g�;
xt0 ¼ /:

(
ð5:9Þ
We also consider the following conditions on the impulse operators Ik : Rn ! Rn:

(A�) There exists a constant K1 > 0 such that
kIkðxÞk 6 K1
for every k 2 f1; . . . ;mg and x 2 B.
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(B�) There exists a constant K2 > 0 such that

kIkðxÞ � IkðyÞk 6 K2kx� yk

for every k 2 f1; . . . ;mg and x; y 2 B.
The next lemma can be found in [7] and it describes how the Carathéodory and Lipschitz-type conditions concerning the
function f and the Lipschitz and boundedness conditions for the impulse operators can be transferred to �f , when it is defined
the same way as described in Theorem 5.2.

Lemma 5.1. Let m 2 N; t0 6 t1 < � � � < tm < t0 þ g, B � Rn; I1; . . . ; Im : B! Rn; P ¼ Gð½�r;0�;BÞ;O ¼ Gð½t0 � r; t0 þ g�;BÞ.
Assume that g : ½t0; t0 þ g� ! R is a left-continuous nondecreasing function which is continuous at t1; . . . ; tm. Let
f : P � ½t0; t0 þ g� ! Rn be a function such that the integral

R t0þg
t0

f ðyt; tÞdgðtÞ exists for every y 2 O. For every y 2 P, define
�f ðy; tÞ ¼
f ðy; tÞ; t 2 ½t0; t0 þ g� n ft1; . . . ; tmg;
Ikðyð0ÞÞ; t ¼ tk for some k 2 f1; . . . ;mg:

�

Moreover, let c1; . . . ; cm 2 R be constants such that the function �g : ½t0; t0 þ g� ! R given by
�gðtÞ ¼
gðtÞ; t 2 ½t0; t1�;
gðtÞ þ ck; t 2 ðtk; tkþ1� for some k 2 f1; . . . ;m� 1g;
gðtÞ þ cm; t 2 ðtm; t0 þ g�

8><
>:
satisfies Dþ�gðtkÞ ¼ 1 for every k 2 f1; . . . ;mg.

1. If conditions (B) and (A�) hold, then
�f ðyt; tÞ
�� �� 6 M þ K1;
whenever t0 6 t 6 t0 þ g and y 2 O.
2. If conditions (C) and (B�) hold, then
Z u2

u1

�f ðyt; tÞ � �f ðzt; tÞ
� �

d�gðtÞ
����

���� 6 ðLþ K2Þ
Z u2

u1

kyt � ztk1 d�gðtÞ;
whenever t0 6 u1 6 u2 6 t0 þ g and y; z 2 O.
The next theorem shows that, under certain conditions, it is possible to obtain a correspondence between the solutions of
impulsive measure functional differential equations, depending on the conditions about the functions ~rn and ~r and the cor-
responding time scales, that is, Tn and T.

Theorem 5.3. Suppose f satisfies the conditions (A), (B) and (C), and for each k ¼ 1;2; . . . ;m, the impulse operators Ik : Rn ! Rn

satisfy conditions (A�) and (B�). Moreover, suppose x~rn
n is a solution of the system
x~rn
n ðtÞ ¼ x~rn

n ðt0Þ þ
R t

t0
f ððx~rn

n Þs; sÞd~rnðsÞ þ
X

k2f1;...;mg;
tk<t

Ikðx~rn
n ðtkÞÞ; t 2 T�n;

ðx~rn
n Þt0

¼ /~rn

8>><
>>: ð5:10Þ
and x~r is a solution of the measure functional differential equation given by
x~rðtÞ ¼ x~rðt0Þ þ
R t

t0
f ðx~r

s ; sÞd~rðsÞ þ
X

k2f1;...;mg;
tk<t

Ikðx~rðtkÞÞ; t 2 T�;

x~r
t0
¼ /~r:

8>><
>>: ð5:11Þ
Moreover, suppose dðTn;TÞ ! 0 as n!1 and the sequence of functions f~rng1n¼1 converges uniformly to ~r as n!1. Also, sup-
pose the sequence of initial conditions f/~rng1n¼1 converges uniformly to /~r as n!1. Then, for every e > 0, there exists N > 0 suf-
ficiently large such that, for n > N, we have
kx~rn
n ðtÞ � x~rðtÞk < e for t 2 T�n \ T�:
Proof. Define the functions �f ; �~r and �~rn as described in the statement of Theorem 5.2. Since the sequence of functions f~rng1n¼1

converges uniformly to ~r, it follows immediately from the definition that the sequence of functions f�~rng
1
n¼1 converges uni-

formly to �~r. Also, by Lemma 5.1, we obtain that all hypotheses of Theorem 5.1 are satisfied and then, using the correspon-
dence (Theorem 4.1), the desired result follows. h

Now, consider the next result (see [7]) that will be essential to prove our final theorem on continuous dependence.
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Lemma 5.2. Let ½t0 � r; t0 þ g�T be a time scale interval, t0 2 T, O ¼ Gð½t0 � r; t0 þ g�;BÞ, P ¼ Gð½�r;0�;BÞ;
f : P � ½t0; t0 þ g�T ! Rn be an arbitrary function. Define f ~rðy; tÞ ¼ f ðy; ~rðtÞÞ for every y 2 P and t 2 ½t0; t0 þ g�.

1. If the integral
R t0þg

t0
f ðyt ; tÞDt exists for every y 2 O, then

R t0þg
t0

f ~rðyt ; tÞd~rðtÞ exists for every y 2 O.
2. Assume there exists a constant M > 0 such that
f ðyt ; tÞk k 6 M
for every y 2 O and t 2 ½t0; t0 þ g�T. Then
f ~rðyt ; tÞ
�� �� 6 M;
whenever t0 6 t 6 t0 þ g and y 2 O.
3. Assume there exists a constant L > 0 such that
Z u2

u1

f ðyt; tÞ � f ðzt; tÞð ÞDt
����

���� 6 L
Z u2

u1

kyt � ztk1Dt
for every y; z 2 O and u1;u2 2 ½t0; t0 þ g�T;u1 6 u2. Then
Z u2

u1

f ~rðyt ; tÞ � f ~rðzt ; tÞ
� �

dgðtÞ
����

���� 6 L
Z u2

u1

kyt � ztk1 dgðtÞ;
whenever t0 6 u1 6 u2 6 t0 þ g and y; z 2 O.

Now, consider the following conditions concerning the function f : Gð½�r;0�; BÞ � ½t0; t0 þ g�Tn
! Rn:

(A1) The integral
R t0þg

t0
f ðyt; tÞDt exists for every y 2 O.

(B1) There exists a constant M > 0 such that
f ðyt ; tÞk k 6 M
for every y 2 O and t 2 ½t0; t0 þ g�T.
(C1) There exists a constant L > 0 such that
Z u2

u1

f ðyt; tÞ � f ðzt; tÞð ÞDt
����

���� 6 L
Z u2

u1

kyt � ztk1Dt
for every y; z 2 O and u1;u2 2 ½t0; t0 þ g�T;u1 6 u2.

The next theorem is our main result. It concerns continuous dependence for impulsive functional dynamic equations on
time scales involving variable time scales.

Theorem 5.4. Suppose xn : Tn ! Rn is a solution of the impulsive functional dynamic equation on time scales
xnðtÞ ¼ xnðt0Þ þ
R t

t0
fnððx~rn

n Þs; sÞDsþ
X

k2f1;...;mg
; tk<t

IkðxnðtkÞÞ; t 2 ½t0; t0 þ g�Tn
;

xnðtÞ ¼ /ðtÞ; t 2 ½t0 � r; t0�Tn
;

8><
>: ð5:12Þ
where the functions fn : Gð½�r; 0�;BÞ � ½t0; t0 þ g�Tn
! Rn satisfy the conditions (A1), (B1) and (C1). Also, suppose x : T! Rn is a

solution of the impulsive functional dynamic equation on time scales
xðtÞ ¼ xðt0Þ þ
R t

t0
f ðx~r

s ; sÞDsþ
X

ck2f1;...;mg;
tk<t

IkðxðtkÞÞ; t 2 ½t0; t0 þ g�T;

xðtÞ ¼ /ðtÞ; t 2 ½t0 � r; t0�T;

8><
>: ð5:13Þ
where f : Gð½�r;0�;BÞ � ½t0; t0 þ g�T ! Rn satisfies the conditions (A1), (B1) and (C1) and for each k ¼ 1;2; . . . ;m, the impulse oper-
ators Ik : Rn ! Rn satisfy conditions (A�) and (B�). Suppose dðTn;TÞ ! 0as n!1 and the sequence of functions f~rng1n¼1 con-
verges uniformly to ~r as n!1. Also, suppose the sequence f/~rng1n¼1 converges uniformly to /~r as n!1. Then, for every
e > 0, there exists N > 0 sufficiently large such that, for n > N, we have
kxnðtÞ � xðtÞk < e for t 2 Tn \ T:
Proof. Since the function fn : Gð½�r;0�;BÞ � ½t0; t0 þ g�T ! Rn satisfies the conditions (A1), (B1) and (C1), it follows from
Lemma 5.2 that the respective ones (conditions (A), (B) and (C)) are satisfied for the extension of fn and therefore, all hypoth-
eses from Theorem 5.3 are satisfied, and the desired result follows immediately applying the correspondence between
impulsive measure functional differential equations and impulsive functional dynamic equations on time scales. h
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6. Applications

In this section, our goal is to discuss some applications of our main results.
The results about continuous dependence of solutions of dynamic equations on variable time scales have several appli-

cations for numerical approximations. It is a known fact that many differential equations cannot be solved analytically, how-
ever, a numerical approximation to the solution is usually good enough to solve a problem described by models in
engineering and sciences. In order to do this, it is possible to construct algorithms to compute such an approximation. There-
fore, results as the ones presented in this paper are very useful to study the solutions of ordinary differential equations as
well as other dynamic equations depending on the chosen time scale without the necessity to solve them analytically.

In what follows, we present some examples to illustrate this fact. For more details about them, the reader may want to
consult [4,10,13].

Example 6.1 [4]. Consider a simple autonomous linear dynamic equation given by
xDðtÞ ¼ axðtÞ;
xð0Þ ¼ x0:

�
ð6:1Þ
Solving the Eq. (6.1) for the case T ¼ R, we get
xðtÞ ¼ x0eat :
On the other hand, solving the Eq. (6.1) for the case T ¼ 1
n Z, for n 2 N, we obtain
ynðtÞ ¼ x0 1þ a
n

� �nt

:

It is not difficult to see that
Tn ¼
1
n

Z! R as n!1
and
~rn ¼ ~r uniformly as n!1:
Moreover, we have
lim
n!1

ynðtÞ ¼ xðtÞ:
Example 6.2 ([4,13]). Consider a particular (logistic) initial value problem
xDðtÞ ¼ 4x 3
4� x
� �

;

xð0Þ ¼ x0:

(
ð6:2Þ
If we take Tn ¼ 1
n Zþ, for n 2 N, in Eq. (6.2), we obtain
x t þ 1
n

� �
� xðtÞ

1
n

¼ 4xðtÞ 3
4
� xðtÞ

	 

;

which implies that
x t þ 1
n

	 

¼ 4

n
xðtÞ 3

4
� xðtÞ

	 

þ xðtÞ

¼ 4
n

xðtÞ
3
nþ 1

4
n

� xðtÞ
 !

¼ 4
n

xðtÞ 3þ n
4
� xðtÞ

	 

:

Notice that the solution is found by iterating the following equation (see [13]):
xnðtÞ ¼
4
n

xðtÞ 3þ n
4
� xðtÞ

	 

:

Then, taking n!1, the solutions tend to the solution of the logistic differential equation on Rþ and 1
n Zþ ! Rþ (see [13]).

Also, it is clear that ~rn ! ~r uniformly as n!1.
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7. Conclusions

The examples presented in the previous section show the importance of the continuous dependence results involving var-
iable time scales proved in this paper, since one can find a good approximation for solutions of differential equations without
the necessity to calculate it analytically.

For instance, as described in the last section, taking a sequence of time scales given by Tn ¼ 1
n Z, it is possible to find a good

approximation of a solution of a differential equation, just by using a sequence of solutions of the corresponding dynamic
equations on Tn, since by applying our results, one can obtain that this sequence converges to the solution of the differential
equation. Notice that to get this approximation, one just has to use iteration of solutions of the dynamic equations on Tn,
which can be done by using a computational algorithm. Thus, due to this fact, the results presented here turn out to be very
useful in numerical approximations.

We point out that our results are general enough to be applied for equations involving retarded arguments and impulsive
behavior, which make them helpful for obtaining these approximations for more complicated equations without the neces-
sity to calculate their solutions analytically.

Also, the results presented here can be applied to investigate the stability and asymptotic behavior of the solutions of
impulsive functional dynamic equations on time scales. This fact happens since knowing the behavior of the solutions of
the dynamic equations on Tn, it is possible by applying our results to investigate the behavior of the solution of dynamic
equation on T, whenever Tn ! T, using the convergence properties.
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