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Nonadiabatic dynamics for processes involving multiple avoided curve
crossings: Double proton transfer and proton-coupled electron transfer
reactions

Jian-Yun Fang and Sharon Hammes-Schiffera)

Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556

~Received 24 June 1997; accepted 26 August 1997!

The extension of the surface hopping method ‘‘molecular dynamics with quantum transitions’’
~MDQT! to double proton transfer and proton-coupled electron transfer reactions is tested by
comparison to fully quantum dynamical calculations for simple model systems. These model
systems each include four potential energy surfaces and three or four avoided curve crossings. The
agreement between the MDQT and fully quantum dynamical calculations provides validation for the
application of MDQT to these biologically important processes. ©1997 American Institute of
Physics.@S0021-9606~97!50745-8#
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I. INTRODUCTION

Quantum mechanical effects play an important role
many chemical processes in the condensed phase. Unf
nately, fully quantum mechanical simulations are compu
tionally impractical for condensed phase systems. In m
cases the significant quantum effects can be incorpor
with mixed quantum/classical molecular dynamics metho
where one or a few degrees of freedom are treated quan
mechanically and the remainder of the system is treated c
sically. ~See, for example, Refs. 1–20.! In these methods
typically the instantaneous configuration of the classical s
system determines the potential energy surface for the q
tum subsystem, and in turn the quantum subsystem aff
the evolution of the classical subsystem. In the adiab
limit the system remains in a single adiabatic quantum st
and the classical particles evolve according to a poten
obtained by averaging the potential energy over the occu
quantum state. For many chemical processes, however
adiabatic approximation is invalid, so the development
methods that incorporate nonadiabatic effects is crucial. S
face hopping methods are mixed quantum/classical meth
that incorporate nonadiabatic transitions between mult
potential surfaces.19–36 In these methods typically an en
semble of trajectories is propagated, and each trajec
moves classically on a single adiabatic surface except
instantaneous transitions among the adiabatic states.
various surface hopping methods differ in the way in wh
the quantum transitions are incorporated and in the treatm
of the phase coherence.

This paper is concerned with a particular surface h
ping method called ‘‘molecular dynamics with quantum tra
sitions’’ ~MDQT!.19,32 In MDQT the quantum transitions ar
incorporated according to the ‘‘fewest switches’’ stochas
algorithm developed by Tully.32 The standard MDQT
method retains full coherence in the evolution of the qu
tum amplitudes. However, numerous methods for incorpo
ing explicit decoherence effects have been utilized in c

a!Author to whom correspondence should be addressed.
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junction with MDQT.19,32 Surface hopping methods wer
initially developed for reactions evolving on multiple ele
tronic surfaces.32–34 MDQT has also been applied to proto
transfer reactions in solution, where the transferring hyd
gen atom is treated quantum mechanically and transitions
incorporated between the vibrational-like proton quant
states.19,20 In addition to single proton transfer reactions, r
cently a multiconfigurational MDQT method~MC-MDQT!
was developed for the simulation of multiple proton trans
reactions.37,38Moreover, recently MDQT was also applied t
model proton-coupled electron transfer reactions, where t
sitions are incorporated between mixed proton/elect
quantum states.39,40

Multiple proton transfer reactions and proton-coupl
electron transfer reactions play an important role in a w
range of biological processes. For example, many enzy
reactions, including those involving serine proteases,41,42 al-
cohol dehydrogenases,43 and carbonic anhydrases,44 require
multiple proton transfer reactions. In addition, double prot
transfer occurs in DNA base pairs such as the aden
thymine base pair.45 Moreover, the translocation of proton
across biological membranes, which is important
photosynthesis46–48and respiration,49–51entails both multiple
proton transfer reactions52,53 and proton-coupled electro
transfer. Another example of the biological importance
proton-coupled electron transfer is the conduction of el
trons in cytochrome c, which is thought to involve intercha
hops through hydrogen-bonded peptide residues of
protein.54,55

In this paper we test the extensions of MDQT to multip
proton transfer and proton-coupled electron transfer react
by comparing MDQT and fully quantum dynamical calcul
tions for simple model systems. The MDQT method h
been compared to exact quantum dynamical calculations
simple one-dimensional two-state model systems repres
ing processes evolving on multiple electronic surfaces.32,34

Recently the MDQT method was compared to exact qu
tum dynamical calculations for a simple one-dimensio
two-state model system representing a single proton tran
reaction.56 The application of MDQT to multiple proton
8933)/8933/7/$10.00 © 1997 American Institute of Physics
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8934 J.-Y. Fang and S. Hammes-Schiffer: Dynamics for multiple avoided crossings
transfer reactions and to proton-coupled electron transfe
actions differs from these previously studied model syste
in that a larger number of potential energy surfaces
avoided curve crossings are involved. The treatment of ph
coherence is critical for situations involving multiple avoid
curve crossings due to the presence of quantum interfer
effects. Thus, these model systems provide a challenging
for mixed quantum/classical methods.

An outline of the paper is as follows. In Section II w
discuss the MDQT and fully quantum wavepacket propa
tion methods. Section III presents a comparison of these
methods for two model systems representing double pro
transfer and proton-coupled electron transfer reactions.
conclusions are presented in Section IV.

II. METHODS

A. The MDQT Method

In this section we present a brief description of t
MDQT method, which has been described in det
elsewhere.19,32 For generality, we consider a system that
comprised ofN quantum mechanical particles~with coordi-
nates denoted byr ) andNcl classical particles~with coordi-
nates denoted byR). The total Hamiltonian is

H5Tq1Tc1V~r ,R!, ~1!

whereTq andTc are the quantum and classical kinetic en
gies, respectively, and the total potential energy isV(r ,R).
For each configurationR of the classical particles, the adia
batic quantum statesFn(r ;R) and energiesEn(R) can be
calculated by solving the time-independent Schro¨dinger
equation:

HqFn~r ;R!5En~R!Fn~r ;R!, ~2!

where

Hq5Tq1V~r ,R!. ~3!

In MDQT the wave functionC(r ,R;t) that describes the
quantum mechanical state at timet is expanded in terms ofL
orthonormal adiabatic statesFn(r ;R):

C~r ,R;t !5 (
n51

L

Cn~ t !Fn~r ;R!, ~4!

whereCn(t) are complex-valued expansion coefficients~i.e.
quantum amplitudes!. The quantum amplitudesCn(t) are
propagated in time by integrating the time-dependent Sc¨-
dinger equation, which can be written in the following form

i\Ċk5(
j 51

L

Cj~Vk j2 i\Ṙ•dk j!, ~5!

where

Vk j~R![^Fk~r ;R!uHquF j~r ;R!&, ~6!

and the nonadiabatic coupling vectordk j(R) is defined as:

dk j~R![^Fk~r ;R!u¹RF j~r ;R!&. ~7!
J. Chem. Phys., Vol. 107, N
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The brackets denote integration over only the quantum
chanical coordinatesr .

The fundamental principle of MDQT is that an ensemb
of trajectories is propagated on the adiabatic surfaces,
instantaneous transitions from one adiabatic surface to
other are incorporated using a stochastic algorithm that
sures that the fraction in a given statej at a given timet is
the quantum probabilityuCj (t)u2.32 Thus, the system alway
remains in a particular adiabatic quantum statek, and the
classical particles move according to classical equations
motion with a potential obtained by averaging the total p
tential over only the occupied adiabatic state. The quan
amplitudesCn(t) are propagated in time by integration of th
time-dependent Schro¨dinger equation~Eq. 5! along the clas-
sical trajectory. At each classical time step, the ‘‘fewe
switches’’ probabilistic algorithm32 is used to determine if a
switch to another adiabatic state should occur. If a swi
does occur the classical velocities are scaled according
force in the direction of the nonadiabatic coupling vector
maintain energy conservation. If the system attempts
switch to a state of higher energy and the required velo
reduction is greater than the component of the velocity to
adjusted, then the velocity component along the nonadiab
coupling vector is reversed without switching states. The
tails of this method are described in Ref. 19.

The standard MDQT method retains full coherence
the evolution of the quantum amplitudes. As discussed
Ref. 32, this coherent evolution is essential for the reprod
tion of quantum interference effects. These interference
fects are particularly important for processes involving m
tiple avoided curve crossings, as in the models describe
this paper. On the other hand, quantum decoherence ef
are expected to be important for condensed ph
systems.57,58 We explored several different methods for i
corporating decoherence effects into the simulations p
sented in this paper. Our results indicate that for the o
dimensional model systems studied in this paper, quan
decoherence effects are negligible. Thus, we present re
only for the standard MDQT method retaining full cohe
ence.

B. Exact quantum dynamics in the adiabatic
representation

Typically diabatic surfaces are utilized for fully quantu
mechanical calculations on multiple potential surfaces.59–61

For mixed quantum/classical simulations of condensed ph
systems, however, the adiabatic representation is more
venient because the complete potential surfaces are not a
able, so the adiabatic basis functionsf i(r ;R) and eigenen-
ergies are obtained locally ‘‘on the fly’’ during th
simulation. Thus, in order to test the MDQT method t
adiabatic representation is preferable.

Recently one of us developed a general method for fu
quantum mechanical wavepacket propagation on mult
adiabatic potential surfaces.56 This method was utilized to
test MDQT for a simple model system representing a sin
proton transfer reaction in solution, which involved a sing
o. 21, 1 December 1997
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8935J.-Y. Fang and S. Hammes-Schiffer: Dynamics for multiple avoided crossings
avoided curve crossing. In this paper we utilize this meth
to test MDQT for model systems involving multiple avoide
curve crossings. In this section we briefly outline the gene
methodology for fully quantum mechanical wavepack
propagation on multiple adiabatic potential surfaces.

Using the same notation as in the previous section,
total wavefunctionC(r ,R,t) can be expanded in terms o
the L orthonormal real adiabatic basis functionsfn(r ;R)
with time-dependent coefficientsxk(R,t):

C~r ,R,t !5 (
k51

L

xk~R,t !fk~r ;R!. ~8!

Substituting this into the time-dependent Schro¨dinger equa-
tion leads to

i\
]x̃~R,t !

]t
5H̃ x̃ ~R,t !, ~9!

where x̃ (R,t) is an L-dimensional vector with element
xk(R,t) andH̃ is anL3L matrix with elements

H i j ~R!5Ki j ~R!1Vi j ~R!1Di j ~R!1Gi j ~R!, ~10!

Ki j ~R!52(
I 51

N
\2

2MI
¹RI

2 d i j , ~11!

Vi j ~R!5^f i uHq~r ,R!uf j&, ~12!

Di j ~R!52(
I 51

N
\2

MI
^f i u¹RI

f j&¹RI
, ~13!

and

Gi j ~R!52(
I 51

N
\2

2MI
^f i u¹RI

2 f j&. ~14!

Note that the brackets indicate integration over only the
ordinatesr . For our calculations Eq. 9 is propagated with t
Chebyshev method.62

In the adiabatic representationVi j 5Eid i j and, in gen-
eral, Di j Þ0 andGi j Þ0 so Di j and Gi j must be evaluated
The matrix element required for the evaluation ofDi j is the
standard nonadiabatic coupling vector that has been der
previously:

K f iU ]f j

]Rm
L 5

^f i u
]Hq

]Rm
uf j&

Ej2Ei
~15!

for iÞ j and

K f iU ]f i

]Rm
L 50. ~16!

Note thatm indicates thex, y, or z component of a particula
slow coordinateRI . The derivation of analytical forms fo
the Gi j terms, which involve the calculation o
^f i u(]2/]Rm

2 )uf j&, is presented in Ref. 56. The off-diagon
termsiÞ j can be expressed as
J. Chem. Phys., Vol. 107, N
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K f iU ]2f j

]Rm
2 L 5

^f i u
]2Hq

]Rm
2

uf j&

~Ej2Ei !

12(
kÞ j

^f i u
]Hq

]Rm
ufk&^fku

]Hq

]Rm
uf j&

~Ej2Ek!~Ej2Ei !

22

^f j u
]Hq

]Rm
uf j&^f i u

]Hq

]Rm
uf j&

~Ej2Ei !
2

, ~17!

and the diagonal termsi 5 j can be expressed as

K f iU]2f i

]Rm
2 L 52(

kÞ i

^f i u
]Hq

]Rm
ufk&

2

~Ei2Ek!
2

. ~18!

Note that the calculation of the second-derivativeGi j terms
does not involve the calculation of derivatives of the ba
functions f i , but rather just the derivatives of the Hami
tonianHq .

III. RESULTS AND DISCUSSION

In this section we compare MDQT to fully quantum d
namical calculations for two different systems involvin
multiple avoided curve crossings. The first system is a mo
for double proton transfer, and the second system is a m
for proton-coupled electron transfer.

A. Double proton transfer

Our model for double proton transfer, as presented
Ref. 37, includes two proton degrees of freedom (r 1 andr 2)
and one solvent degree of freedom (R), which represents a
collective solvent mode. The Hamiltonian for this model

H5Tp1Ts1Vp~r 1!1Vp~r 2!1Vs~R!1Vps~r 1 ,R!

1Vpp~r 1 ,r 2!, ~19!

where the subscriptsp ands represent the proton and solve
degrees of freedom, respectively, andT andV are the kinetic
and potential energy operators, respectively.~Note thatTp

includes the kinetic energy of both protons.! The protons are
of massm51 amu and move in double well potentials

Vp~r i !520.5aor i
210.25cor i

4 ~20!

with ao5565 Å22 kcal/mol andco59975 Å24 kcal/mol,
which corresponds to a barrier height of 8 kcal/mol, minim
at 60.24 Å, and a frequency of 3650 cm21 ~typical of an
OH stretching vibration!. The solvent degree of freedomR is
of massM5100 amu and moves as a harmonic oscillato

Vs~R!50.5MvR2 ~21!

with v5100 cm21. The solvent degree of freedom is lin
early coupled to one proton:
o. 21, 1 December 1997
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8936 J.-Y. Fang and S. Hammes-Schiffer: Dynamics for multiple avoided crossings
Vps~r 1 ,R!5kpsr 1R, ~22!

wherekps583.33 Å22 kcal/mol. The two protons are als
linearly coupled to each other:

Vpp~r 1 ,r 2!5kppr 1r 2 ~23!

with kpp514.35 Å22 kcal/mol. ~Reference 63 suggests th
linear coupling between protons is physically reasonable
modeling systems such as multiple proton transfer react
in chains of water molecules.!

Figure 1 presents the potential energy curves for the
four adiabatic states. These curves were obtained by sol
the time-independent Schro¨dinger equation~Eq. 2!. We per-
formed both MDQT and fully quantum dynamical calcul
tions for this system. For the MDQT calculations the proto
were treated quantum mechanically, and the solvent m
was treated classically. Our interest is focused on the reg
aroundR50.0 Å, where there are four avoided curve cro
ings. In order to avoid numerical difficulties, the avoid
curve crossings between the third and fourth states
uRu;0.22 Å were smoothed out. Moreover, in a condens
phase system solvent-induced stabilization would cause
system to remain in the stable state rather than to imm
ately react again. We incorporated this solvent-induced
bilization into our calculations by flattening the potent
curves of the first and second states atuRu.0.21 Å. For the
fully quantum dynamical calculations, absorbing boundar
were placed on all states atR560.20 Å.64 In the MDQT
calculations, the trajectories were stopped once they rea
the region withuRu.0.20 Å.

The initial wavepacket for the fully quantum wavepack
propagation was on the ground state and of the form

x1~R!5S 2a

p D 1
4

e2a~R2Ro!21 iPo~R2Ro!/\, ~24!

FIG. 1. The adiabatic potential energy curves as a function of the collec
solvent coordinateR for the double proton transfer system. Only the fo
lowest energy adiabatic states are shown. In order to avoid numerical
culties, the avoided crossing regions between the third and fourth state
smoothed out as shown by the dashed lines. In order to incorporate sol
induced stabilization, the curves of the first two states are flattened
uRu.0.21 Å. The avoided crossing regions are labeled as I, II, III, and
J. Chem. Phys., Vol. 107, N
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whereRo , Po , anda are parameters corresponding to t
center, momentum, and width, respectively, of this wa
packet. For our simulationsa5150 a.u.22, Ro520.25 a.u.,
and the momentumPo530 a.u. or 40 a.u. The correspondin
initial conditions for the MDQT simulations were chose
according to the Wigner representation of this initial wav
packet. 1020 MDQT trajectories were propagated
Po530 a.u., and 992 MDQT trajectories were propaga
for Po540 a.u.

Figures 2 and 3 depict the time evolution of the popu
tions on the first four states for both the MDQT and the fu
quantum dynamical calculations for two different initial a

e

fi-
are
nt-
or
.

FIG. 2. The time evolution of the populations of the adiabatic states sh
in Fig. 1 for fully quantum~solid lines! and MDQT ~dashed lines! calcula-
tions with initial average momentumPo540 a.u. The other initial condi-
tions and the stopping conditions are described in the text.

FIG. 3. The time evolution of the populations of the adiabatic states sh
in Fig. 1 for fully quantum~solid lines! and MDQT ~dashed lines! calcula-
tions with initial average momentumPo530 a.u. The other initial condi-
tions and the stopping conditions are described in the text.
o. 21, 1 December 1997
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8937J.-Y. Fang and S. Hammes-Schiffer: Dynamics for multiple avoided crossings
erage momenta (Po540 a.u. andPo530 a.u.!. Since the
wavepacket is initially on the ground state, the populatio
on the other states are zero att50. When the system enter
the nonadiabatic coupling region the second, third, a
fourth states become populated. At longer times most of
population on the third and fourth states drops back down
the ground state. One interesting feature of this system is

FIG. 4. The density distributions at timet53000 a.u. for states 1, 2, and 3
shown in Fig. 1 for fully quantum~solid lines! and MDQT ~dashed lines!
calculations with initial average momentumPo540 a.u.
J. Chem. Phys., Vol. 107, N
s

d
e

to
at

the population on the second state remains almost cons
after a short initialization period. Thus, the second st
mainly serves as a mediator for the population exchange
tween the ground and the third and fourth states. Note
the greatest discrepancies occur in the avoided crossing
gion. In general, when trajectories are in the strong nona
batic coupling region MDQT does not accurately descr
the dynamics because in MDQT the trajectories are alw
moving according to forces due to a single adiabatic st
However, Figures 2 and 3 illustrate that MDQT accurate
calculates the final branching probabilities. Overall, t
agreement between MDQT and fully quantum calculation
very good with a maximum difference of 5%–7%, while th
statistical error for 1000 trajectories is;3%.

In Fig. 4, we compare the density distribution
(uxk(R,t)u2) at a specified time for the MDQT and the full
quantum dynamical calculations. The MDQT density dist
bution is obtained by summing over the ensemble of traj
tories for each point along the discrete coordinate grid at
specified time. The results shown are for the wavepac
with the initial average momentumPo540 a.u. at time
t53000 a.u. for the first three states.~The fourth state is not
significantly populated at this time.! Similar results were ob-
tained for the initial momentumPo530 a.u. and at differen
times. Since no renormalization is included, the discrep
cies in the populations depicted in Fig. 2 are also eviden
Fig. 4. Nevertheless, the agreement of the line shape
qualitatively reasonable.

B. Proton-coupled electron transfer

Our one-dimensional model for proton-coupled electr
transfer, as presented in Ref. 39, includes one proton coo
nate (r p), one electron coordinate (r e), and one solvent de
gree of freedom (R), which represents a collective solve
mode. The electron donor D and acceptor A are fixed a
distancedDA58.0 a.u., and the proton donor and accep
are also implicitly fixed on the D-A axis. The electron an
proton are constrained to move in one dimension along
axis. The Hamiltonian for this model is

H5Tpe1Ts1Vs~R!1Vp~r p!1Ve~r e!1Vpe~r p ,r e!

1Vpes~r p ,r e ,R!, ~25!

where the subscriptsp, e, ands represent the proton, elec
tron, and solvent degrees of freedom, respectively, andT and
V are the kinetic and potential energy operators, respectiv
The solvent potential is a simple harmonic oscillator pote
tial

Vs~R!5 1
2 msvs

2~R2Ro!2, ~26!

where the massms512.0 amu, vs50.0004 a.u. and
Ro520.3 a.u.. The proton potentialVp is a double well
function represented by the quartic polynomial
o. 21, 1 December 1997
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8938 J.-Y. Fang and S. Hammes-Schiffer: Dynamics for multiple avoided crossings
Vp~r p!5
12DE

~a22a1!3~2a32a12a2!
H r p

4

4
2~a11a21a3!

r p
3

3

1~a1a21a1a31a2a3!
r p

2

2
2~a1a2a3!r p

1a2
2@a2

222a2~a11a3!16a1a3#/12J , ~27!

where a153.5 a.u., a254.0 a.u., a354.5 a.u., and
DE50.012 a.u.. The electron potentialVe is the sum of the
Coulombic interactions between the electron and its do
and acceptor:

Ve~r e!52
CeCD erf~r eD!

r eD
2

CeCA erf~r eA!

r eA
, ~28!

whereCe50.15 a.u.,CD50.55 a.u., andCA50.55 a.u. are
the absolute values of the effective charges on the elec

FIG. 5. The adiabatic potential energy curves as a function of the collec
solvent coordinateR for the proton-coupled electron transfer system. On
the four lowest energy adiabatic states are shown.

FIG. 6. The time evolution of the populations of the three lowest adiab
states shown in Fig. 5 for fully quantum~solid lines! and MDQT ~dashed
lines! calculations with initial conditions as described in the text.~The
fourth state is not significantly populated.!
J. Chem. Phys., Vol. 107, N
r

n,

the donor, and the acceptor andr eD andr eA are the distances
between the electron and the donor and acceptor. For
merical stability, we also included a repulsive term to p
vent the electron from traveling too far beyond the don
and acceptor. This term is of the form
exp@25.0(r e15.0)#1exp@25.0(dDA2r e15.0)#, where all
distances are in atomic units. The electron-proton interac
Vpe is also treated as a Coulombic interaction:

Vpe~r p ,r e!52
CpCe erf~r pe!

r pe
, ~29!

where againCp50.15 a.u. andCe50.15 a.u. are the absolut
values of the effective charges of the proton and the elec
and r pe is the distance between the electron and the pro
Finally, the solvent mode is linearly coupled to the prot
and the electron:

Vpes~r p ,r e ,R!52Csp~R2Rp
o!~r p2r p

o!

2Cse~R2Re
o!~r e2r e

o!, ~30!

where Csp50.03 a.u., Cse50.004 a.u., Rp
o50.0 a.u.,

Re
o520.6 a.u.,r p

o54.0 a.u., andr e
o54.0 a.u. Other studies

of proton-coupled electron transfer reactions have also
scribed the interaction between the solvent and the proto
electron with a linear coupling term.65 Although linear cou-
pling is a substantial simplification of this interaction, it pr
vides a physically reasonable description of the interaction
the fluctuating field of the solvent~represented byR in Eq.
30! with the electronic~or proton! charge distribution of the
solute.

Figure 5 depicts the adiabatic potential curves for
first four quantum states. We performed both MDQT a
fully quantum dynamical calculations for this system. For t
MDQT calculations the proton and electron coordinates w
treated quantum mechanically, while the solvent coordin
was treated classically. The initial wavepacket for the fu
quantum calculations was a Gaussian function of the form
Eq. 24 on the ground state witha525 a.u.,R0520.95 a.u.,
andP0523.5 a.u. The MDQT calculations included 837 tr
jectories sampled from the Wigner distribution associa
with this initial wavepacket. Figure 6 compares the popu
tions on the first three states for the MDQT and fully qua
tum dynamical calculations as functions of time. The fou
state is not significantly populated throughout the dynam
As for the previous model, the discrepancies between
MDQT and the fully quantum calculations are not substa
tially larger in magnitude than the statistical error for 8
trajectories.

IV. CONCLUSIONS

We have applied both MDQT and fully quantum d
namical methods to model systems for double proton tran
and proton-coupled electron transfer reactions. These m
systems each involve four coupled adiabatic potential ene
surfaces and three or four avoided curve crossings.
agreement between the MDQT and the fully quantum
namical calculations provides validation for the applicati

e
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8939J.-Y. Fang and S. Hammes-Schiffer: Dynamics for multiple avoided crossings
of MDQT to these biologically important processes. The
model systems, however, include only a single collective s
vent mode and thus do not accurately incorporate dissipa
effects that are present in condensed phase systems.
comparison of MDQT to exact quantum calculations for p
ton transfer in a dissipative system66 will provide further
validation of the application of MDQT to charge transf
reactions in the condensed phase.
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