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Nonadiabatic dynamics for processes involving multiple avoided curve
crossings: Double proton transfer and proton-coupled electron transfer
reactions
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Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
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The extension of the surface hopping method “molecular dynamics with quantum transitions”
(MDQT) to double proton transfer and proton-coupled electron transfer reactions is tested by
comparison to fully quantum dynamical calculations for simple model systems. These model
systems each include four potential energy surfaces and three or four avoided curve crossings. The
agreement between the MDQT and fully quantum dynamical calculations provides validation for the
application of MDQT to these biologically important processes. 1897 American Institute of
Physics[S0021-960807)50745-9

I. INTRODUCTION junction with MDQT°32 Surface hopping methods were
initially developed for reactions evolving on multiple elec-
Quantum mechanical effects play an important role intronic surfaces?-**MDQT has also been applied to proton
many chemical processes in the condensed phase. Unfortitansfer reactions in solution, where the transferring hydro-
nately, fully quantum mechanical simulations are computagen atom is treated quantum mechanically and transitions are
tionally impractical for condensed phase systems. In manjhcorporated between the vibrational-like proton quantum
cases the significant quantum effects can be incorporatestates'®?° In addition to single proton transfer reactions, re-
with mixed quantum/classical molecular dynamics methodsgently a multiconfigurational MDQT methotMC-MDQT)
where one or a few degrees of freedom are treated quantuiias developed for the simulation of multiple proton transfer
mechanically and the remainder of the system is treated C|a$eaction33_7'38Moreover, recenﬂy MDQT was also apphed to
sically. (See, for example, Refs. 1-20n these methods model proton-coupled electron transfer reactions, where tran-
typically the instantaneous configuration of the classical subsijtions are incorporated between mixed proton/electron
system determines the potential energy surface for the quaguantum state®*°
tum subsystem, and in turn the quantum subsystem affects Multiple proton transfer reactions and proton-coupled
the evolution of the classical subsystem. In the adiabatiglectron transfer reactions play an important role in a wide
limit the system remains in a Single adiabatic quantum StatQange of bio|ogica| processes. For examp|e, many enzyme
and the classical particles evolve according to a potentigleactions, including those involving serine proted$é3al-
obtained by averaging the potential energy over the occupiegohol dehydrogenasé$and carbonic anhydrasé&srequire
quantum state. For many chemical processes, however, thgultiple proton transfer reactions. In addition, double proton
adiabatic apprOXimation is invalid, so the development Oftransfer occurs in DNA base pairs such as the adenine-
methods that incorporate nonadiabatic effects is crucial. SUﬁ:hymine base paﬁ5 Moreover, the translocation of protons
face hopping methods are mixed quantum/classical methodgcross biological membranes, which is important for
that incorporate nonadiabatic transitions between multiplgyhotosynthesf§~*®and respiratio? > entails both multiple
potential surface§™® In these methods typically an en- proton transfer reactiof@®® and proton-coupled electron
semble of trajectories is propagated, and each trajectoR¢ansfer. Another example of the biological importance of
moves classically on a single adiabatic surface except foproton-coupled electron transfer is the conduction of elec-
instantaneous transitions among the adiabatic states. Thgns in cytochrome c, which is thought to involve interchain
various surface hopping methods differ in the way in whichhOps through hydrogen-bonded peptide residues of the
the quantum transitions are incorporated and in the treatmepotejn545°
of the phase coherence. In this paper we test the extensions of MDQT to multiple
This paper is concerned with a particular surface hopproton transfer and proton-coupled electron transfer reactions
ping method called “molecular dynamics with quantum tran-py comparing MDQT and fully quantum dynamical calcula-
sitions” (MDQT).****In MDQT the quantum transitions are tions for simple model systems. The MDQT method has
incorporated according to the “fewest switches™ stochasticheen compared to exact quantum dynamical calculations for
algorithm - developed by TU”% The standard MDQT  gimple one-dimensional two-state model systems represent-
method retains full coherence in the evolution of the quaning processes evolving on multiple electronic surfaéd.
tum amplitudes. However, numerous methods for incorporatRecenﬂy the MDQT method was compared to exact quan-
ing explicit decoherence effects have been utilized in cong,, dynamical calculations for a simple one-dimensional
two-state model system representing a single proton transfer
dAuthor to whom correspondence should be addressed. reaction°® The application of MDQT to multiple proton
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transfer reactions and to proton-coupled electron transfer réFhe brackets denote integration over only the quantum me-
actions differs from these previously studied model systemshanical coordinates.
in that a larger number of potential energy surfaces and The fundamental principle of MDQT is that an ensemble
avoided curve crossings are involved. The treatment of phasef trajectories is propagated on the adiabatic surfaces, and
coherence is critical for situations involving multiple avoided instantaneous transitions from one adiabatic surface to an-
curve crossings due to the presence of quantum interferenather are incorporated using a stochastic algorithm that en-
effects. Thus, these model systems provide a challenging testires that the fraction in a given stgtat a given timet is
for mixed quantum/classical methods. the quantum probabiliti/Cj(t)|2.32 Thus, the system always
An outline of the paper is as follows. In Section Il we remains in a particular adiabatic quantum stiateand the
discuss the MDQT and fully quantum wavepacket propagaelassical particles move according to classical equations of
tion methods. Section Il presents a comparison of these twmotion with a potential obtained by averaging the total po-
methods for two model systems representing double prototential over only the occupied adiabatic state. The quantum
transfer and proton-coupled electron transfer reactions. OuamplitudesC,(t) are propagated in time by integration of the
conclusions are presented in Section IV. time-dependent Schdinger equatiodEq. 5 along the clas-
sical trajectory. At each classical time step, the “fewest
switches” probabilistic algorithif is used to determine if a
switch to another adiabatic state should occur. If a switch
does occur the classical velocities are scaled according to a
A. The MDQT Method force in the direction of the nonadiabatic coupling vector to

In this section we present a brief description of theMaintain energy conservation. If the system attempts to
MDQT method, which has been described in detailSWitch to a state of higher energy and the required velocity
elsewherg?32 Fo'r generality, we consider a system that isreduction is greater than the component of the velocity to be
comprised ofN quantum mechanical particléwith coordi- adjusfced, then the velocity cor_nponent _along the nonadiabatic
nates denoted by) andN,, classical particlegwith coordi- coupling vector is reversed without switching states. The de-

Il. METHODS

nates denoted bR). The total Hamiltonian is tails of this method are described in R_ef. 19. .
The standard MDQT method retains full coherence in
H=Tyq+Tc+V(r,R), (1)  the evolution of the quantum amplitudes. As discussed in

Ref. 32, this coherent evolution is essential for the reproduc-
tion of quantum interference effects. These interference ef-
fects are particularly important for processes involving mul-
tiple avoided curve crossings, as in the models described in
this paper. On the other hand, quantum decoherence effects
are expected to be important for condensed phase
systems°8 We explored several different methods for in-
Hq®n(r;R)=En(R)P(1;R), (2 corporating decoherence effects into the simulations pre-
sented in this paper. Our results indicate that for the one-

whereT, and T, are the quantum and classical kinetic ener-
gies, respectively, and the total potential energy/(s,R).
For each configuratioR of the classical particles, the adia-
batic quantum state®,(r;R) and energie€,(R) can be
calculated by solving the time-independent Sdmger
equation:

here ) . o .
W dimensional model systems studied in this paper, quantum
He=Tq+tV(r,R). 3 decoherence effects are negligible. Thus, we present results
In MDQT the wave function¥ (r,R:t) that describes the only for the standard MDQT method retaining full coher-
. o . ence.
guantum mechanical state at times expanded in terms df
orthonormal adiabatic statds,(r;R):
L B. Exact quantum dynamics in the adiabatic
V(r,Rit)= 2 Cr(t)Py(riR), (4)  representation
n=1

Typically diabatic surfaces are utilized for fully quantum
whereC,(t) are complex-valued expansion coefficiefits.  mechanical calculations on multiple potential surfat’e§
quantum amplitudgs The quantum amplitude€,(t) are  For mixed quantum/classical simulations of condensed phase
propagated in time by integrating the time-dependent Schrosystems, however, the adiabatic representation is more con-
dinger equation, which can be written in the following form: venient because the complete potential surfaces are not avail-

L able, so the adiabatic basis functio#gr;R) and eigenen-
ihCp=>, Cj(vkj_iﬁR.dkj), (5) ergies are obtained locally “on the fly” during the
=1 simulation. Thus, in order to test the MDQT method the

adiabatic representation is preferable.

Recently one of us developed a general method for fully
Vij(R)=(D(r;R)[Hg|®;(r;R)), (6)  quantum mechanical wavepacket propagation on multiple
adiabatic potential surfacé$.This method was utilized to
test MDQT for a simple model system representing a single
dk]-(R)E<(I)k(r;R)|VR<I>]-(r;R)). (7) proton transfer reaction in solution, which involved a single

where

and the nonadiabatic coupling vecty;(R) is defined as:
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avoided curve crossing. In this paper we utilize this method

to test MDQT for model systems involving multiple avoided

curve crossings. In this section we briefly outline the genera P
methodology for fully quantum mechanical wavepacket\ ™"

propagation on multiple adiabatic potential surfaces.

Using the same notation as in the previous section, the

total wavefunction¥(r,R,t) can be expanded in terms of
the L orthonormal real adiabatic basis functiogg(r;R)
with time-dependent coefficienjg(R,t):

L

\P(r,R,U:k; xk(R,1) i (1;R). (8)

Substituting this into the time-dependent Sainger equa-
tion leads to

9)

where Y(R,t) is an L-dimensional vector with elements
xe(R,t) and. 7 is anL X L matrix with elements

Z;(R)=Kjj(R) +V;;(R) + D;;(R) + Gj;(R), (10
N 2

Ki,-(R>=—IE V 8\ (11)

Vij(R)=(i|Hq(r,R)| #;), (12
N 52

Dyj(R)=—-2, W (BlVR @) VR, (13)

and

N ﬁz .

Gj(R)=~ 2 sy (il VR ). (19
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and the diagonal termis=j can be expressed as
2
32¢i <¢) | |¢k>
< g a?> e "

Note that the calculation of the second-derivatvg terms
does not involve the calculation of derivatives of the basis
functions ¢, , but rather just the derivatives of the Hamil-
tonianH, .

lll. RESULTS AND DISCUSSION

In this section we compare MDQT to fully quantum dy-
namical calculations for two different systems involving
multiple avoided curve crossings. The first system is a model
for double proton transfer, and the second system is a model
for proton-coupled electron transfer.

A. Double proton transfer

Our model for double proton transfer, as presented in
Ref. 37, includes two proton degrees of freedamdndr )

Note that the brackets indicate integration over only the cognd one solvent degree of freedom)( which represents a
ordinatesr. For our calculations Eg. 9 is propagated with thecollective solvent mode. The Hamiltonian for this model is

Chebyshev methot.

In the adiabatic representatiofy; =E;g;; and, in gen-
eral, D;;#0 andG;;#0 soD;; and G;; must be evaluated.
The matrix element required for the evaluationlyf is the

H=Tp+Ts+Vp(ry) +Vp(rz) +Vs(R) +Vpg(r1,R)

+Vpp(r1,r2), (19

standard nonadiabatic coupling vector that has been derivetihere the subscripts ands represent the proton and solvent

previously:
dH,
[d; < i|ﬁ|¢j>
fori#j and
<¢. a¢'> 0. 16

Note thatu indicates the, y, or z component of a particular

slow coordinateR, . The derivation of analytical forms for

the G;; terms, which involve the calculation of
(i |(52/&R2)|¢,> is presented in Ref. 56. The off-diagonal
termsi#j can be expressed as

degrees of freedom, respectively, andndV are the kinetic
and potential energy operators, respectivélyote thatT,
includes the kinetic energy of both proton$he protons are
of massm=1 amu and move in double well potentials

V(1) =—0.5a,r2+0.25r{ (20)

with a,=565 A2 kcal/mol andc,=9975 A4 kcal/mol,
which corresponds to a barrier height of 8 kcal/mol, minima
at +0.24 A, and a frequency of 3650 crh (typical of an
OH stretching vibration The solvent degree of freeddris

of massM =100 amu and moves as a harmonic oscillator

V4(R)=0.5M wR? (21)

with =100 cm . The solvent degree of freedom is lin-
early coupled to one proton:
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FIG. 1. The adiabatic potential energy curves as a function of the collectivérIG. 2. The time evolution of the populations of the adiabatic states shown
solvent coordinateR for the double proton transfer system. Only the four in Fig. 1 for fully quantum(solid lines and MDQT (dashed lingscalcula-
lowest energy adiabatic states are shown. In order to avoid numerical diffitions with initial average momenturR,=40 a.u. The other initial condi-
culties, the avoided crossing regions between the third and fourth states afions and the stopping conditions are described in the text.

smoothed out as shown by the dashed lines. In order to incorporate solvent-

induced stabilization, the curves of the first two states are flattened for

|[R|>0.21 A. The avoided crossing regions are labeled as I, Il, 1ll, and IV.

whereR,, P,, and « are parameters corresponding to the

Vps(r1,R)=Kpg1R, (22)  center, momentum, and width, respectively, of this wave-
wherek,s=83.33 A~2 kcal/mol. The two protons are also Packet. For our simulations =150 au.? R,=-0.25au.,
linearly coupled to each other: and the momenturR,= 30 a.u. or 40 a.u. The corresponding

V(T4 0 p) =Koor o 23) initial conditions for the MDQT simulations were chosen
oo 2 ﬁpz 12 according to the Wigner representation of this initial wave-

linear coupling between protons is physically reasonable fop0230 a.u., and 992 MDQT trajectories were propagated
modeling systems such as multiple proton transfer reaction,%r P —40a.u
o u.

in chains of water molecules. - . . .
Figure 1 presents the potential energy curves for the first Figures 2 and 3 depict the time evolution of the popula

four adiabatic states. These curves were obtained by solvinté;Ons on the first .four states fpr both the MPQT am_j Fhe fully
the time-independent Schiimger equatiofEq. 2. We per- quantum dynamical calculations for two different initial av-
formed both MDQT and fully quantum dynamical calcula-
tions for this system. For the MDQT calculations the protons
were treated quantum mechanically, and the solvent mode
was treated classically. Our interest is focused on the region
aroundR=0.0 A, where there are four avoided curve cross-
ings. In order to avoid numerical difficulties, the avoided
curve crossings between the third and fourth states at
|R|~0.22 A were smoothed out. Moreover, in a condensed
phase system solvent-induced stabilization would cause the
system to remain in the stable state rather than to immedi-
ately react again. We incorporated this solvent-induced sta-
bilization into our calculations by flattening the potential
curves of the first and second stategRjt>0.21 A. For the
fully quantum dynamical calculations, absorbing boundaries 0.2t e N Statez
were placed on all states &= *+0.20 A% In the MDQT

state 1

state 4

e,

{ \
H
0.02 \~

0.4 S -
4000 €000 8000 10000

Population

calculations, the trajectories were stopped once they reached N/ s S
the region with|R|>0.20 A. 0 3000 6000 9000 12000
The initial wavepacket for the fully quantum wavepacket Time (au)

propagation was on the ground state and of the form
FIG. 3. The time evolution of the populations of the adiabatic states shown
2a\ 3 in Fig. 1 for fully quantum(solid lines and MDQT (dashed linescalcula-
Xl( R)=(—) e a(R—Ro)2+iPo(R—Ro)/h’ (24) tions with initial average momenturR,=30 a.u. The other initial condi-
T tions and the stopping conditions are described in the text.
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erage momentaR,=40 a.u. andP,=30 a.u). Since the the population on the second state remains almost constant
wavepacket is initially on the ground state, the populationsafter a short initialization period. Thus, the second state
on the other states are zerotat0. When the system enters mainly serves as a mediator for the population exchange be-
the nonadiabatic coupling region the second, third, andween the ground and the third and fourth states. Note that
fourth states become populated. At longer times most of théhe greatest discrepancies occur in the avoided crossing re-
population on the third and fourth states drops back down tgion. In general, when trajectories are in the strong nonadia-
the ground state. One interesting feature of this system is thdiatic coupling region MDQT does not accurately describe
the dynamics because in MDQT the trajectories are always
moving according to forces due to a single adiabatic state.
However, Figures 2 and 3 illustrate that MDQT accurately
' ' : calculates the final branching probabilities. Overall, the
5l | agreement between MDQT and fully quantum calculations is
& state 1 very good with a maximum difference of 5%—7%, while the
statistical error for 1000 trajectories 183%.

In Fig. 4, we compare the density distributions
(Ixx(R,1)|?) at a specified time for the MDQT and the fully
quantum dynamical calculations. The MDQT density distri-
bution is obtained by summing over the ensemble of trajec-
tories for each point along the discrete coordinate grid at the
specified time. The results shown are for the wavepacket
with the initial average momentur,=40 a.u. at time
t=3000 a.u. for the first three staté$he fourth state is not
significantly populated at this timeSimilar results were ob-
tained for the initial momentur®P,=30 a.u. and at different
times. Since no renormalization is included, the discrepan-

Density

- - cies in the populations depicted in Fig. 2 are also evident in
ol | Fig. 4. Nevertheless, the agreement of the line shapes is
state 2 qualitatively reasonable.
1.6
>
* 12t
/2]
c
8 0.8l B. Proton-coupled electron transfer
Our one-dimensional model for proton-coupled electron
0.4 transfer, as presented in Ref. 39, includes one proton coordi-
nate (), one electron coordinate ), and one solvent de-
0 , gree of freedom R), which represents a collective solvent
-03  -02 -04 mode. The electron donor D and acceptor A are fixed at a
distancedp,=8.0 a.u., and the proton donor and acceptor
are also implicitly fixed on the D-A axis. The electron and
proton are constrained to move in one dimension along this
2T » state 3 1 axis. The Hamiltonian for this model is
1.6f i 1 H=Tpet Ts+ Vs(R)+Vy(rp) +Ve(re) +Vpe(rp.re)
"g 1.2+¢ +Vpes(rp1reiR)a (25)
| =
a 0.8 where the subscriptp, e, ands represent the proton, elec-
tron, and solvent degrees of freedom, respectively,Taadd
0.4l V are the kinetic and potential energy operators, respectively.
The solvent potential is a simple harmonic oscillator poten-
0 . tial
0.3  -02 0. 0 0.1 02 03
R (A) Vi(R)= 3mewg(R=Ro)%, (26

FIG. 4. The density distributions at tinte- 3000 a.u. for states 1, 2, and 3 where the massm;=12.0 amu, »s=0.0004 a.u. and

shown in Fig. 1 for fully quantunisolid lineg and MDQT (dashed lings ~ Ro=—0.3 a.u.. The proton potentiaf, is a double well
calculations with initial average momentufy=40 a.u. function represented by the quartic polynomial
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-30 . . ‘ . : - - the donor, and the acceptor ang, andr ., are the distances

between the electron and the donor and acceptor. For nu-
-35¢ 1 merical stability, we also included a repulsive term to pre-
vent the electron from traveling too far beyond the donor

and acceptor. This term is of the form
exd —5.0(r+5.0)] +exd —5.0(dpa—r+5.0)], where all
distances are in atomic units. The electron-proton interaction
Ve is also treated as a Coulombic interaction:

Vpe(rprre):_%i;Wr (29

pe
where agairC,=0.15 a.u. an€C,=0.15 a.u. are the absolute
08 06 04 02 0 02 04 06 08 values of the effective charges of the proton and the electron
R (A) andr . is the distance between the electron and the proton.

Finally, the solvent mode is linearly coupled to the proton

FIG. 5. The adiabatic potential energy curves as a function of the collectiveand the electron:
solvent coordinat& for the proton-coupled electron transfer system. Only

Energy (kcal/mol)

the four lowest energy adiabatic states are shown. VpedIpile,R)=—Cgy(R— Rg)(rp— rg)
_Cse(R_ Rg)(re_rg): (30)
12AE rg rg where C;,=0.03 a.u.,, C4=0.004 a.u., Rj=0.0 au.,
Vp(rp) = - —(atax+taz)o R%=—0.6 a.u.,r2=4.0 a.u., and2=4.0 a.u. Other studies
(a,—a;)%(2a;—a;—a,) | 4 3 e P e .
2 < 3 91 <2 of proton-coupled electron transfer reactions have also de-
rg scribed the interaction between the solvent and the proton or
+(a,a,tajas+ azag)E—(alazaa)rp electron with a linear coupling terﬁ'?.AIthough linear cou-

pling is a substantial simplification of this interaction, it pro-
- vides a physically reasonable description of the interaction of
+asla;—2ay(a; +az) +6a;a3)/12y, (27)  the fluctuating field of the solveritepresented by in Eq.

30) with the electronigqor protor) charge distribution of the
where a;=3.5 au., a,=4.0 a.u, az=4.5 a.u., and ggJyte.

AE=0.012 a.u.. The electron potentid}, is the sum of the Figure 5 depicts the adiabatic potential curves for the
Coulombic interactions between the electron and its donofirst four guantum states. We performed both MDQT and
and acceptor: fully quantum dynamical calculations for this system. For the
CeCperf(rgp) CeCaerf(ren) MDQT calculations the proton and (_alectron coordinates were

e(re)=— - ; (28 treated quantum mechanically, while the solvent coordinate

r r . I |
eb eA was treated classically. The initial wavepacket for the fully

whereC,=0.15 a.u.,Cp=0.55 a.u.,, andC,=0.55 a.u. are quantum calculations was a Gaussian function of the form in
the absolute values of the effective charges on the electrofkq. 24 on the ground state with= 25 a.u.,R,=—0.95 a.u.,
andPy=23.5 a.u. The MDQT calculations included 837 tra-
jectories sampled from the Wigner distribution associated
with this initial wavepacket. Figure 6 compares the popula-
tions on the first three states for the MDQT and fully quan-
tum dynamical calculations as functions of time. The fourth
state is not significantly populated throughout the dynamics.
As for the previous model, the discrepancies between the
MDQT and the fully quantum calculations are not substan-
tially larger in magnitude than the statistical error for 837

Population

0l trajectories.
[ state 2
0.2’— “' ..................................... |
IV. CONCLUSIONS
state 3
0 J < L We have applied both MDQT and fully quantum dy-
O 1000 2000 3000 4000 5000 6000 7000 namical methods to model systems for double proton transfer

Time (au) and proton-coupled electron transfer reactions. These model
o | - | e three | diab systems each involve four coupled adiabatic potential energy

FIG. 6. The time evolution of the populations of the three lowest adiabatic, ; ;
states shown in Fig. 5 for fully quantufsolid lines and MDQT (dashed surfaces and three or four avoided curve crossings. The

lines) calculations with initial conditions as described in the tefthe agre_ement betW_een the MDQT a_md _the fully quantL_Jm _dy'
fourth state is not significantly populatéd. namical calculations provides validation for the application
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of MDQT to these biologically important processes. These®J. C. Arce and M. F. Herman, J. Chem. Ph{81, 7520(1994.
model systems, however, include only a single collective solng- Parlant and E. A. Gislason, J. Chem. Pt8/5.4416(1989.
vent mode and thus do not accurately incorporate dissipativg®- Parlant and M. H. Alexander, J. Chem. PI§, 2287 (1990

effects that are present in condensed phase systems. Th

. J. Kuntz and J. J. Hogreve, J. Chem. PI9%5.156 (1991).
. C. Tully, J. Chem. Phy€3, 1061(1990.

comparison of MDQT to exact quantum calculations for pro-sg. Webster, P. J. Rossky, and R. A. Friesner, Comput. Phys. Con@8un.

ton transfer in a dissipative syst&will provide further

validation of the application of MDQT to charge transfer

reactions in the condensed phase.
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