
Do
Proceedings of IDETC/CIE 2005: 
ASME 2005 International Design Engineering Technical Conferences & 

Computers and Information in Engineering Conference 
September 24-28, 2005, Long Beach, California, USA 

DETC2005-85092 

A HYBRID ROD-CATENARY MODEL TO SIMULATE NONLINEAR DYNAMICS OF CABLES WITH 
LOW AND HIGH TENSION ZONES 

 
 

S. Goyal 
Student Member, ASME

University of Michigan, Mechanical Engineering 
2350 Hayward, Ann Arbor, Michigan-48109-2125, U.S. 

Email. sgoyal@umich.edu 

N. C. Perkins 
Fellow, ASME 

University of Michigan, Mechanical Engineering 
2350 Hayward, Ann Arbor, Michigan-48109-2125, U.S. 

Email. ncp@umich.edu 
 

Proceedings of IDETC/CIE 2005 
ASME 2005 International Design Engineering Technical Conferences 

& Computers and Information in Engineering Conference 
September 24-28, 2005, Long Beach, California USA 

 
DETC2005-85092
 
ABSTRACT 

Cables under very low tension may become highly 
contorted and form loops, tangles, knots and kinks. These 
nonlinear deformations, which are dominated by flexure and 
torsion, pose serious concerns for cable deployment. Simulation 
of the three-dimensional nonlinear dynamics of loop and tangle 
formation requires a 12th order rod model and the 
computational effort increases rapidly with increasing cable 
length and integration time. However, marine cable 
applications which result in local zones of low-tension very 
frequently involve large zones of high-tension where the effects 
of flexure and torsion are insignificant. Simulation of the three-
dimensional dynamics of high-tension cables requires only a 6th 
order catenary model which significantly reduces 
computational effort relative to a rod model. We propose herein 
a hybrid computational cable model that employs 
computationally efficient catenary elements in high-tension 
zones and rod elements in localized low-tension zones to 
capture flexure and torsion precisely where needed.  

Keywords: rod, catenary, cable, dynamics 
 

1. INTRODUCTION 
Marine cables tend to form loops and tangles in low 

tension zones due to combined effects of residual torsion and 
flexure. This loading scenario is often realized on the seabed as 
illustrated in Fig. 1. In this context, loops are often termed 
“hockles” and these can hinder cable laying and recovery 
operations, attenuate signal transmission in fiber-optic cables, 
and can even lead to the formation of knots and kinks that 
damage cables. 

The large nonlinear deformations associated with loop 
formation are dominated by flexure and torsion, effects that are 
not captured in models that treat the cable as perfectly flexible. 
To capture these effects, one must treat the cable as a rod-like 
element following, for example, the classical rod theory of 
Kirchhoff/Clebsch [1]. Modern treatments and advancements in   
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Fig. 1: Cable forming loops and tangles on the sea floor. 
 

High-Tension Zone 

Low-Tension Zone 

rod theories are comprehensively summarized by Antman [2]. 
Loop formation in elastic rods may be initiated by elastic 
instabilities under compression and/ or torsion; refer, for 
example, to the buckling conditions developed by Greenhill [3] 
or Zachman [4]. 

Rod theories have been used to model the mechanics of 
cables starting with the work of Zajac [5] who studied the onset 
of “pop-out” instabilities in planar loops using equilibrium rod 
theory. His work on the nonlinear equilibria of rods has been 
extended [6-9] to further investigate loop formation and “pop-
out” instabilities under a variety of loading scenarios. These 
instabilities initiate large dynamic responses which may also 
produce nonlinear transitions to more energetically favorable 
equilibria. Very few studies [10-15] have developed dynamic 
rod models sufficient for describing the dynamic evolution of 
loops. The dynamic model in [15] is artificially damped to 
study the quasi-static evolution of self-contact and intertwining 
in biological filaments, while those in [10-14] capture dynamic 
responses of underwater cables with hydrodynamic forces [16] 
but without self-contact. 
1 Copyright © 2005 by ASME 
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1 The arc-length co-ordinate  is assumed to correspond to that for the 

unstretched state. 
s

2 Equation (2) results from the continuity of the (extensible) centerline and Eq. 
(3) results from balance of linear momentum. 

Downlo
All of the above formulations assume the rod to be 
isotropic and homogeneous. These assumptions fall short when 
considering the mechanics of synthetic and wire rope cables 
where anisotropy arises due to their helical construction [17]. 
The helical construction couples tensile (or compressive) and 
torsional stresses [18]. Many underwater cables are also 
intentionally non-homogeneous. For example, S-tethers (see 
Fig. 2) are designed with segments of different materials (with 
different buoyancy) to create considerable slack [19]. The first 
generic dynamic cable model that captures all the above 
features was developed by Goyal et al. [20-22]. 

 

 
 

Fig. 2: Loop formation in slack zone of S-tether. 
 

The computational model [20] captures the mechanics of 
low-tension cables by using a rod theory in the form of a 12th 
order system of partial differential equations. In many 
underwater cable applications such as depicted in Figs. 1 and 2, 
however, the low tension zone is confined to a very small 
fraction of the computational domain rendering the use of a rod 
model for the entire cable both computationally inefficient and 
unnecessary. The dynamics of high-tension zones can be 
efficiently described using a 6th order flexible “catenary”. An 
example of 6th order catenary element was employed by Howell 
[23] to investigate the dynamics of hanging chains. 

In this paper, we contribute an efficient computational 
cable model that exploits distinct formulations in low- versus 
high-tension zones. While it is necessary to use a (12th order) 
rod model to resolve the low tension regions and the possible 
formation loops and tangles, we then employ a (6th order) 
catenary model for the remainder of the computational domain 
where tension effects dominate the effects of flexure and 
torsion. The resulting hybrid cable model adaptively transitions 
between rod and catenary elements contingent on the relative 
importance of tension versus bending and/or torsion in any sub-
domain. An example of this approach appears in the analytical 
formulation of Kevorkian and Cole [24] who employ singular 
perturbation to blend linear beam and string formulations to 
understand the local effects of bending in an otherwise long and 
taut string. Another example appears in Sun and Leonard [10] 
who proposed a hybrid computational model of fluid-loaded 
cables that blends rod and catenary formulations through a 
point discontinuity. Herein, we use a similar strategy to blend 
the computationally efficient rod model described in [20] with 
the catenary model employed in [23]. 

Low-Tension Zone 

High-Tension Zone 
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We open in Section 2 by reviewing the governing 
equations of the dynamical rod theory from Goyal et al. [20] 
and the catenary theory from Howell [23]. We join the two 
models by means of a spherical joint. In Section 3, we extend 
the efficient finite difference method used in [20] (that employs 
the generalized-α method [12, 14, 25] in both space and time) 
to this hybrid rod-catenary model. In Section 4, we test the 
hybrid model for a simple cable suspension that involves low 
and high tension zones. We validate the hybrid model by 
benchmarking results with those obtained from a pure 
(computationally expensive) rod model. We close with 
conclusions in Section 5. 

 
2. THE CATENARY AND ROD MODELS 

The three-dimensional curve formed by the cable 
centerline is parameterized by the arc-length coordinate  and 
time . The centerline is divided into sub-domains of rod and 
catenary elements. We adopt the rod model from Goyal et al. 
[20] and the catenary model from Howell [23]. The governing 
equations for each model are summarized below. 

s
t

 
2.1 Governing Equations for a Catenary 

 

 
 

Fig. 3: Free body diagram of an infinitesimal element of a 
catenary. 

 
The deformation of catenary (see Fig. 3) is determined 

solely by the orientation of centerline tangent  and the 
extensional strain 

),(ˆ tst
),( tsε 1. The strain is related to the tension 

 in the catenary through the compliance , ),( tsT )(sck

 
 ),()(),( tsTscts k=ε . (1) 
 

The field equations2 for the catenary are: 
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4 Equation (7) is the inextensibility constraint, Eq. (8) is a compatibility 

condition, and Eqs. (9-10) are the Newton-Euler equations for an 
infinitesimal rod element. 

Do
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where  denotes the mass per unit arc length,  
denotes the distributed force

)(sm ),( tsF
3 per unit arc length, and  

denotes the velocity of the centerline. All derivatives are 
relative to the inertial frame . The unit vector t  can be 
parameterized by its two spherical co-ordinates (see Fig. 3) 

),( tsv

}{ ie ˆ

),( tsϑ  and ),( tsϕ  such that its components along  
become 

}{ ie

 
 [ ]ϕϕϑϕϑ cossinsincossinˆ =t . (4) 
 

Substituting Eq. (1) and Eq. (4) in Eqs. (2-3), yields a 6th 
order system of partial differential equations in the field 
variables [ ]ϕϑTvYc = , 
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where matrices ,  and  are as defined in Appendix 2. cM cK cF/
 
2.2 Governing Equations for a Rod 

 

 
 

Fig. 4: Free body diagram of an infinitesimal element of a rod. 
 

The rod element (see Fig. 4) employs a body-fixed frame 
 at each cross-section to describe its orientation with 

respect to the inertial frame . The deformation field is 

represented by the curvature and twist vector 

}{ ia
}{ ie

),( tsκ  that is 
defined by the rotation per unit arc length of the body-fixed 
frame. The curvature and twist ),( tsκ  results in the internal 
moment  in rod element that obeys an (assumed) linear 
elastic constitutive law:  

),( tsq
 
                                                           
3 The distributed force is used to capture buoyant weight and hydrodynamic 

drag as detailed in Appendix 1. 
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 ),()(),( tssBtsq κ=  (6) 
 
where the tensor  captures the stiffness of the rod in 
bending and torsion. The rod is assumed to be unshearable and 
inextensible, but can sustain shear and tensile stresses resulting 
in the internal force . 

)(sB

),( tsf
The field equations4 for the rod are: 
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where ),( tsω  denotes the cross-section angular velocity, 

 denotes the tensor of principal mass moments of inertia 
per unit arc length,  denotes the distributed moment per 
unit arclength and the remaining variables/ parameters are as in 
the catenary model. The partial derivatives are all relative to the 
body-fixed frame . 

)(sI
),( tsQ

}{ ia
Equations (7-10) result5 in a 12th order system of partial 

differential equations in the field variables 
[ ]fvYr κω= , 
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where matrices ,  and  are as defined in Appendix 2. rM rK rF/
 
2.3 Constraints at a Rod-Catenary Interface 

The rod and catenary elements must now be joined in such 
a manner that preserves continuity of the displacement 
(velocity) field and also force and moment equilibrium. These 
requirements are achieved by introducing a spherical joint at 
rod-catenary interface. In the formulation above, the catenary 
variables are represented with components in the inertial frame 

, while the rod variables are represented with components 

in the body-fixed frame . Let  denote the tensor 
that transforms a vector from the inertial frame to the body-

}{ ie
}{ ia ),( tsL
5 Substitute Eq. (6) into Eq. (9). Also recognize that the tangent vector  is 

constant in the body-fixed frame  for an unshearable rod and points 
along the principal axis for torsion. 

t̂
}{ ia
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Downlo
fixed frame. If the joint is located at  along the cable 
centerline, then the above interface conditions become 

jss =

 
 0),(0),( =⇒= tstsq jrjr κ , (12) 
 ),(),(),( tsvtsLtsv jcjrjr = , (13) 
 ),(),(ˆ),(),( tsTtsttsLtsf jcjcjrjr = , (14) 
 
where the subscripts r  and  identify rod and catenary 
variables, respectively. 

c

Note that the tangent to the catenary  need not 

align with the tangent to the rod  at the spherical joint 
interface. A seemingly better choice may appear from imposing 
continuity of curvature and geometric torsion in lieu of the 
“moment-free” condition above. However, recall that the 
catenary cannot sustain any internal moment. Thus, the 
catenary simply cannot be used in subdomains where 
appreciable curvature and/or torsion are likely to arise, as in the 
low tension regions. The above transition from catenary to rod 
must occur at (or before) the earliest appearance of curvature 
and torsion as determined by an acceptably small threshold, and 
the simple moment-free spherical joint remains appropriate for 
this transition.  

),(ˆ tst jc

),(ˆ tst jr

 
3. NUMERICAL ALGORITHM 

Equation (5) is a 6th order initial-boundary value problem 
that requires 3 boundary conditions at the two boundary points 
of the catenary. Similarly Eq. (12) is a 12th order initial-
boundary value problem that requires 6 boundary conditions at 
the two boundary points of the rod. At the rod-catenary 
interface, the 9 constraints of the spherical joint given by Eqs. 
(12-14) substitute for the (6+3) boundary conditions required 
by each rod and catenary models. 

For integration of the initial-boundary value problem, we 
employ the generalized-α method [12, 14, 25] in both space and 
time. The resulting implicit algorithm is 2nd order accurate, 
unconditionally stable, and incorporates a (controllable) 
numerical dissipation parameter. Starting with the initial value 

, the discretized equations are integrated over space at 
each successive time step.  The boundary conditions are 
satisfied during spatial integration using a shooting method for 
boundary-value problems as detailed in [13]. 

)0,(sY

The boundary conditions and distributed forces/moments 
are often most readily decomposed into components in the 
inertial frame. During integration, these components must be 
transformed to those in the body fixed frame for rod through 
the transformation matrix . Standard formulations 
employ three Euler angles or four Euler parameters to construct 
the nine components of . Here, we employ incremental 
rotations [26]. Accordingly, we compute the small change in 

 through the time step  using the small incremental 
rotation  

),( tsL

),( tsL

),( tsL t∆
),,( ttts ∆−Φ

 
 ),(),,(),( ttsLtttstsL ∆−∆−Φ= . (15) 
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The incremental rotation can be accomplished through a single 
rotation (about one axis) as per Euler rotation theorem [27]. Let 
the vector ),( tsθ  represent the (axis and amount of) the single 
infinitesimal rotation for ),,( ttts ∆−Φ . Then 
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where  is the skew-symmetric form of θ~ θ  defined as follows. 
The cross product of two vectors x  and  can be written as y
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The exponential of skew-symmetric matrix x~  is expanded as 
 
 ( ) ( )( xuxux cos1 )~sin~)~exp( 2 −++Ι= , (18) 
 
where x  is the magnitude of x ,  is the unit vector along u x  

and Ι  is the identity matrix. Note that this computation 
employs only a scalar power series and it therefore avoids the 
known numerical difficulties of matrix exponentiation [28]. 

In short, we use (16) to compute ),( tsθ  and 
),,( ttts ∆−Φ  and then use (15) to update . From the 

transformation matrix  and the centerline velocity 
, we then compute the position and orientation of each 

cross section of the rod at any time by subsequent integration. 
For the catenary, we need to integrate only  to compute 
the evolution of its shape in time.  

),( tsL
),( tsL

),( tsv

),( tsv

 
4. RESULTS AND DISCUSSION 

The principal contribution of this paper lies in the 
formulation of the hybrid rod-catenary formulation described in 
Sections 2 and 3. In this section, we evaluate the performance 
of the hybrid rod-catenary model using a relatively simple 
example featuring a cable suspension with both low and high 
tension zones.  We validate the hybrid model by benchmarking 
results with those obtained from a pure rod model. 

The example is illustrated in Fig. 5 and corresponding 
parameters are listed in Table 1.  The figure shows a cable of 
length  sagging under its own weight. The left end is pinned.  
At the right end, the cable centerline is given a prescribed 
orientation of 30 degrees from the horizontal, is tension-free, 
but subject to an applied force in the normal (shear) direction. 
A reaction moment also develops at the right end in response to 
prescribing the rotation of this end and leads to a region where 
significant curvature develops. 

L
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Table 1:  Simulation parameters. 

Quantity Symbol Units (SI) Value 

I. CABLE 

Diameter  D  m 1.0×10-3

Length  L  m 2.0×100

Mass/ length m  Kg/m π/4×10-3

Bending Moment of Inertia/ length  Kg-m π/64×10-9

Torsional Moment of Inertia/ length  

Tensor 
I  Kg-m π/32×10-9

Bending Stiffness  N-m2 5π/64×10-3

Torsional Stiffness  

Tensor 
B  N-m2 π/16×10-3

Compliance  kc  N-1 0.0×100

II. FLUID ENVIRONMENT (See Appendix 1) 

Acceleration due to gravity  g  m/s2 9.8×100

Fluid Density  fρ  Kg/m3 1.0×100

Normal Drag Coefficient  nC  - 1.0×100

Tangential Drag Coefficient  tC  - 1.0×10-1

Added Fluid Mass am  Kg 0.0×100

Far-field flow fv  m/s 0.0×100

Applied Boundary Force (Fig. 5) appliedf  N 1.0×10-2

III. NUMERICAL DISCRETIZATION 

Temporal Step  - s 1.0×100

Spatial Step  - m 5.0×10-3

Joint Location js  m 1.5×100

 
Two computational models are used to predict the dynamic 

relaxation to equilibrium from an initially straight cable. The 
first is the pure rod model (dashed curve) while the second is 
the hybrid rod-catenary model (solid curve) composed of 25% 
rod-domain (black) and 75% catenary sub-domain (red). The 
rod sub-domain is joined to the catenary sub-domain at point 

 with a spherical joint. While the two models predict similar 
displacements, the modest differences arise from the added 
flexibility of the hybrid model as seen, for instance by 
comparing the maximum sag. More importantly, there is a 
significant increase in the calculation speed for the hybrid 
model in proportion to the ratio of the catenary/rod sub-
domains. For example, under equal conditions, the 
computational speed is increased by approximately a factor of 
1.5 to 2 for this very simple example when using the hybrid 
model. In addition, the hybrid model successfully captures the 
mechanics of bending at the right end that would otherwise be 
missed in a pure catenary model as described further below. 

js
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Fig. 5: A simple benchmark example: a cable suspension 
with low (black) and high (red) tension zones. 

 
The force and moment distributions along the cable 

obtained from the two computational models are compared in 
Figs. 6-8. The tension distribution shown in Fig. 6 demonstrates 
that the steady-state tension predicted by the hybrid model 
closely matches that of the rod model. This is certainly 
expected as the catenary successfully captures the tension-
dominated mechanics of a cable. The tension is continuous 
across the rod/catenary interface and there remains only a very 
minute tension gradient in the rod subdomain to the right of this 
interface.  Moreover, the tension in the rod subdomain 
eventually decreases to zero at the right end as required by the 
boundary condition.  The resulting low-tension (rod) 
subdomain develops appreciate bending. 

 

 
 

Fig. 6: Final tension distribution. 
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Fig. 7: Final shear force distribution. 
 

The shear force and bending moment in hybrid model in 
Figs. 7 and 8 are reported only in the rod sub-domain as these 
quantities vanish in the catenary sub-domain. Note also that the 
shear force and bending moments for the pure rod model 
remain relatively small values in the corresponding domain 
( ) where the catenary was employed in the hybrid 
model. In addition, the hybrid model accurately reproduces the 
shear and bending moment in the rod subdomain as 
benchmarked against the pure rod solution.  

jss <

 
5. CONCLUSIONS 

The main contribution of this paper is the formulation of a 
hybrid rod-catenary model to efficiently compute the dynamics 
of long cables that possess both low and high tension 
subdomains. Such tension changes arise in ocean engineering 
cables, as seen for example, in S-tether moorings and in cases 
of cable/seabed contact. Pure rod models ultimately lead to ill-
conditioned computations for the very flexible, long cables 
often used in ocean engineering applications.  Pure catenary 
models are well-known to be ill-conditioned for low tension 
cables.  Thus, it is natural to employ these models in opposite 
tension regimes; that is, employ the rod model in low tension 
subdomains, and employ the catenary model in high tension 
subdomains. The hybrid model herein inherits the 
computational benefits of each model and offers tremendous 
computational advantages. For the simple cable suspension 
chosen as an example herein, the hybrid model increases 
computational speed by a factor of 1.5-2 relative to the pure rod 
model.  In addition, the hybrid model successfully captures the 
dominant effects of bending in the low tension region that 
would otherwise be lost in using a pure catenary model. 
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Fig. 8: Final internal moment distribution. 
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APPENDIX 1: HYDRODYNAMICS 

The hydrodynamics of underwater cables is dominated by 
fluid inertia (high Reynolds number) and is effectively modeled 
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with standard Morison drag and added mass effects [16] for a 
cylinder in the far-field flow : fv
  

dragF =  

( ) ( ){ }ttvtvCtvttvCD rrtrrnf
ˆˆˆˆˆˆ

2
1

⋅⋅+××× πρ , 
(19) 

 
 

t
vmF amassadded ∂
∂

−=_ . (20) 

 
Here vvv fr −=  is the flow relative to the cable, fρ  is the 

fluid density,  is the cable diameter,  and  are the 
normal (form) drag and tangential (skin friction) drag 
coefficients respectively and  is the added fluid mass. The 

partial differentiation is relative to the inertial frame . The 
cable buoyant weight per unit length is 

D nC tC

am
}{ ie

 
 

gDmF fweightbuoyant ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

4

2

_
πρ , (21) 

 
where  is the cable mass per unit length and the vector m g  is 
the acceleration due to gravity. The forces (per unit length) 

,   and  are included in the 
hybrid rod-catenary model through the distributed force term 

dragF massaddedF _ weightbuoyantF _

F  in the linear momentum equation, Eq. (3) for the catenary 
sub-domain, and Eq. (10) for the rod sub-domain. For an 
extensible catenary, assuming  does not change appreciably, 
the net external force/length becomes  

D

 
F =  ( dragF + massaddedF _ ) )1( ε+ + weightbuoyantF _ , (22) 

 
Here, ε  follows from Eq. (1), the hydrodynamic forces  

and  from Eq. (15) and Eq. (16), and the buoyant 
weight from 

dragF

massaddedF _

 
 

gDmF fweightbuoyant ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−= )1(

4

2

_ επρ , (23) 

  
 

APPENDIX 2: COEFFICIENT MATRICES 
Let Θ  be the 3×3 null matrix and  be the 3Ι ×3 identity 

matrix. The coefficient matrices used in Eq. (5) and Eq. (11) 
are: 
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The partial derivatives in Eq. (24) and Eq. (25) are relative to 
the inertial frame . }{ ie
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The partial derivative 
s
B
∂
∂

 in Eq. (29) is relative to the body-

fixed frame . }{ ia
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