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Abstract

Different approaches have been considered in the literature for the problem of Bayesian model

selection. Recently, a new method was introduced and analysed in De la Horra (2008) by

minimizing the posterior expected discrepancy between the set of data and the Bayesian model,

where the chi-square discrepancy was used. In this article, several discrepancy measures are

considered and compared by simulation, and it is obtained that the chi-square discrepancy is

reasonable to use. Then, an easy method for calibrating discrepancies is proposed, and the

behaviour of this approach is studied on simulated data. Finally, a set of real data is analysed.
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1. Introduction

In recent years, many articles have been written about Bayesian model selection. Many

of these articles have relied on Bayes factors or posterior odds; for instance, Spiegel-

halter and Smith (1982), Aitkin (1991), O’Hagan (1995), Berger and Pericchi (1996).

Other papers have considered a predictive approach; for instance, Geisser and Eddy

(1979), San Martini and Spezzaferri (1984), Gelfand et al. (1992), Gelfand (1995), Laud

and Ibrahim (1995), Gelfand and Ghosh (1998), Gutiérrez-Peña and Walker (2001),

Trottini and Spezzaferri (2002), De la Horra and Rodrı́guez-Bernal (2005, 2006).
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A different and easy method was proposed and analysed in De la Horra (2008). This

method was based on the well-known property that, under the true model, the cumulative

distribution function is distributed as a uniform distribution over the interval (0, 1). A

suitable discrepancy measure between the sample and the Bayesian model is needed. In

De la Horra (2008), the chi-square (χ2) discrepancy was used but, of course, this is not

the only discrepancy measure we may consider. The main aims in this article are:

1. To carry out a comparison between the performance of the χ2 discrepancy and the

performance of other possible discrepancy measures.

2. To calibrate the discrepancy we find between the set of data and the selected model.

The article is organized as follows:

In Section 2, the method introduced in De la Horra (2008) is briefly explained (for

any discrepancy measure). In Section 3, several discrepancy measures are proposed. In

Section 4, these discrepancy measures are compared by simulation, and it is found that

the χ2 discrepancy is reasonable to use.

Once we have decided to use a discrepancy measure and we have chosen a model,

we have to remember that this model is not to be understood as the true model (because

nobody knows the true model) but as the best model among several possible models. The

discrepancy between the data and the model is just a number, and it is very important to

decide if this number indicates either a small discrepancy or a large discrepancy:

• If the discrepancy is small, the model we have chosen is a good model for our data.

• If the discrepancy is large, the model we have chosen is not a good model for our

data.

This problem of calibrating discrepancy measures has been previously studied, for

instance, by McCulloch (1989), Soofi et al. (1995), and Carota et al. (1996). In Section 5,

an easy procedure for calibrating the discrepancy between the set of data and the selected

model is considered. Some examples (control cases) are analysed for illustrating and

evaluating this method.

Finally, a set of real data is analysed in Section 6.

2. A method for model selection

An easy method for Bayesian model selection was proposed and developed in De la

Horra (2008). This method was based on the use of a discrepancy measure and it is

briefly explained here for the continuous case (although a modification was also given

for its application to the discrete case).

Let X = (X1, . . . ,Xn) be a random sample of a continuous random variable X . We

have to choose among m different Bayesian models, Mi, i = 1, . . . ,m. Each
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Bayesian model consists of two components: a sampling density, fi(x|θ ) (where θ ∈
Θ), and a prior density, πi(θ ). For the sake of simplicity, we are assuming that the

parameter space, Θ, is the same for all the models, but this is not necessary. The

cumulative distribution function corresponding to fi(x|θ ) will be denoted by Fi(x|θ );
this cumulative distribution function will have a relevant role in the method. In short,

we can write:

Mi = { fi(x|θ ),πi(θ )}, i = 1, . . . ,m.

The method is based on the following idea:

Let us assume that X = (X1, . . . ,Xn) is a random sample from a continuous random

variable X with density function fi(x|θ ) and cumulative distribution function Fi(x|θ )
(for θ fixed). It is well known that (Fi(X1|θ ), . . . ,Fi(Xn|θ )) can be considered as a

random sample from a U(0,1) (uniform distribution over the interval (0, 1)), because

Fi(X |θ ) follows a U(0,1) distribution and, as a consequence, we hope that (Fi(X1|θ ), . . . ,
Fi(Xn|θ )) will be well fitted by the U(0,1) distribution.

We next describe the method in three steps:

(1) First of all, we measure the discrepancy between the sample we have obtained,

x = (x1, . . . ,xn), and the distribution function Fi(x|θ ) (for a fixed θ ), by using a suitable

discrepancy measure between (Fi(x1|θ ), . . . ,Fi(xn|θ )) and the U(0,1) distribution. This

discrepancy will be denoted by Di(x,θ ).

The idea behind this discrepancy is simple: if Fi(x|θ ) (for a fixed θ ) is a good model,

Di(x,θ ) will be close to zero; if Fi(x|θ ) (for a fixed θ ) is not a good model, Di(x,θ )

will be far from zero.

(2) Of course, we are interested in evaluating the discrepancy between the sample

we have obtained, x = (x1, . . . ,xn), and the whole Bayesian model, Mi. The Bayesian

solution is easy; first of all, we compute the posterior density of the parameter,

πi(θ |x) = πi(θ |x1, . . . ,xn) =
fi(x1, . . . ,xn|θ )πi(θ )

∫

Θ fi(x1, . . . ,xn|θ )πi(θ )dθ

=
fi(x1|θ ) · · · fi(xn|θ )πi(θ )

∫

Θ fi(x1|θ ) · · · fi(xn|θ )πi(θ )dθ
,

and then we evaluate the posterior expected discrepancy between the sample x and the

model Mi:

Di(x) =

∫

Θ

Di(x,θ )πi(θ |x)dθ .
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(3) Finally, we only have to compare D1(x), . . . , Dm(x), and choose the Bayesian model

having the smallest posterior expected discrepancy.

3. Some discrepancy measures

The χ2 discrepancy was used and studied in De la Horra (2008). This discrepancy

measure may be reasonable but, of course, it is not the only one we may consider.

In this section, several reasonable discrepancy measures are proposed. Remember

that, in all the cases, we want to measure the discrepancy between (Fi(x1|θ ), . . . ,Fi(xn|θ ))
and the U(0,1) distribution.

(1) χ2χ2χ2 discrepancy

The discrepancy between (Fi(x1|θ ), . . . ,Fi(xn|θ )) and the U(0,1) distribution may

be measured by the χ2 discrepancy. For doing that, we partition the interval (0, 1) in k

subintervals, (0,1/k),(1/k,2/k), . . . ,((k−1)/k,1) and the χ2 discrepancy is defined as

usual:

D1
i (x,θ ) =

k

∑
j=1

[Oi j(θ )−n(1/k)]2

n(1/k)
=

k

∑
j=1

[Oi j(θ )− (n/k)]2

n/k
,

where Oi j(θ ) is the number of elements of (Fi(x1|θ ), . . . ,Fi(xn|θ )) we have obtained in

each subinterval.

(2) Kolmogorov-Smirnov discrepancy

Let G0(y) denote the cumulative distribution function of the U(0,1), and let Gi(y|θ )
denote the empirical cumulative distribution function corresponding to the sample

(Fi(x1|θ ), . . . ,Fi(xn|θ )). The Kolmogorov-Smirnov discrepancy is defined as usual:

D2
i (x,θ ) = sup

y∈(0,1)
|Gi(y|θ )−G0(y)|.

(3) L1L1L1 discrepancy

Let g0(y) denote the density function of the U(0,1), and let gi(y|θ ) denote some

reasonable density estimator obtained from (Fi(x1|θ ), . . . ,Fi(xn|θ )). The L1 discrepancy

is defined as usual:

D3
i (x,θ ) =

∫ 1

0
|gi(y|θ )−g0(y)|dy.
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In the next section, a density estimator with an Epanechnikov kernel will be used for

gi(y|θ ) (see, for instance, Silverman (1986)). Of course, other density estimators may

be used.

(4) Intrinsic discrepancy

Let us consider again g0(y) (defined over X0 = (0,1)) and gi(y|θ ) (defined over

Xi ⊂ (0,1)). Bernardo and Rueda (2002) defined the intrinsic discrepancy as follows

(see also Bernardo (2005), Berger et al. (2009)):

D4
i (x,θ ) = min

{

∫

Xi

gi(y|θ ) log
gi(y|θ )
g0(y)

dy ,
∫

X0

g0(y) log
g0(y)

gi(y|θ )
dy

}

=
∫

Xi

gi(y|θ ) log
gi(y|θ )
g0(y)

dy ,

where the last equality follows because Xi ⊂ X0 and the second integral in the first line

is not finite (for general properties of the intrinsic discrepancy, see Bernardo (2005)). In

the next section, a density estimator with an Epanechnikov kernel will be again used for

gi(y|θ ).

4. Comparing discrepancy measures

First of all, we will compare the performance of the four discrepancy measures proposed

in Section 3. For doing that, we will proceed by simulation as follows:

(1) Fix m Bayesian models, Mi = { fi(x|θ ),πi(θ )}, i = 1, . . . ,m.

(2) Simulate a very large number of random samples from the Bayesian model Mi.

Apply the method described in Section 2 to these samples, for the four discrepancy

measures proposed in Section 3, and record the percentage of correct classification with

each discrepancy.

(3) Repeat Step (2) for each model Mi, i = 1, . . . ,m. Construct a double entry table with

the percentages of correct classification with each discrepancy measure and each model.

(4) Finally, look for the discrepancy measure having the best performance.

This algorithm is next applied to two examples. These examples are simple to

describe but quite interesting, as explained below.
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Example 1. We consider the three following Bayesian models:

M1 = { f1(x|θ )∼ N(θ ,σ = 1);π1(θ ) ∝ 1}

M2 = { f2(x|θ )∼ N(θ ,σ = 2);π2(θ ) ∝ 1}

M3 = { f3(x|θ )∼ N(θ ,σ = 3);π3(θ ) ∝ 1}

In the three models, the sampling model is the normal distribution (with different

standard deviations) and the prior density is the reference prior. We are considering

three similar Bayesian models because, if the method has a good performance when

similar models are compared, the performance of the method will be still better when

the models are quite different.

We now apply the algorithm described at the beginning of this section. For doing

that, we generate, for instance, 1000 random samples with 50 elements each from one

of the sampling densities in Model 1 (for instance, from the N(0,σ = 1) distribution).

The improper prior in Model 1 is used for obtaining the posterior density:

π(θ |x1, . . . ,x50)∼ N(x̄;σ = 1/
√

50 ) (model M1).

The same procedure is then carried out for Model 2 and Model 3. For these models,

posterior densities are:

π(θ |x1, . . . ,x50)∼ N(x̄;σ = 2/
√

50 ) (model M2)

π(θ |x1, . . . ,x50)∼ N(x̄;σ = 3/
√

50 ) (model M3)

The percentages of correct classification for each discrepancy measure and each

model are shown in Table 1.

In these examples, χ2 discrepancies are computed by partitioning the interval (0, 1)

into k = 4 subintervals (the number of subintervals must not be too small, but each

subinterval must contain a reasonable number of observations). �

Table 1: Percentages of correct classification in Example 1.

χ2 K −S L1 Intrinsic

M1 100% 100% 100% 100%

M2 99% 96% 77% 76%

M3 92% 89% 43% 45%
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Example 2. We consider the three following Bayesian models:

M1 = { f1(x|θ )∼ N(θ ,σ = 1);π1(θ ) ∝ 1}

M2 = { f2(x|θ )∼ N(θ ,σ = 5);π2(θ ) ∝ 1}

M3 = { f3(x|θ )∼ N(θ ,σ = 10);π3(θ ) ∝ 1}

In the three models, the sampling model is again the normal distribution (with

different standard deviations) and the prior density is again the reference prior, but now

the models are more different than in Example 1, because the standard deviations are

more different. So, it is expected that the percentages of correct classification will be

better than in Example 1 for all the discrepancy measures.

We now apply the algorithm described at the beginning of this section, in a similar

way to Example 1. The percentages of correct classification with each discrepancy

measure and each model are shown in Table 2. �

Table 2: Percentages of correct classification in Example 2.

χ2 K −S L1 Intrinsic

M1 100% 100% 100% 100%

M2 99% 100% 100% 100%

M3 98% 98% 79% 66%

Main conclusions

• The global performance of the χ2 discrepancy is the best one in these examples.

• Of course, another discrepancy measure may have a better performance in other

cases, but the point here is that the χ2 discrepancy is reasonable to use. As a

consequence, the χ2 discrepancy will be used in the following sections.

5. Calibrating the discrepancy

Now, we have to choose among m different Bayesian models, Mi, i = 1, . . . ,m, trying to

find the best model for our data. It is important to remark that the model we choose is

not to be understood as the true model (nobody knows the true model), but as the best

model for our data we can find among several possible models.

Therefore, we have to answer the following question: is the model we have finally

chosen good enough for our data? A reasonable procedure for answering this question

is given next.
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Once we have chosen Mi as the best model among M1, . . . ,Mm, Di(x) is just a number

giving the posterior expected discrepancy between our data, x, and the model, Mi. Now,

it is important to calibrate this number:

• If the discrepancy is small, the model we have chosen is a good model for our data.

• If the discrepancy is large, the model we have chosen is not a good model for our

data.

For deciding if the discrepancy, Di(x), between our data, x, and the model, Mi, is

either large or small, we may proceed as follows:

(1) Simulate a very large number of random samples from the Bayesian model, Mi, and

compute the posterior expected discrepancies between each of these samples and Mi.

(2) Compare Di(x) to the posterior expected discrepancies we have computed in Step

(1), for obtaining in what percentile Di(x) is placed.

This procedure is applied next to some examples with simulated data. The aim of

these examples is to evaluate the behaviour of the procedure in these control cases.

Example 3. A random sample is simulated from a N(0,σ = 2) distribution.

Consider, as possible models, the three following Bayesian models:

M1 = { f1(x|θ )∼ N(θ ,σ = 1);π1(θ ) ∝ 1}

M2 = { f2(x|θ )∼ N(θ ,σ = 2);π2(θ ) ∝ 1}

M3 = { f3(x|θ )∼ N(θ ,σ = 3);π3(θ ) ∝ 1}

We apply the algorithm described in Section 2. The model M2 is chosen, because the

smallest posterior expected discrepancy, D2(x) = 8.05, is obtained from M2. Now, we

have to calibrate this value, so we simulate 1000 random samples from model M2. It is

found that the discrepancy D2(x) = 8.05 is between percentiles 12 and 13. Therefore, in

this case, model M2 is a very good model for our data. This is a very reasonable result

because all the data did come from M2. �

Example 4. A random sample is simulated in which 5% of the elements come from

a N(0,σ = 1) distribution, 90% from a N(0,σ = 2) distribution, and 5% from a

N(0,σ = 3) distribution.

Consider again, as possible models, the three Bayesian models given in Example 3,

and apply the algorithm described in Section 2. The model M2 is again chosen, because
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the smallest posterior expected discrepancy, D2(x) = 12.16, is obtained from M2. To

calibrate this value we simulate 1000 random samples from model M2, and it is found

that the discrepancy D2(x) = 12.16 is between percentiles 56 and 57. Therefore, in this

case, model M2 is still a good model for our data, although the discrepancy is larger than

in Example 3. This is again a very reasonable result because, in this case, almost all the

data came from M2. �

Example 5. Finally, we simulate a random sample in which 33% of the elements come

from a N(0,σ = 1) distribution, 34% from a N(0,σ = 2) distribution, and 33% from a

N(0,σ = 3) distribution.

Again the three Bayesian models given in Example 3 are considered and the algo-

rithm described in Section 2 is applied. The model M2 is chosen again, because the

smallest posterior expected discrepancy, D2(x) = 17.58, is obtained from M2.

Calibrating as before, we simulate 1000 random samples from model M2, and it is

found that the discrepancy D2(x) = 17.58 is between percentiles 92 and 93. Therefore,

in this case, model M2 is not a good model for our data and, once more, this is a very

reasonable result. �

Main conclusions

• This method for calibrating the discrepancy shows a good behaviour in these

controlled situations.

• As a consequence, the method can be applied to a set of real data with reasonable

confidence. This is carried out in the next section.

6. Application to real data

A set of 30 failure times for air conditioners on an airplane was introduced by Proschan

(1963). This set of real data was analysed first by Berger and Pericchi (1996) and then by

Gutiérrez-Peña and Walker (2001). They consider three Bayesian models for explaining

this set of real data, with exponential, lognormal and Weibull densities as sampling

densities:

M1 =

{

f1(x|θ ) =
1

θ
exp
{

− x

θ

}

;π1(θ ) ∝
1

θ

}

M2 =

{

f2(x|µ,σ2) =
exp{−(logx−µ)2/(2σ2)}√

2πxσ
;π2(µ,σ

2) ∝
1

σ2

}

M3 =

{

f3(x|α,β) = βx(β−1)α−β exp
{

−(x/α)β
}

;π3(α,β) ∝
1

αβ

}
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The corresponding posterior distributions are:

π1(θ |x)∼ (2nx̄)χ−2
2n

π2(µ,σ
2|x) ∝

(

1

σ2

)
n
2+1

exp

{

− 1

2σ2

(

n

∑
i=1

log2 xi −n(logx)2

)}

exp
{

− n

2σ2
(µ− logx)2

}

∼ NIG

(

n−1,
1

n−1

(

n

∑
i=1

log2 xi −n(logx)2

)

,n, logx

)

π3(α,β |x) ∝ βn−1

[

n

∏
i=1

xi

]β−1

α−nβ−1 exp

{

− 1

αβ

n

∑
i=1

x
β
i

}

,

where χ−2
2n denotes the “inverse chi-square distribution”, logx = 1

n

n

∑
i=1

logxi and NIG

denotes the normal inverse gamma distribution.

Next, we show and comment the results, when different methods are applied:

(1) Method by Berger and Pericchi. They obtained that the model M1 is preferred to

M2, and the model M2 is preferred to M3.

(2) Method by Gutiérrez-Peña and Walker. They obtained that the models M1 and M3

are preferred to M2.

First of all, we remark that the results are different for the two methods shown above.

(3) Method in this article. We apply our method to these data (notice that the third

posterior distribution is not in closed form, and so, a Markov chain Monte Carlo

(MCMC) method is needed for simulations). The following discrepancies are obtained:

D1(x) = 6.5

D2(x) = 2.8

D3(x) = 11.8

Therefore, with this method, the model M2 is preferred to M1 and M3. This result is

also different from the results obtained with the other two methods. The calibration of

the discrepancies, by using the algorithm proposed in Section 5, throws light upon these

results:

• It is obtained (by simulation) that the discrepancy between the real data and the

model M1, D1(x) = 6.5, is between percentiles 94 and 95. Therefore M1 is a bad

(although not very bad) model for these real data.
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• It is obtained (by simulation) that the discrepancy between the real data and the

model M2, D2(x) = 2.8, is between percentiles 74 and 75. Therefore M2 is a

reasonable (although not especially good) model for these real data.

• It is obtained (by simulation) that the discrepancy between the real data and the

model M3, D3(x) = 11.8, is between percentiles 90 and 91. Therefore M3 is a bad

(although not very bad) model for these real data.

Main conclusions

• The best model according to our method is M2 (the lognormal model) and is

a reasonable model for these real data, because the calibration shows that this

discrepancy is between percentiles 74 and 75.

• The discrepancies for the models M1 and M3 are larger than the discrepancy for

the model M2. It is important to notice that their calibrations are bad, but not very

bad. Possibly, this is the reason why they were chosen when other methods are

used.
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