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ABSTRACT Vacuole fusion occurs in three stages: prim-
ing, in which Sec18p mediates Sec17p release, LMA1 (low Mr
activity 1) relocation, and cis-SNARE (soluble N-ethylmale-
imide-sensitive factor attachment protein receptor) complex
disassembly; docking, mediated by Ypt7p and trans-SNARE
association; and fusion of docked vacuoles. Ca21 and calmod-
ulin regulate late stages of the reaction. We now show that the
vacuole proton gradient, generated by the vacuolar proton
ATPase, is needed for trans-SNARE complex formation dur-
ing docking and hence for the subsequent LMA1 release.
Though neither the vacuolar Pmc1p Ca21-ATPase nor the
Vcx1p Ca21yH1 exchanger are needed for the fusion reaction,
they participate in Ca21 and DmH

1 homeostasis. Fusion itself
does not require the maintenance of trans-SNARE pairs.

Subcellular protein compartmentation requires vesicular traf-
fic between organelles (1). Trafficking entails selective protein
sorting into budding vesicles, directed movement of vesicles to
the target organelle, and regulated fusion. Vesicles in many
trafficking reactions use homologous GTPases, N-ethylmale-
imide-sensitive factor (NSF), SNAREs (soluble NSF attach-
ment protein receptors), SNAPs (soluble NSF attachment
protein), and other proteins to catalyze ‘‘docking’’ to the target
membrane, followed by membrane fusion (1–4). Similar pro-
teins catalyze these events in yeast and human neurons,
establishing their generality (5, 6).

Vacuoles (lysosomes) from Saccharomyces cerevisiae offer
several advantages for studying membrane fusion. Vacuole
fusion is the final step of the inheritance of this organelle and
maintains it in low copy number. Because vacuoles are readily
visualized (7, 8), mutations that block their fusion and allow
them to remain fragmented can be easily scored. Vacuoles are
readily isolable, and the in vitro fusion of vacuoles with
biochemically complementary deficiencies yields simple, col-
orimetric, quantitative assays (9, 10). Soluble proteins that
support vacuole fusion have been isolated (11), and detergent
extracts of the vacuole membrane can be reconstituted to yield
fusion-competent proteoliposomes (12), providing for the
eventual isolation of the proteins needed for reconstitution of
membrane fusion with all purified components.

Our studies of in vitro homotypic vacuole fusion have
provided a broad outline of this reaction. Isolated vacuoles
bear a multisubunit ‘‘cis-SNARE complex’’ consisting of the
Vam3p t-SNARE, the Vam7p soluble N-ethylmaleimide-
sensitive factor attachment protein (SNAP)-23y25 homolog
(s-SNARE), the Nyv1p v-SNARE, and the v-SNAREs Vti1p
and Ykt6p (13–16). In addition to these SNAREs, the Sec18p
(N-ethylmaleimide-sensitive factor) ATPase, a chaperone, and
its cochaperone Sec17p (a-SNAP) are part of this complex (13,
17). Furthermore, the cis-SNARE complex contains a novel
heterodimeric protein termed LMA1 (low Mr activity 1) (18),
which has thioredoxin and IB

2 as subunits (19). The overall

reaction occurs in three obligatorily ordered stages: priming,
docking, and fusion itself. In priming, ATP hydrolysis by
Sec18p drives four reactions: the release of Sec17p from the
vacuoles, the disassembly of the cis-SNARE complex, the
activation of the t-SNARE, and the transfer of LMA1 from its
association with Sec18p to the activated t-SNARE, which it
stabilizes (13, 17, 18). Primed vacuoles then undergo a two-part
docking reaction (20). Their reversible association, termed
tethering, is catalyzed by the Rab-like Ypt7p (20, 21). Tethered
vacuoles are stabilized in their association by trans-SNARE
pair formation (20) to complete docking. Docked vacuoles
then undergo fusion. Though less is known of fusion per se, it
requires neither ATP, Sec17p, or Sec18p nor the continued
presence of trans-SNARE pairs (17, 20, 22). This final fusion
stage needs calcium, calmodulin (CaM), and a Microcystin-
LR-sensitive phosphatase, is sensitive to guanosine 59-[g-
thio]triphosphate and mastoparan, and is accompanied by the
release of bound LMA1 (10, 18, 22, 23). We now report that
the latter stages of this reaction occur in separable steps, which
require the vacuole acidification for trans-SNARE pairing,
followed by membrane fusion and mixing of contents.

METHODS

Yeast Strains. Deletions of VCX1 in yeast strains BJ3505
and DKY6281 were created by transformation with plasmid
pKC72 (24), cutting with KpnI and SacI, and selection on SC
minus uracil (25). Deletions of PMC1 in BJ3505 were by
transformation with plasmid pKC59 (26), cutting with StuI and
BglII, and selection on SC minus tryptophan. Deletions of
PMC1 in DKY6281 were made by transformation by plasmid
pKC52 (26), cutting with HindIII, and selection on SC minus
leucine. PMC1 transformants were replica-plated on yeast
extractypeptoneydextrose containing 200 mM CaCl2 to test for
growth delay (26). Double deletions in PMC1 and VXC1 were
made in the respective vcx1D strain by deleting PMC1 as
described above.

Biochemical Methods. Reagents were as described (17, 27,
28). SDSyPAGE, immunoblotting using ECL (29), purification
of IgGs, His6-tagged Sec18p, and Sec17p (28), purification of
CaM (23) and LMA1 (11), and coimmunoprecipitation to
detect trans-SNARE pairs (20) were as described. Salt-washed
vacuoles were made as described (11).

Vacuole Fusion. Vacuoles (27) were used immediately after
isolation or salt wash (11). Standard fusion reactions (30 ml)
contained 3 mg of each vacuole type (BJ3505 and DKY6281)
in reaction buffer (10 mM PipesyKOH, pH 6.8y200 mM
sorbitoly150 mM KCly0.5 mM MgCl2y0.5 mM MnCl2), 0.5
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mM ATP, 3 mgyml cytosol, 3.5 unitsyml creatine kinase, 20
mM creatine phosphate, and protease inhibitors (11): 3.3 mM
Pefabloc SC, 0.1 ngyml leupeptin, 16.6 mM o-phenanthroline,
and 16.6 ngyml pepstatin. Cytosol was as described (27).
Vacuoles lacking Nyv1p or Vam3p were used at 4 mg each in
the fusion reaction (20). One unit of fusion activity is defined
as 1 mmol p-nitrophenyl phosphate hydrolyzed per min and mg
BJ3505.

RESULTS

To assay homotypic vacuole fusion, we purify vacuoles from
two strains of yeast. One strain (BJ3505) has a deletion in the
gene encoding the major vacuolar proteases and therefore
accumulates catalytically inactive pro-alkaline phosphatase.
The other strain, DKY6281, is deleted for the gene for this
phosphatase but has normal vacuolar proteases. Though nei-
ther population of purified vacuoles has phosphatase activity,
the fusion of these vacuoles in vitro allows the proteases to
process the pro-phosphatase to its catalytically active form that
can be measured colorimetrically (10).

Though we previously have reported that purified vacuoles
can fuse in a minimal reconstituted reaction with ATP,
purified LMA1, and Sec18p (19), it also has been reported that
CoA, calcium, and CaM have important roles in this reaction
(23, 28). Consistent with these findings, salt-washed vacuoles
show little stimulation of fusion over the ice control by the
addition of either Sec18p, LMA1, CaM, or CoA alone (Fig. 1,
lanes 3–6) whereas substantial fusion is seen with Sec18p and
LMA1 together (lane 7). However, the further addition of CoA
(lane 8), CaM (lane 9), or both (lane 10) stimulates the fusion
reaction, until the fusion supported by ATP, Sec18p, LMA1,
CoA, and CaM (lane 10) is greater than that supported by ATP
and the starting cytosol (lane 2). The identification of other
soluble factors may further optimize this reaction.

Recent studies (23) have shown that calcium and CaM are
required for a late stage of the reaction. We find that 1,2-
bis(2-aminophenoxy)ethane-N,N,N9,N9-tetraacetate (BAPTA),
a specific chelator of calcium, reversibly inhibits the fusion
stage of the reaction while allowing priming and docking to
proceed. Vacuoles incubated with BAPTA did not fuse for up

to 60 min (Fig. 2A, L). Aliquots that were sedimented to
remove BAPTA and resuspended without chelator recovered
the capacity for fusion (Fig. 2 A, F), though there was a gradual
decay of vacuole fusion capacity. Initial resuspension in the
presence of anti-Sec17p, an inhibitor of priming, blocked the
reaction (Fig. 2 A, ‚), but full resistance to anti-Sec17p was
rapidly attained, indicating that BAPTA allowed priming to
proceed. Similarly, the vacuoles rapidly gained resistance to
anti-Vam3p (Fig. 2 A, M) or Gdi1p (Fig. 2 A, crosses), inhibitors
of docking, during incubation with ATP and BAPTA. BAPTA
thus serves as a reversible inhibitor with a known target that
specifically blocks vacuole fusion after docking.

We recently have reported that the addition of high levels of
purified Sec17p and Sec18p to docked vacuoles will efficiently

FIG. 1. Salt-washed vacuoles require Sec18p, LMA1, CoA, and
CaM for optimal fusion. Vacuoles (11) were incubated for 100 min at
27°C with ATP and Sec18p (0.33 mgyml), LMA1 (0.33 mgyml), CoA
(20 mM), and CaM (7.5 mM) as indicated. Alkaline phosphatase
activity was measured (27).

FIG. 2. BAPTA allows priming and docking of vacuoles but is a
reversible inhibitor of the fusion reaction. (A) Time course of inhibitor
addition. Isolated vacuoles (27) were incubated at 27°C in the presence
of ATP and 5 mM BAPTA. At the indicated times, 30-ml aliquots were
removed, diluted with 300 ml of buffer D (10 mM PipesyKOH, pH
6.8y200 mM sorbitoly150 mM KCl), and centrifuged (4 min, 8,000 3
g, 4°C). Vacuoles were resuspended in the presence of cytosol, ATP,
and the indicated inhibitor and incubated for the remaining time.
Fusion was measured after 90 min. (B and C) Trans-SNARE pairs are
not needed at the fusion stage of the reaction. Vacuoles (100 mg) from
the two tester strains (DKY vam3D and BJ nyv1D) were incubated in
the presence of BAPTA (5 mM), ATP, and cytosol for 40 min at 27°C
(lanes 2 and 3) or left on ice in the absence of ATP (lane 1). Vacuoles
were diluted 10-fold in buffer D, reisolated (4 min, 16,000 3 g, 4°C),
and resuspended in reaction buffer containing cytosol, ATP, and
(where indicated) His6-Sec17p (2.5 mgyml) and His6-Sec18p (26
mgyml). After 10 min at 27°C, a 30-ml aliquot of each was placed on
ice (B, lane 2) and another was incubated for additional 140 min (B,
lane 3) and each was assayed for phosphatase. After the 10-min second
incubation, the remainder of the reactions were centrifuged (5 min,
16,000 3 g, 4°C), vacuoles were washed with PS buffer (10 mM
PipesyKOH, pH 6.8y200 mM sorbitol), solubilized in 0.5% Triton
X-100, 2 mM EDTA, PBS, pH 7.4 (43), 1 mM PMSF, and 13 PIC (11)
and analyzed for Nyv1p cross-precipitation with Vam3p antibodies (C)
as described (20).
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disrupt the trans-SNARE pairs without affecting the subse-
quent fusion reaction (20). However, because of imperfect
reaction synchrony in these experiments, approximately 35%
of the final fusion already had occurred by the time of maximal
trans-SNARE pairing when further incubations were per-
formed with (or without) added Sec17p and Sec18p. To
achieve better fusion synchrony, we incubated BJ3505 vacuoles
deleted for the v-SNARE Nyv1p with DKY6281 vacuoles
deleted for the t-SNARE Vam3p in the presence of BAPTA.
After 40 min, almost no fusion had occurred (Fig. 2B, lane 2),
yet Nyv1p had formed a trans-SNARE complex with Vam3p,
as judged by cross-immunoprecipitation (Fig. 2C, lane 2). As
previously reported (20), only a small percent of SNAREs
form a complex in trans. Vacuoles then were briefly incubated
with, or without, added Sec17p and Sec18p and sedimented
and resuspended to remove the BAPTA. Incubation with
ATP, Sec17p, and Sec18p disrupted trans-SNARE pairs (Fig.
2C, lane 3). Removal of the BAPTA block allowed fusion to
proceed whether or not the trans-SNARE pairs had been
disrupted (Fig. 2B, lane 3), in agreement with our earlier
studies (20).

The central role of calcium in the fusion reaction and Ca21

release from the vacuoles upon docking (23) suggests that Ca21

release may occur by the well-characterized Pmc1p, a Ca21-
ATPase (26), or Vcx1p, a H1yCa21 exchanger (24), and that
these may be the targets of cyclopiazonic acid (CA), a calcium
channel blocker (30, 31) that inhibits vacuole fusion (23). To
examine the role of the known vacuolar calcium transporters,
we deleted the genes for either the Pmc1p Ca21-ATPase, the
Vcx1p H1yCa21 exchanger, or both from our fusion tester
strains. Wild-type vacuole fusion (Fig. 3A, F) was sensitive to
calcium. Vacuoles lacking both calcium transporters (Fig. 3A,
E) or even lacking Vcx1p alone (data not shown) are fully
active for fusion but are no longer sensitive to calcium inhi-
bition. These observations suggest that calcium may inhibit by
being exchanged for vacuole luminal protons by Vcx1p,
thereby dissipating the vacuole luminal acidity. The CA inhi-
bition of fusion (23), seen with wild-type vacuoles (Fig. 3B,
Upper, lane 5), is partially relieved by Ca21 (Fig. 3B, Upper, lane
6) but this relief depends on Vxc1p and Pmc1p (Fig. 3B, Lower,
lanes 5 and 6). Ca21 may function by being pumped into the
vacuoles by Pmc1p at the expense of ATP hydrolysis and then
being exchanged for protons by the Vcx1p. In this model, CA
would block a regulator of the membrane proton gradient, and
calcium would cycle through the vacuole via Pmc1p and Vcx1p
to partially restore the membrane electrochemical potential at
the expense of ATP. Excess external calcium then can function
in two ways, to dissipate the vacuole proton gradient via the
Vcx1p exchanger and to generate a proton gradient via Pmc1p
and Vcx1p.

To test this concept, we studied the effects of CA and direct
dissipation of the vacuole proton gradient by uncouplers or by
inhibitors of the vacuolar ATPase on trans-SNARE pair
formation and LMA1 release, the two known steps that
precede membrane fusion. We find that either CA, bafilomy-
cin, or carbonylcyanide m-chlorophenylhydrazone (CCCP)
strongly inhibit trans-SNARE pair formation (Fig. 4A) and
hence fusion. LMA1 normally has been released from vacuoles
by the end of the fusion reaction as shown by its absence from
an immunoblot of vacuoles at the end of a standard fusion
reaction (Fig. 4B, lane 1; ref 18), and this release is not affected
by calcium (Fig. 4B, lane 2). However, release is blocked by CA
(Fig. 4B, lane 3), and this block is bypassed by added calcium
(Fig. 4B, lane 4). An examination of the same incubations for
fusion shows that calcium has little effect on fusion in the
absence of the drugs (Fig. 4C, lanes 1 and 2) but restores fusion
to CA-treated vacuoles (Fig. 4C, lane 4) as it restores LMA1
release (Fig. 4B, lane 4). Calcium does not relieve the inhibi-
tion of either fusion or LMA1 release by Microcystin-LR (Fig.
4 B and C, lanes 5 and 6). Salt-washed vacuoles appear to be

less sensitive to exogenous Ca21 than freshly isolated vacuoles
(Figs. 3 and 4), possibly because of the removal of a Ca21

sensor on the vacuole. Our postulate that these effects of CA
and Ca21 were mediated by the membrane potential was
confirmed by the observation that CCCP efficiently blocks
LMA1 release (Fig. 4D) and that the inhibition of the normal
fusion of salt-washed vacuoles by CCCP (Fig. 4E, lanes 2 and
3) is partially reversed by the addition of both calcium and
CaM (Fig. 4E, lane 5). Indeed, the ATP-dependent acidifica-
tion of the vacuole, measured by luminal accumulation of
quinacrine (7), is blocked by CA as efficiently as by CCCP (Fig.
5A, lanes 4 and 5). Furthermore, high concentrations of Ca21

diminish the acidification of wild-type vacuoles, but not that of
vacuoles deleted in the genes encoding the Ca21 transporters
(Fig. 5A, lanes 2 and 3), consistent with the finding that Ca21

does not inhibit the efficient fusion of these vacuoles (Fig. 3A).
Finally, the dissipation of vacuole acidification by CA is
partially reversed by the addition of calcium and CaM (Fig. 5B,

FIG. 3. Deletion of both Vxc1p and Pmc1p results in low sensitivity
to Ca21 but does not impair fusion activity. (A) Vacuoles were isolated
from our normal tester strains and pmc1D vcx1D derivatives, then
incubated for 90 min at 27°C in the presence of ATP and CaCl2, and
phosphatase was assayed. (B) Fusion of wild-type and pmc1D vcx1D
vacuoles. Vacuoles were incubated in reaction buffer and ATP for 90
min at 27°C in the presence of CaM (7.5 mM), CA (250 mM), BAPTA
(5 mM), and CaCl2, and alkaline phosphatase activity was measured.
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lane 4). This reversal is not seen in vacuoles from strains
deleted for the two known Ca21-transport proteins.

DISCUSSION

Vacuole fusion is sensitive to the same inhibitors and needs
similar proteins as other membrane trafficking reactions.
Calcium is needed at or near the membrane fusion event in
neural transmission (32, 33) and endoplasmic reticulum to
Golgi vesicular trafficking (34), as well as for homotypic
vacuole fusion (23). Thus studies of the role of calcium and
CaM in vacuole fusion may provide insights about membrane
fusion in other organelles and organisms as well.

The need for calcium and CaM for a late stage of the
reaction reveals the inherent complexity of trans-SNARE
pairing and the ensuing steps that lead to fusion. These are
summarized in a working model (Fig. 6). Trans-SNARE
pairing, and hence LMA1 release and fusion, are regulated by
the vacuole proton gradient (DmH1). In the presence of ATP,
the maintenance of this gradient is sensitive to CA. The
requirement for the vacuole membrane potential for trans-
SNARE pairing is without precedent, as the distinction be-
tween the more abundant cis-SNARE pairs and the few
trans-SNARE pairs has not been as experimentally accessible
in other systems. The requirement for membrane potential
could be direct, or may be indirect if the potential is required
only to maintain essential ion gradients. Our data do not allow
us to distinguish whether the membrane potential is required
only for trans-SNARE pairing or whether it also has a function
later in the fusion reaction. Further studies will be necessary
to resolve this question.

It is interesting that deletions in the vacuolar ATPase
subunit VMA1 (35, 36) or addition of bafilomycin to cell
culture systems (37) causes a delay in protein transport to the
vacuoleylysosome. This delay may be caused by a reduction of
the electrochemical potential across the vacuole membrane
and hence an inhibition of the docking of endosome-derived
vesicles. In addition to this need for DmH1, both homotypic
vacuole fusion and biosynthetic traffic to the vacuole share a
need for many catalytic proteins (38–41).

The later stages of the homotypic vacuole fusion reaction do
not require either of the known vacuolar calcium transporters
(Fig. 3), suggesting that the docking-dependent calcium flux
(23) occurs via a novel mechanism. Nevertheless (Fig. 6), these
transporters can work with added Ca21 to partially dissipate

and BJ nyv1D) were incubated in the presence of ATP, cytosol, and
CCCP (20 mM), Bafilomycin (10 mM), or CA (250 mM) where
indicated for 40 min at 27°C and analyzed for trans-SNARE complex
(20). An aliquot was further incubated for 140 min to measure fusion.
(B and C) Release of LMA1 is blocked by CA and rescued by added
Ca21. Salt-washed vacuoles (equivalent to six standard reactions) were
incubated with ATP, Sec18p, LMA1, CoA, and CaM (see Fig. 1) and
20 mM MCLR or 1 mM CA with or without 3 mM Ca21. After 90 min,
vacuoles equivalent to one fusion reaction were transferred to another
tube to measure fusion activity (C). The remaining vacuoles were
assayed for bound LMA1 (B) as described (18). (D) CCCP blocks
LMA1 release. Samples equivalent to five standard reactions were
incubated at 25°C with (E) or without (F) CCCP (30 mM). At the
indicated times, vacuoles were reisolated (5 min, 8,000 3 g, 4°C),
resuspended in 300 ml of PS buffer with 13 PIC and 0.5 mM PMSF,
reisolated, resuspended in 25 ml of PS buffer, and transferred to a fresh
tube. The samples then were analyzed by ‘‘High-Tris’’ SDSyPAGE and
immunoblot with anti-Trx1p antibodies (11). Bound LMA1 was quan-
tified by densitometry and normalized to a standard of pure LMA1
(18). (E) CCCP inhibition of vacuole fusion is partially rescued by
addition of Ca21 and CaM. Salt-washed vacuoles were incubated for
100 min in the presence of ATP and cytosol (1 mgyml) on ice or at
25°C. CCCP (30 mM), Ca21 (1 mM), and CaM (7.5 mM) were added
where indicated. Alkaline phosphatase activity was measured as
described in Methods.

FIG. 4. The membrane potential is required for trans-SNARE
pairing and LMA1 release and can be partially restored by Ca21. (A)
Trans-SNARE complex formation requires the vacuolar membrane
potential. Vacuoles (100 mg) from the two tester strains (DKY vam3D
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DmH1 (Fig. 5A). CA does not directly inhibit fusion through
blocking these transporters, as it still fully inhibits in their
absence (Fig. 3B). Ca21 may partially overcome CA inhibition
(Figs. 3B and 4C) by being pumped into the vacuole by Pmc1p
at the expense of ATP, then being exchanged for protons by
Vcx1p. This model (Fig. 6) is supported by the finding that
Ca21 and CaM can partially restore fusion and acidification to
CA-treated vacuoles (Figs. 4C and 5B). Synaptic membrane
fusion also is triggered by calcium flux gated by an electrical
signal (32, 33). However, regulated exocytosis also occurs in
the absence of a membrane potential as long as Ca21 is

provided to trigger fusion (42). It will be important to deter-
mine whether calcium must interact with CaM at the neural
synapse, as has been shown for vacuole fusion (23).

LMA1 release is the last biochemically defined event that
precedes fusion (18). Each of the late-stage inhibitors (CA,
BAPTA, guanosine 59-[g-thio]triphosphate, mastoparan, and
Microcystin-LR) act upstream of LMA1 release (18). Thus, the
molecular dissection of LMA1 release may provide a critical
assay for the dissection of late fusion events. The recent
reconstitution of the entire vacuole fusion reaction with pro-
teoliposomes from detergent-solubilized vacuoles (12) and
new techniques for large-scale vacuole isolation (N. Margolis
and W.W., unpublished work) suggest that this may be a
practical approach.

We thank Drs. Kyle Cunningham and Andreas Mayer for plasmids,
strains, and discussions. This work was supported by a grant from the
National Institute of General Medical Sciences (to W.W.) and a
fellowship from the Deutsche Forschungsgemeinschaft to C.U.

FIG. 5. Vacuolar acidification. (A) Sensitivity of the acidification
of wild-type and mutant vacuoles to CA, CCCP, and Ca21. Vacuoles
(20 mg) from BJ3505 wild-type or pmc1Dvcx1D strains were incubated
at 27°C for 30 min in the presence (lanes 2–7) or absence of ATP (lane
1). CA (250 mM), CCCP (50 mM), apyrase (40 unitsyml), or Ca21 (5
mM) were added where indicated. Quinacrine (7) was added at 200
mM to all samples just before the start of the incubation. At the end
of the incubation, vacuoles were reisolated (3 min, 8,000 3 g, 4°C),
resuspended in 900 ml of 0.4% Triton X-100 in water, and assayed for
OD430. (B) Partial reversal of CA-mediated block in acidification by
Ca21 and CaM. The experiment was performed as described in A.
Ca21 (1.5 mM) and CaM (10 mM) were added where indicated.

FIG. 6. Working model for vacuole to vacuole fusion and its
regulation. Abbreviations: Sec17p (17), Sec18p (18), Nyv1p, Ykt6p,
and Vti1 (v [individually] or v3), Vam3p (t), Vam7p (s), pro-alkaline
phosphatase (Pro-ALP), alkaline phosphatase (ALP), GTPgs,
guanosine 59-[g-thio]triphosphate. p on the t-SNARE indicates the
activated state of the protein after priming. Inhibitors are written in
italics. Arrows indicate activators, bars indicate inhibitors. See text for
details.
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