
Ripple: A Distributed Medium Access Protocol
for Multi-hop Wireless Mesh Networks

Ray-Guang Cheng, Cun-Yi Wang, and Li-Hung Liao

Department of Electronic Engineering,
National Taiwan University of Science and Technology,

Taipei, Taiwan, R.O.C
crg@mail.ntust.edu.tw

Abstract—Wireless mesh network, a new wireless broadband
access technology, is currently attracting significant attention.
This work proposes a distributed medium access protocol, named
Ripple, for wireless mesh networks (WMNs) under tree topology.
In contrast to existing random-access approaches, Ripple uses a
controlled-access approach to protect nodes from unintentional
packet collisions and maximize the spatial reuse. The
performance of Ripple under an error-free channel was
investigated and the accuracy of the analysis was verified by
simulation. Simulation results also indicated that Ripple achieved
throughput, stability, and QoS enhancement than that of 802.11
DCF under a highly loaded situation in both chain and tree
topologies.

Keywords- medium access control, wireless mesh networks

I. INTRODUCTION
In a multi-hop wireless network, communication between

two nodes is carried out through a number of intermediate
nodes via relaying packets from one node to another. In the past
few years, many researchers have focused on issues of ‘mobile
ad hoc networks (MANETs)’, in which relaying nodes are in
general mobile, and communication is performed between
arbitrary pair of nodes within the same network. Recently, an
increasing number of multi-hop wireless deployments and
proprietary commercial solutions have focused on a class of
networks termed ‘wireless mesh networks (WMNs)’ [1-4]. One
of the potential applications for WMN is to provide high-speed
wireless backhaul links that offers low-cost public access
services in outdoor environment. To forego costly wired
infrastructure, a WMN adopting a tree topology with a single
entry point to the wired Internet will be considered herein [1].
Unlike MANET, the WMN serves as an access network that
employs multi-hop wireless links provided by non-mobile
nodes to relay traffic to and from wired Internet [2]. The
non-mobile nodes (also referred as transit access points [1],
wireless routers [2], or mesh points and mesh access points [3])
forms a wireless backbone and provides multi-hop connectivity
between nomadic users and the entry point(s) (also known as
mesh portals [3]) to the wired Internet [2]. In such an
environment, power consumption is not a primary concern
since relaying nodes are fixed and wire-powered. Due to the
lack of a centralized coordinator, each relaying node should be

operated in a fully distributed manner which results in
inevitable packet collisions and may degrades the network
throughput. Hence, one of the main challenges of WMN is the
provisioning of a proper medium access control (MAC)
protocol that can coordinate the channel access among
neighboring nodes base on limited information exchange.

Many researches has been studied the limitation of adopting
802.11 MAC in wireless ad hoc or mesh environment.
Currently, IEEE 802.11 MAC uses the virtual carrier sensing
with ready-to-send/clear-to-send (RTS/CTS) handshake to
alleviate packet collisions due to hidden node problem.
However, it may not be applicable in WMN. Jangeun and
Sichitiu indicated that RTS/CTS does not correctly solve
hidden terminal problem in a mesh network [4]. Xu and
Saadawi [5] found that RTS/CTS scheduling along a chain can
cause serious TCP fairness problems and backoff inefficiencies.
Li et. al. [6] found that RTS/CTS does not efficiently schedule
transmissions and fails to achieve good schedule in a multi-hop
chain. Xu et. al. [7] found that 802.11 MAC tends to either
sacrifice spatial reuse or allow excessive interference.

Several techniques were proposed to enhance the network
utilization. Jain, et. al. [8] proposed a multi-channel MAC
protocol to mitigate the exposed node problem. Acharya and
Misra [9] proposed a MACA-P method which adopts
spatial-reuse technique to improve channel utilization. They
also proposed a data-driven cut-through medium access
(DCMA) method to reserve channel form the next forwarding
node and thus, reduce the chance of packet collisions. Raguin,
et. al. [10] adopted the concept of DCMA and proposed a
queue-driven cut-through medium access (QCMA) method for
a multiple-queue environment. In QCMA, each node may
select the highest priority packet from its queue and thus, a
certain degree of QoS can be supported. To sum up, existing
approaches enhance the network utilization by reducing hidden
and expose nodes, adopting spatial-reuse, or utilizing
cut-through techniques. However, existing approaches still
adopted a random-access mechanism with exponential backoff
and thus, they all suffer from the same backoff inefficiencies
and fairness problems as that of 802.11 DCF. Inspiring by the
IEEE 802.4 token bus protocol, Ergen, et. al. [11] proposed a
wireless token ring protocol (WTRP) to eliminate the

0-7803-9392-9/06/$20.00 (c) 2006 IEEE

inefficiencies. WTRP aimed at guaranteeing the quality of
service (QoS) of stations rather than the throughput
enhancement. Therefore, the spatial reuse was not applicable.

In [12], we proposed a distributed medium access protocol,
Ripple to enhance the throughput of WMN through spatial
reuse. Different to existing random-access-based protocols,
Ripple adopts a token-passing mechanism to prevent nodes
from unintentional packet collisions backoff and thus, enhances
the network utilization. This paper further extends our work in
[12] to a tree topology. The rest of this paper is organized as
follows. The proposed Ripple protocol is described in Section II,
and its key parameters and their effect on the system
performance are discussed. Section III presents the simulation
results. Conclusions are finally drawn in Section IV.

II. RIPPLE PROTOCOL
Li et al. proved that a node in the chain topology may attain

an optimal utilization of 1/3 by applying spatial-reuse [6]. They
also predicted that, data frames could be forwarded hop-by-hop
without interfering with each other if each node can properly
schedule its frame transmission interval. Under this optimal
condition, the frame-forwarding resembles ripples of water
moving apart from a central location, which is referred as
“ripple phenomenon” herein. However, the optimal condition is
hard to be realized in WMN because the lack of a central
coordinator and the presence of hidden nodes and expose nodes
[2] in WMN. The objective of this work is to propose a wireless
token-passing protocol, named Ripple, to coordinate frame
transmission for nodes in WMN and thus, enable the ripple
phenomenon in the chain and tree topology.

Before going into details, a generalized system model of a

WMN adopting a tree topology is considered herein, as
depicted in Fig. 1. Each node in Fig. 1 is a wireless router which
can generate traffic by itself and forward traffic for other
wireless routers. In the rest of this paper, a node that connects
the WMN to a wired Internet gateway is denoted as a root node
(i.e., Node A1); a node that has more than one child nodes is
denoted as a cross node (i.e., Node C1), and a node that has no
child node is denoted as a leaf node (i.e., Nodes Bj, Dk, Em) for
easy reference. Without loss of generality, the WMN can
accommodate one root node and more than one cross nodes and
leaf nodes. In the tree topology, the downlink transmission
refers to packets transmission along the direction from a parent
node to its child node(s). In contrast, the uplink transmission
refers to packets transmission along the direction from a child
node to its parent node. To simplify the description, the
following assumptions are first made:

 Nodes are stationary [6]. That is, the location of each node
is fixed. Radios of nodes that are not neighbors do not
interfere with each other [6].

 Two separate high-speed wireless channels are allocated for
downlink and uplink transmissions, respectively. The time
required to transmit a data packet is fixed.

Ripple uses six types of frames and four kinds of operational
states. The frame format used in Ripple includes:

 DATA frame: DATA frame carries user information. The
time required to transmit the DATA frame is a constant.

 NULL frame: NULL frame is a DATA frame but carries
no information.

 RTS frame: a node, which has the right to send a DATA
frame, will send an RTS frame.

 CTS frame: the target node that receives an RTS frame will
responses a CTS frame.

 Ready-to-receive (RTR) frame: a node, which has the
right to receive a DATA frame, will send an RTR frame to
the sender if the expected RTS frame is not received.

 ACK frame: a node receives a DATA frame correctly will
response an ACK frame.

Internet
…

BjB2B1

…

…

C1AiA2
A1

D1

D2

Dk

E1

E2

Em

…

Internet
…

BjB2B1

…

…

C1AiA2
A1

D1

D2

Dk

E1

E2

Em

…

Fig. 1. System model

The frame format of RTS, CTS, DATA, and ACK frames are
the same as that defined in 802.11 MAC. The frame format of
an RTR frame resembles that of a CTS frame. The
inter-frame-spaces (IFSs) of DATA, RTS, CTS, and ACK
frames are all set to be the short-IFS (SIFS) as that defined in
802.11. The IFS for RTR frame will be defined later. The four
operational states are:

 Transmit (TX) state: a node which is ready to send a
DATA frame will enter this state.

 Receive (RX) state: a node which is ready to receive a
DATA frame will enter this state.

 Listen state: a node which is a hidden node (i.e., CTS
frame is overheard) or an exposed node (i.e., RTS frame is
overheard) or both will enter this state.

 Idle state: a node which has interrupted by unexpected
conditions during TX, RX, and Listen states will return to
this state. The idle state is also the initial state for all nodes.

Among them, TX, RX, and Listen are normal states while Idle
is the only abnormal state.

The downlink packet transmissions of Ripple is described
below. The result is then extended to accommodate uplink
packet transmissions. In Ripple, the operation of each node
depends only on its state machine. The state transition of each
node is triggered by the transmission or reception of a frame.
Ripple adopts a controlled access mechanism to eliminate the
backoff inefficiencies. Similar to the token-passing protocol,
Ripple utilizes a special frame as a “token” to authorize a node
for sending DATA frame. A tagged node that has the token at
hand is eligible to perform RTS/CTS handshake with the next

forwarding node. The RTR frame is designed to regenerate the
token if the RTS frame is lost. That is, the next forwarding node
may actively send an RTR frame to the tagged node and request
for a DATA frame after RTS timeout. Hence, the IFS of RTR
frame, denoted by IFSRTR, is set to be

IFSRTR = SIFS + TRTS + SIFS = 2SIFS + TRTS, (1)

where TRTS is the time required by a node to transmit an RTS
frame.

In the downlink transmission, Ripple utilizes RTS or RTR
frame as the token. That is, a tagged node that receives an RTS
or an RTR frame has the right to transmit a DATA packet to the
next forwarding node (i.e., the child node of the tagged node).
Note that a cross node may use any pre-defined scheduling
algorithm for selecting a child node to be the next forwarding
node. Figure 2 depicts the finite state machine of Ripple for
downlink packet transmissions. Except for the root node, leaf
nodes, and child nodes of cross node, each node is normally
circulated among TX, Listen, and RX states in turn. Hence,
each node will have the equal chance to utilize the shared
wireless medium in the downlink data transfer. However, the
root node is normally circuited among TX, Listen, Idle states
because it receives the downlink packets from the Internet
gateway through the wire. Similarly, the leaf nodes are
normally circuited among Idle, Listen, RX states because they
do not have child nodes for forwarding downlink packets.
Consider a tagged node running at TX state, the tagged node
sends a DATA (or NULL) frame to the next forwarding node
and expects to receive an ACK frame. Note that the tagged
node may not have to forward the same DATA frame, which is
received from its parent node, to the next forwarding node. That
is, each node may schedule its packet transmission based on the
QoS requirement of packets stored in its queues. By
overhearing the RTS/CTS handshake or RTR frame
broadcasted by its neighboring nodes, the tagged node will
move to Listen state. At Listen state, the tagged node has to
keep silent for network-allocation-vector (NAV), which is
specified in the duration field of the overheard frame header.
The tagged node will expect to receive an RTS frame from its
parent node after the expiry of the NAV. In case that the RTS
frame is lost, the tagged node may actively send an RTR frame
to its parent node to request for transmission after RTS timeout.
That is, Ripple utilizes RTR frame to survive from RTS
transmission failure. In order to exploit spatial reuse, Ripple
also utilizes an RTR frame to trigger new ripples for nodes at
Idle state. Note that child nodes of a cross node are not allowed
to transmit the RTR frame to the cross node in order to prevent
from the collision of RTR frames at cross node. The tagged
node moves to RX state when it is ready to receive a DATA
frame. At RX state, the tagged node will receive a DATA (or
NULL) frame from its parent node and then response an ACK
frame. With the RTS token at hand, the tagged node has to
initiate RTS/CTS handshake with the next forwarding node.
The tagged node should wait for SIFS and move to TX state
again. Note that, during any state, the tagged node is forced to
enter Idle state whenever unexpected errors occur.

Figure 3 illustrates the state transitions and the timing
diagram for a chain of nodes. Initially, all nodes in WMN use
802.11 DCF to communicate asynchronously among themselves

to elect a supernode, which possesses the only RTS token in
WMN, and then move to Idle mode. In Fig. 3, Node n+3 is
elected as the supernode at time t0. Similar to 802.11 DCF,
Node n+3 performs RTS/CTS handshake with its downstream
node (i.e., Node n+4) before transmitting a DATA frame (i.e., a
NULL frame is transmitted if all of its queues are empty). With
RTS token at hand, Node n+4 can sends a DATA frame to its
downstream node after performing RTS/CTS handshake. The
process continues such that DATA frames are forwarded
hop-by-hop without interruption, activating the ripple
phenomenon. Ripple utilizes RTS/CTS handshake for
triggering neighboring nodes’ state transition; preventing
hidden node and exposed node problems [3], and passing RTS
token to the downstream node. For example, at time t0, Nodes
n+2 and n+5 are forced to enter Listen state by overhearing
RTS and CTS frames, respectively, and have to keep silence for
NAV. Figure 3 demonstrates that Ripple utilizes RTR frame to
activate a new ripple if its upstream node is in Idle state (e.g.,
Node n+2 at time t1) or re-generate an interrupted ripple if its
upstream node is in TX state (e.g., Node n+5 at time t2). The
left-hand side of Fig. 3 further illustrates the behavior of nodes
observed at time t3. It showed that Ripple enables the ripple
phenomenon such that two nodes distanced from a spatial-reuse
distance of three nodes can transmit simultaneously without
affecting each other.

TX RXListen

Idle

Receive
DATA

Receive RTR or CTS,
and wait for SIFS

Overhear
RTS, CTS,
RTR

Overhear
CTS or RTR
Timeout

CTS or RTR
Timeout

Receive RTR or CTS,
and wait for SIFS DATA

Timeout
Overhear

RTS,
CTS,
RTR

Receive
DATA

TXTX RXRXListenListen

IdleIdle

Receive
DATA

Receive RTR or CTS,
and wait for SIFS

Overhear
RTS, CTS,
RTR

Overhear
CTS or RTR
Timeout

CTS or RTR
Timeout

Receive RTR or CTS,
and wait for SIFS DATA

Timeout
Overhear

RTS,
CTS,
RTR

Receive
DATA

Fig. 2. Finite state machine: Downlink transmission

The message sequence chart detailing the operation of Ripple
in the presence of a cross node is shown in Fig. 4. For simplicity,
a tree with only two branches was demonstrated (i.e., i = 3, j = 3,
k = 5 and m = 0 in Fig. 1), as illustrated at the top of Fig. 4. In
the example, the cross node (i.e., Node C1) utilized a
Round-Robin method to choose the next forwarding node. The
propagation delay between two adjacent nodes was not
depicted. In the figure, the solid lines refer to message
exchange between two communication parties while the dash
lines refer to messages overheard by neighbors of the
communication parties. It can be found in Fig. 4 that the RTR
frame can be used (e.g., by Node A2) to generate a new ripple or
(e.g., by Node C1) to resume an interrupted ripple from RTS
transmission failure. As demonstrated, the two branches (i.e.,
one for node Bs and the other for node Ds) are independently
operated thanks to spatial reuse. Note that Node B1 and D1 (i.e.,
the child nodes of the cross node) are prohibited to send RTR
frame to Node C1. However, both Node B2 and D2 are free to
trigger a new ripple if the channel is sensed idle for IFSRTR after

the expiry of the NAV at Listen state. The figure also illustrates
that nodes which are separated from a spatial-reuse distance of
three hops (e.g., Nodes A2, D1, and D4) can be simultaneously
transmitted. That is, the optimal channel utilization of 1/3 is
achieved [6]. The result can be easily extended to accommodate
a WMN adopting different scheduling algorithm, different
values of propagation delay (i.e., the operation of Ripple may
not be affected by the variation of propagation delay because
the location of each node is fixed), or variable packet lengths
(i.e., local synchronization among neighboring nodes can still
be guaranteed through the overheard NAV). The
implementation details are not addressed herein due to space
limitation.

DATA

DATA

DATAn+1

n+2

n

RX

TX

Idle

Node

Time

Listen

A
C

K

R
TS

R
TR

A
C

K

R
TS

C
TS

AC
K

A
C

K

DATA

AC
K

R
TS

C
TS

DATA

AC
K

R
TS

C
TS

DATA

AC
K

R
TS

C
TS

R
TS

Idle

Listen

Listen

RX

TX

Listen

RX

TX

Listen

RX

TX

Listen

RX

TX Listen

RX

TX

Listen

RX

TX

Idle TX
DATA

…
Spatial-reuse D

istance

IFSRTR

“ripple phenomenon”

DATA

NAV of Node n+2

R
TR

n+4

n+5

n+3

n+6

n+1

n

n+2

n+3

n+4

n+5

t1 t2 t3

R
TRIFSRTR

t0

DATADATA

DATADATA

DATADATAn+1

n+2

n

RXRX

TXTX

IdleIdle

Node

Time

ListenListen

A
C

K
A

C
K

R
TS

R
TS

R
TR

R
TR

A
C

K
A

C
K

R
TS

R
TS

C
TS

C
TS

AC
K

AC
K

A
C

K
A

C
K

DATADATA

AC
K

AC
K

R
TS

R
TS

C
TS

C
TS

DATADATA

AC
K

AC
K

R
TS

R
TS

C
TS

C
TS

DATADATA

AC
K

AC
K

R
TS

R
TS

C
TS

C
TS

R
TS

R
TS

IdleIdle

ListenListen

ListenListen

RXRX

TXTX

ListenListen

RXRX

TXTX

ListenListen

RXRX

TXTX

ListenListen

RXRX

TXTX ListenListen

RXRX

TXTX

ListenListen

RXRX

TXTX

Idle TXTX
DATADATA

…
Spatial-reuse D

istance

IFSRTR

“ripple phenomenon”

DATADATA

NAV of Node n+2

R
TR

R
TR

n+4

n+5

n+3

n+6

n+1

n

n+2

n+3

n+4

n+5

t1 t2 t3

R
TR

R
TRIFSRTR

t0

Fig. 3. State transitions and timing diagram: Downlink transmission

A2 A3 C1 B1 B2 D1 D2A1

SIFS

SIFS

RTS
CTS

DATA
ACK

NAV

2SIFS+TRTS

RTS
CTS

DATA
ACK

SIFS

RTR
DATA
ACK

RTS
CTS

DATA
ACK

SIFS

RTS
CTS

DATA
ACK

SIFS

NAV

2SIFS+TRTSRTR
DATA
ACK

RTS
CTS

DATA
ACK

SIFS

B3

RTS
CTS

DATA
ACK

SIFS

RTS
CTS

DATA
ACK

SIFS

D3

RTS
CTS

DATA
ACK

SIFS

RTS
CTS

DATA
ACK

SIFS

RTS
CTS

DATA
ACK

SIFS

RTS
CTS

DATA
ACK

SIFS

D4 D5

NAV

2SIFS+TRTSRTR
DATA
ACK

RTS
CTS

DATA
ACK

SIFS

RTS
CTS

DATA
ACK

SIFS

RTS
CTS

DATA
ACK

SIFS

RTS
RTR

DATA
ACK

SIFS

SIFS RTS
CTS

DATA
ACK

RTS
CTS

DATA
ACK

SIFS

SIFS

2SIFS+TRTS

NAV

RTS
CTS

DATA
ACK

RTS
CTS

DATA
ACK

SIFS

RTS
CTS

DATA
ACK

SIFS

NAV

2SIFS+TRTS

NAV

2SIFS+TRTSRTR
DATA
ACK

SIFS RTS
CTS

DATA
ACK

RTS
CTS

DATA
ACK

SIFS

RTS
CTS

DATA
ACK

SIFS

RTS
CTS

DATA
ACK

SIFS

RTS
CTS

DATA
ACK

SIFS

…

Time

Internet

A2 A3 C1 B1 B2 D1 D2A1

SIFS

SIFSSIFS

RTS
CTS

DATA
ACK

RTS
CTS

DATA
ACK

NAV

2SIFS+TRTS

RTS
CTS

DATA
ACK

RTS
CTS

DATA
ACK

SIFS

RTR
DATA
ACK

RTS
CTS

DATA
ACK

RTS
CTS

DATA
ACK

SIFS

RTS
CTS

DATA
ACK

RTS
CTS

DATA
ACK

SIFS

NAV

2SIFS+TRTSRTR
DATA
ACK

RTS
CTS

DATA
ACK

RTS
CTS

DATA
ACK

SIFS

B3

RTS
CTS

DATA
ACK

RTS
CTS

DATA
ACK

SIFS

RTS
CTS

DATA
ACK

SIFS

D3

RTS
CTS

DATA
ACK

RTS
CTS

DATA
ACK

SIFS

RTS
CTS

DATA
ACK

RTS
CTS

DATA
ACK

SIFS

RTS
CTS

DATA
ACK

RTS
CTS

DATA
ACK

SIFS

RTS
CTS

DATA
ACK

RTS
CTS

DATA
ACK

SIFS

D4 D5

NAV

2SIFS+TRTSRTR
DATA
ACK

RTS
CTS

DATA
ACK

RTS
CTS

DATA
ACK

SIFS

RTS
CTS

DATA
ACK

RTS
CTS

DATA
ACK

SIFS

RTS
CTS

DATA
ACK

RTS
CTS

DATA
ACK

SIFS

RTS
RTR

DATA
ACK

RTS
RTR

DATA
ACK

SIFS

SIFS RTS
CTS

DATA
ACK

RTS
CTS

DATA
ACK

RTS
CTS

DATA
ACK

SIFS

SIFS

2SIFS+TRTS

NAV

RTS
CTS

DATA
ACK

RTS
CTS

DATA
ACK

RTS
CTS

DATA
ACK

RTS
CTS

DATA
ACK

SIFS

RTS
CTS

DATA
ACK

RTS
CTS

DATA
ACK

SIFS

NAV

2SIFS+TRTS

NAV

2SIFS+TRTSRTR
DATA
ACK

SIFS RTS
CTS

DATA
ACK

RTS
CTS

DATA
ACK

RTS
CTS

DATA
ACK

RTS
CTS

DATA
ACK

SIFS

RTS
CTS

DATA
ACK

RTS
CTS

DATA
ACK

SIFS

RTS
CTS

DATA
ACK

RTS
CTS

DATA
ACK

SIFS

RTS
CTS

DATA
ACK

RTS
CTS

DATA
ACK

SIFS

…

Time

Internet

Fig. 4. Message sequence chart: Downlink transmission
The downlink packet transmission procedure can be slightly

modified to support the uplink packet transmission. In the
uplink transmission, the roles of sender and receiver are

interchanged. Different to the downlink transmission, a tagged
node that overhears the transmission of a DATA or an ACK
frame (i.e., the tagged node is an exposed node) owns the token.
Hence, the tagged node is eligible to send an RTS frame to the
next forwarding node at the expiry of the overheard NAV. In
the uplink transmission, the default next forwarding node is the
parent node of the tagged node. The only exception is the child
nodes of a cross node, which are not allowed to send the RTS
frame even if it owns a token. Otherwise, RTS packets would
be collided at the cross node. Details of uplink packet
transmission procedure are neglected herein due to the space
limitation.

For a tree topology, the performance of each nodes (i.e., the
root, leaf nodes, child nodes of cross node are excluded), in
Ripple under an error-free channel can be easily derived.
Denote pi,j as the state transition probability from state i to state
j and Pi as the state probability of a tagged node, where i, j ∈
{TX, RX, Listen, Idle}, respectively. In an error-free channel,
pTX,Idle = pRX,Idle = pListen,Idle = 0 and pTX,Listen = pListen,RX = pRX,TX =
1. Thus, it can be shown that PTX = PRX = PListen = 1/3. In other
words, a node attains the optimal utilization of 1/3 under
spatial-reuse and each node has an equal chance to access the
wireless channel. The performance of Ripple under noisy
channel is rather complicated, which is left as our future work.

III Simulation Results

The simulations in this work were performed using NS2, and
each sample was obtained by averaging outcomes collected
within 1500 seconds. In the simulation, both the transmission
range and interference range were assumed to be one-hop
radius. The lengths of RTS, CTS, RTR, and ACK frames were
44, 38, 38, and 38 bytes, respectively, and the link capacity was
1 Mbps [6]. A chain of homogeneous nodes that separated by
equal distance was first studied. The maximum attainable
throughput of the chain under an error-free wireless channel
using both Ripple and standard 802.11 DCF were investigated.
In the following, we will demonstrate the simulation results for
the network topology depicted in Fig. 1. Specifically, a chain
topology (i.e., m = k = 0) with chain length (i+j+1); and, a
symmetric tree topology with two branches (i.e., i = j = k, m = 0,
and the angle subtended by two adjacent branches is 120
degrees) and three branches (i.e., i = j = k = m, and the angle
subtended by two adjacent branches is 90 degrees), both with
tree depth (2i+1) were simulated.

Figure 5(a) shows the effective chain throughput (or
end-to-end throughput) for various chain lengths and different
DATA frame sizes, where the source and sink node were
located at two ends of the chain in the simulation. In this
example, the traffic source was always backlogged (i.e., offered
load = 0.4 Mbps) and the effective chain throughput (or,
end-to-end throughput) excluding the control overhead was
evaluated at the sink node. The accuracy of the analysis was
first verified via simulation. For a chain with only two nodes, it
is found that 802.11 DCF attained the maximum throughput of
about 0.85 Mbps for 1000-byte frames, because there was no
packet collision. However, the throughput of 802.11 DCF for
chains with more than three nodes dramatically decreased to
0.1 Mbps, which is far less than one-third of 0.28 Mbps under

spatial-reuse [3]. Conversely, Ripple always attained the
optimal throughput of 0.28 Mbps, which was irrelative to the
chain length. Figures 5(b) illustrates the effective chain
throughput of Ripple and 802.11 MAC, respectively, under
various offered-load conditions for a chain length of 8 nodes.
802.11 DCF attained a maximum throughput of about 0.2 Mbps
but dropped below 0.1 Mbps as a result of excess collision
under high traffic-load. In contrast, Ripple provides a stable
throughput even under high traffic-load. Figure 5(c) shows the
aggregated throughput of a symmetric tree topology for various
tree depths. In this example, the source is located at the root
node and the sink nodes are located at the end leaf of each
branch. The aggregated throughput is an aggregation of the
effective throughput for the two or three branches. Similar to
the chain topology, Ripple attained a stable throughput while
the performance of 802.11 MAC was severely degraded for
long tree depth.

III. CONCLUSIONS

In [12], we proposed a distributed medium access control
protocol, called Ripple, for WMNs. Ripple includes features of
802.11 DCF but avoids its backoff inefficiencies and excess
collisions. Therefore, it enhances the throughput of WMNs in
chain topology. This paper further extends our work in [12] to
accommodate a tree topology. The major extension we made is
that, in downlink (uplink) transmission, the child nodes of the
cross node are prohibited to send RTR (RTS) to prevent from
packet collisions. Simulation results showed that Ripple
achieved throughput and stability enhancement in both chain
and tree topologies than that of 802.11 DCF under a highly
loaded situation.

REFERENCES

[1] V. Gambiroza, B. Sadeghi, and E. W. Knightly, “End-to-end
performance and fairness in multihop wireless backhaul
networks,” Proc. of ACM MobiCom, Sept. 2004.

[2] R. Bruno, M. Conti, and E. Gregori, “Mesh networks:
Commodity multihop ad hoc networks,” IEEE Communications
Magazine, pp. 123-131, March 2005.

[3] L. Yang, “Issues for mesh media access coordination component
in 11s,” IEEE 802.11-04/0968R13, January 2005.

[4] J. Jangeun and M. L. Sichitiu, “The nomial capacity of wireless
mesh networks,” IEEE Wireless Communications, pp. 8-14, Oct.
2003.

[5] S. Xu and T. Saadawi, “Does the IEEE 802.11 MAC protocol
work well in multihop wireless ad hoc networks?” IEEE
Communications Magazine, P130-137, June 2001.

[6] J. Li, C. Blake, D. S. De Couto, H. I. Lee, and R. Morris,
“Capacity of ad hoc wireless networks,” Proc. of ACM MobiCom,
pp. 61-69, July 2001.

[7] K. Xu, M. Gerla, and S. Bae, "How effective is the IEEE 802.11
RTS/CTS handshake in ad hoc networks?" Proc. of IEEE
Globecom, pp. 72 -76, 2002.

[8] N. Jain, S. R. Das, and A. Nasipuri, “A multichannel CSMA
MAC protocol with receiver-based channel selection for
multihop wireless networks,” Proc. of IEEE ICCCN, October
2001.

[9] A. Acharya and A. Misra, “High-performance architecture for
IP-based multihop 802.11 networks,” IEEE Wireless
Communications, pp.22-28, Oct. 2003.

[10] D. Raguin, M. Kubisch, H. Karl, and A. Woltz, “Queue-driven
cut-through medium access in wireless ad hoc networks,” Proc.
of IEEE WCNC, pp.1909-1914, 2004.

[11] M. Ergen, D. Lee, R. Sengupta, and P. Varaiya, “WTRP –
Wireless token ring protocol,” IEEE Trans. Vehicular
Technology, pp. 1863-1881, vol. 53, no. 6, Nov. 2004.

[12] R. G. Cheng, C. Y. Wang, L. H. Liao and J. S. Yang, “Ripple: A
wireless token-passing protocol for multi-hop wireless mesh
networks,” IEEE Communications Letters, vol. 10, no. 2, Frb.
2006.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

2 3 4 5 6 7 8 9 10 20

Chain Length (Nodes)

Ch
ai

n
Th

ro
ug

hp
ut

 (M
bp

s)

802.11:DATA=1000Bytes,Simulation

802.11:DATA=500Bytes,Simulation

802.11:DATA=64Bytes,Simulation

Ripple:DATA=1000Bytes,Simulation

Ripple:DATA=500Bytes,Simulation

Ripple:DATA=64Bytes,Simulation

Ripple:DATA=1000Bytes,Analysis

Ripple:DATA=500Bytes,Analysis

Ripple:DATA=64Bytes,Analysis

(a) Chain throughput for various chain lengths and different DATA frame size

0.0

0.1

0.2

0.3

0.4

0.10 0.15 0.20 0.25 0.30 0.35 0.40
Offered Load (Mbps)

Ch
ai

n
Th

ro
ug

hp
ut

 (M
bp

s) 802.11

Ripple

(b) Chain throughput for various offered load

0

0.05

0.1

0.15

0.2

0.25

0.3

5 9 13 17 21

Tree Depth (Nodes)

A
gg

re
ga

te
d

Th
ro

ug
hp

ut
 (M

bp
s) Ripple-tree with 2 branches

Ripple-tree with 3 branches
802.11-tree with 2branches
802.11-tree with 3 branches

(c) Aggregated throughput for different tree depth and branches

Fig. 5. Performance evaluation

	Select a link below
	Return to Main Menu
	Return to Previous View

