
Ripple: A Distributed Medium Access Protocol 
for Multi-hop Wireless Mesh Networks 

Ray-Guang Cheng, Cun-Yi Wang, and Li-Hung Liao 
 

Department of Electronic Engineering, 
National Taiwan University of Science and Technology, 

Taipei, Taiwan, R.O.C  
crg@mail.ntust.edu.tw 

 
Abstract—Wireless mesh network, a new wireless broadband 
access technology, is currently attracting significant attention. 
This work proposes a distributed medium access protocol, named 
Ripple, for wireless mesh networks (WMNs) under tree topology. 
In contrast to existing random-access approaches, Ripple uses a 
controlled-access approach to protect nodes from unintentional 
packet collisions and maximize the spatial reuse. The 
performance of Ripple under an error-free channel was 
investigated and the accuracy of the analysis was verified by 
simulation. Simulation results also indicated that Ripple achieved 
throughput, stability, and QoS enhancement than that of 802.11 
DCF under a highly loaded situation in both chain and tree 
topologies. 
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I. INTRODUCTION 
In a multi-hop wireless network, communication between 

two nodes is carried out through a number of intermediate 
nodes via relaying packets from one node to another. In the past 
few years, many researchers have focused on issues of ‘mobile 
ad hoc networks (MANETs)’, in which relaying nodes are in 
general mobile, and communication is performed between 
arbitrary pair of nodes within the same network. Recently, an 
increasing number of multi-hop wireless deployments and 
proprietary commercial solutions have focused on a class of 
networks termed ‘wireless mesh networks (WMNs)’ [1-4]. One 
of the potential applications for WMN is to provide high-speed 
wireless backhaul links that offers low-cost public access 
services in outdoor environment. To forego costly wired 
infrastructure, a WMN adopting a tree topology with a single 
entry point to the wired Internet will be considered herein [1]. 
Unlike MANET, the WMN serves as an access network that 
employs multi-hop wireless links provided by non-mobile 
nodes to relay traffic to and from wired Internet [2]. The 
non-mobile nodes (also referred as transit access points [1], 
wireless routers [2], or mesh points and mesh access points [3]) 
forms a wireless backbone and provides multi-hop connectivity 
between nomadic users and the entry point(s) (also known as 
mesh portals [3]) to the wired Internet [2]. In such an 
environment, power consumption is not a primary concern 
since relaying nodes are fixed and wire-powered. Due to the 
lack of a centralized coordinator, each relaying node should be 

operated in a fully distributed manner which results in 
inevitable packet collisions and may degrades the network 
throughput. Hence, one of the main challenges of WMN is the 
provisioning of a proper medium access control (MAC) 
protocol that can coordinate the channel access among 
neighboring nodes base on limited information exchange. 

Many researches has been studied the limitation of adopting 
802.11 MAC in wireless ad hoc or mesh environment. 
Currently, IEEE 802.11 MAC uses the virtual carrier sensing 
with ready-to-send/clear-to-send (RTS/CTS) handshake to 
alleviate packet collisions due to hidden node problem. 
However, it may not be applicable in WMN. Jangeun and 
Sichitiu indicated that RTS/CTS does not correctly solve 
hidden terminal problem in a mesh network [4]. Xu and 
Saadawi [5] found that RTS/CTS scheduling along a chain can 
cause serious TCP fairness problems and backoff inefficiencies. 
Li et. al. [6] found that RTS/CTS does not efficiently schedule 
transmissions and fails to achieve good schedule in a multi-hop 
chain. Xu et. al. [7] found that 802.11 MAC tends to either 
sacrifice spatial reuse or allow excessive interference. 

Several techniques were proposed to enhance the network 
utilization. Jain, et. al. [8] proposed a multi-channel MAC 
protocol to mitigate the exposed node problem. Acharya and 
Misra [9] proposed a MACA-P method which adopts 
spatial-reuse technique to improve channel utilization. They 
also proposed a data-driven cut-through medium access 
(DCMA) method to reserve channel form the next forwarding 
node and thus, reduce the chance of packet collisions. Raguin, 
et. al. [10] adopted the concept of DCMA and proposed a 
queue-driven cut-through medium access (QCMA) method for 
a multiple-queue environment. In QCMA, each node may 
select the highest priority packet from its queue and thus, a 
certain degree of QoS can be supported. To sum up, existing 
approaches enhance the network utilization by reducing hidden 
and expose nodes, adopting spatial-reuse, or utilizing 
cut-through techniques. However, existing approaches still 
adopted a random-access mechanism with exponential backoff 
and thus, they all suffer from the same backoff inefficiencies 
and fairness problems as that of 802.11 DCF. Inspiring by the 
IEEE 802.4 token bus protocol, Ergen, et. al. [11] proposed a 
wireless token ring protocol (WTRP) to eliminate the 
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inefficiencies. WTRP aimed at guaranteeing the quality of 
service (QoS) of stations rather than the throughput 
enhancement. Therefore, the spatial reuse was not applicable. 

In [12], we proposed a distributed medium access protocol, 
Ripple to enhance the throughput of WMN through spatial 
reuse. Different to existing random-access-based protocols, 
Ripple adopts a token-passing mechanism to prevent nodes 
from unintentional packet collisions backoff and thus, enhances 
the network utilization. This paper further extends our work in 
[12] to a tree topology. The rest of this paper is organized as 
follows. The proposed Ripple protocol is described in Section II, 
and its key parameters and their effect on the system 
performance are discussed. Section III presents the simulation 
results. Conclusions are finally drawn in Section IV. 

II. RIPPLE PROTOCOL 
Li et al. proved that a node in the chain topology may attain 

an optimal utilization of 1/3 by applying spatial-reuse [6]. They 
also predicted that, data frames could be forwarded hop-by-hop 
without interfering with each other if each node can properly 
schedule its frame transmission interval. Under this optimal 
condition, the frame-forwarding resembles ripples of water 
moving apart from a central location, which is referred as 
“ripple phenomenon” herein. However, the optimal condition is 
hard to be realized in WMN because the lack of a central 
coordinator and the presence of hidden nodes and expose nodes 
[2] in WMN. The objective of this work is to propose a wireless 
token-passing protocol, named Ripple, to coordinate frame 
transmission for nodes in WMN and thus, enable the ripple 
phenomenon in the chain and tree topology. 

 
Before going into details, a generalized system model of a 

WMN adopting a tree topology is considered herein, as 
depicted in Fig. 1. Each node in Fig. 1 is a wireless router which 
can generate traffic by itself and forward traffic for other 
wireless routers. In the rest of this paper, a node that connects 
the WMN to a wired Internet gateway is denoted as a root node 
(i.e., Node A1); a node that has more than one child nodes is 
denoted as a cross node (i.e., Node C1), and a node that has no 
child node is denoted as a leaf node (i.e., Nodes Bj, Dk, Em) for 
easy reference. Without loss of generality, the WMN can 
accommodate one root node and more than one cross nodes and 
leaf nodes. In the tree topology, the downlink transmission 
refers to packets transmission along the direction from a parent 
node to its child node(s). In contrast, the uplink transmission 
refers to packets transmission along the direction from a child 
node to its parent node. To simplify the description, the 
following assumptions are first made: 

 Nodes are stationary [6]. That is, the location of each node 
is fixed. Radios of nodes that are not neighbors do not 
interfere with each other [6]. 

 Two separate high-speed wireless channels are allocated for 
downlink and uplink transmissions, respectively. The time 
required to transmit a data packet is fixed. 

Ripple uses six types of frames and four kinds of operational 
states. The frame format used in Ripple includes: 

 DATA frame: DATA frame carries user information. The 
time required to transmit the DATA frame is a constant. 

 NULL frame: NULL frame is a DATA frame but carries 
no information. 

 RTS frame: a node, which has the right to send a DATA 
frame, will send an RTS frame. 

 CTS frame: the target node that receives an RTS frame will 
responses a CTS frame. 

 Ready-to-receive (RTR) frame: a node, which has the 
right to receive a DATA frame, will send an RTR frame to 
the sender if the expected RTS frame is not received. 

 ACK frame: a node receives a DATA frame correctly will 
response an ACK frame. 
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Fig. 1. System model 

The frame format of RTS, CTS, DATA, and ACK frames are 
the same as that defined in 802.11 MAC. The frame format of 
an RTR frame resembles that of a CTS frame. The 
inter-frame-spaces (IFSs) of DATA, RTS, CTS, and ACK 
frames are all set to be the short-IFS (SIFS) as that defined in 
802.11. The IFS for RTR frame will be defined later. The four 
operational states are: 

 Transmit (TX) state: a node which is ready to send a 
DATA frame will enter this state. 

 Receive (RX) state: a node which is ready to receive a 
DATA frame will enter this state. 

 Listen state: a node which is a hidden node (i.e., CTS 
frame is overheard) or an exposed node (i.e., RTS frame is 
overheard) or both will enter this state. 

 Idle state: a node which has interrupted by unexpected 
conditions during TX, RX, and Listen states will return to 
this state. The idle state is also the initial state for all nodes. 

Among them, TX, RX, and Listen are normal states while Idle 
is the only abnormal state. 

The downlink packet transmissions of Ripple is described 
below. The result is then extended to accommodate uplink 
packet transmissions. In Ripple, the operation of each node 
depends only on its state machine. The state transition of each 
node is triggered by the transmission or reception of a frame. 
Ripple adopts a controlled access mechanism to eliminate the 
backoff inefficiencies. Similar to the token-passing protocol, 
Ripple utilizes a special frame as a “token” to authorize a node 
for sending DATA frame. A tagged node that has the token at 
hand is eligible to perform RTS/CTS handshake with the next 



forwarding node. The RTR frame is designed to regenerate the 
token if the RTS frame is lost. That is, the next forwarding node 
may actively send an RTR frame to the tagged node and request 
for a DATA frame after RTS timeout. Hence, the IFS of RTR 
frame, denoted by IFSRTR, is set to be 

IFSRTR = SIFS + TRTS + SIFS = 2SIFS + TRTS,              (1) 

where TRTS is the time required by a node to transmit an RTS 
frame. 

In the downlink transmission, Ripple utilizes RTS or RTR 
frame as the token. That is, a tagged node that receives an RTS 
or an RTR  frame has the right to transmit a DATA packet to the 
next forwarding node (i.e., the child node of the tagged node). 
Note that a cross node may use any pre-defined scheduling 
algorithm for selecting a child node to be the next forwarding 
node. Figure 2 depicts the finite state machine of Ripple for 
downlink packet transmissions. Except for the root node, leaf 
nodes, and child nodes of cross node, each node is normally 
circulated among TX, Listen, and RX states in turn. Hence, 
each node will have the equal chance to utilize the shared 
wireless medium in the downlink data transfer. However, the 
root node is normally circuited among TX, Listen, Idle states 
because it receives the downlink packets from the Internet 
gateway through the wire. Similarly, the leaf nodes are 
normally circuited among Idle, Listen, RX states because they 
do not have child nodes for forwarding downlink packets. 
Consider a tagged node running at TX state, the tagged node 
sends a DATA (or NULL) frame to the next forwarding node 
and expects to receive an ACK frame. Note that the tagged 
node may not have to forward the same DATA frame, which is 
received from its parent node, to the next forwarding node. That 
is, each node may schedule its packet transmission based on the 
QoS requirement of packets stored in its queues. By 
overhearing the RTS/CTS handshake or RTR frame 
broadcasted by its neighboring nodes, the tagged node will 
move to Listen state. At Listen state, the tagged node has to 
keep silent for network-allocation-vector (NAV), which is 
specified in the duration field of the overheard frame header. 
The tagged node will expect to receive an RTS frame from its 
parent node after the expiry of the NAV. In case that the RTS 
frame is lost, the tagged node may actively send an RTR frame 
to its parent node to request for transmission after RTS timeout. 
That is, Ripple utilizes RTR frame to survive from RTS 
transmission failure. In order to exploit spatial reuse, Ripple 
also utilizes an RTR frame to trigger new ripples for nodes at 
Idle state. Note that child nodes of a cross node are not allowed 
to transmit the RTR frame to the cross node in order to prevent 
from the collision of RTR frames at cross node. The tagged 
node moves to RX state when it is ready to receive a DATA 
frame. At RX state, the tagged node will receive a DATA (or 
NULL) frame from its parent node and then response an ACK 
frame. With the RTS token at hand, the tagged node has to 
initiate RTS/CTS handshake with the next forwarding node. 
The tagged node should wait for SIFS and move to TX state 
again. Note that, during any state, the tagged node is forced to 
enter Idle state whenever unexpected errors occur.  

Figure 3 illustrates the state transitions and the timing 
diagram for a chain of nodes. Initially, all nodes in WMN use 
802.11 DCF to communicate asynchronously among themselves 

to elect a supernode, which possesses the only RTS token in 
WMN, and then move to Idle mode. In Fig. 3, Node n+3 is 
elected as the supernode at time t0. Similar to 802.11 DCF, 
Node n+3 performs RTS/CTS handshake with its downstream 
node (i.e., Node n+4) before transmitting a DATA frame (i.e., a 
NULL frame is transmitted if all of its queues are empty). With 
RTS token at hand, Node n+4 can sends a DATA frame to its 
downstream node after performing RTS/CTS handshake. The 
process continues such that DATA frames are forwarded 
hop-by-hop without interruption, activating the ripple 
phenomenon. Ripple utilizes RTS/CTS handshake for 
triggering neighboring nodes’ state transition; preventing 
hidden node and exposed node problems [3], and passing RTS 
token to the downstream node. For example, at time t0, Nodes 
n+2 and n+5 are forced to enter Listen state by overhearing 
RTS and CTS frames, respectively, and have to keep silence for 
NAV. Figure 3 demonstrates that Ripple utilizes RTR frame to 
activate a new ripple if its upstream node is in Idle state (e.g., 
Node n+2 at time t1) or re-generate an interrupted ripple if its 
upstream node is in TX state (e.g., Node n+5 at time t2). The 
left-hand side of Fig. 3 further illustrates the behavior of nodes 
observed at time t3. It showed that Ripple enables the ripple 
phenomenon such that two nodes distanced from a spatial-reuse 
distance of three nodes can transmit simultaneously without 
affecting each other. 
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Fig. 2. Finite state machine: Downlink transmission 

The message sequence chart detailing the operation of Ripple 
in the presence of a cross node is shown in Fig. 4. For simplicity, 
a tree with only two branches was demonstrated (i.e., i = 3, j = 3, 
k = 5 and m = 0 in Fig. 1), as illustrated at the top of Fig. 4. In 
the example, the cross node (i.e., Node C1) utilized a 
Round-Robin method to choose the next forwarding node. The 
propagation delay between two adjacent nodes was not 
depicted. In the figure, the solid lines refer to message 
exchange between two communication parties while the dash 
lines refer to messages overheard by neighbors of the 
communication parties. It can be found in Fig. 4 that the RTR 
frame can be used (e.g., by Node A2) to generate a new ripple or 
(e.g., by Node C1) to resume an interrupted ripple from RTS 
transmission failure. As demonstrated, the two branches (i.e., 
one for node Bs and the other for node Ds) are independently 
operated thanks to spatial reuse. Note that Node B1 and D1 (i.e., 
the child nodes of the cross node) are prohibited to send RTR 
frame to Node C1. However, both Node B2 and D2 are free to 
trigger a new ripple if the channel is sensed idle for IFSRTR after 



the expiry of the NAV at Listen state. The figure also illustrates 
that nodes which are separated from a spatial-reuse distance of 
three hops (e.g.,  Nodes A2, D1, and D4) can be simultaneously 
transmitted. That is, the optimal channel utilization of 1/3 is 
achieved [6]. The result can be easily extended to accommodate 
a WMN adopting different scheduling algorithm, different 
values of propagation delay (i.e., the operation of Ripple may 
not be affected by the variation of propagation delay because 
the location of each node is fixed), or variable packet lengths 
(i.e., local synchronization among neighboring nodes can still 
be guaranteed through the overheard NAV). The 
implementation details are not addressed herein due to space 
limitation. 
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Fig. 3. State transitions and timing diagram: Downlink transmission 
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Fig. 4. Message sequence chart: Downlink transmission 
The downlink packet transmission procedure can be slightly 

modified to support the uplink packet transmission. In the 
uplink transmission, the roles of sender and receiver are 

interchanged. Different to the downlink transmission, a tagged 
node that overhears the transmission of a DATA or an ACK 
frame (i.e., the tagged node is an exposed node) owns the token. 
Hence, the tagged node is eligible to send an RTS frame to the 
next forwarding node at the expiry of the overheard NAV. In 
the uplink transmission, the default next forwarding node is the 
parent node of the tagged node. The only exception is the child 
nodes of a cross node, which are not allowed to send the RTS 
frame even if it owns a token. Otherwise, RTS packets would 
be collided at the cross node. Details of uplink packet 
transmission procedure are neglected herein due to the space 
limitation. 

For a tree topology, the performance of each nodes (i.e., the 
root, leaf nodes, child nodes of cross node are excluded), in 
Ripple under an error-free channel can be easily derived. 
Denote pi,j as the state transition probability from state i to state 
j and Pi as the state probability of a tagged node, where i, j ∈ 
{TX, RX, Listen, Idle}, respectively. In an error-free channel, 
pTX,Idle =  pRX,Idle  = pListen,Idle = 0 and pTX,Listen =  pListen,RX  = pRX,TX = 
1. Thus, it can be shown that PTX = PRX = PListen = 1/3. In other 
words, a node attains the optimal utilization of 1/3 under 
spatial-reuse and each node has an equal chance to access the 
wireless channel. The performance of Ripple under noisy 
channel is rather complicated, which is left as our future work. 

III Simulation Results 

The simulations in this work were performed using NS2, and 
each sample was obtained by averaging outcomes collected 
within 1500 seconds. In the simulation, both the transmission 
range and interference range were assumed to be one-hop 
radius. The lengths of RTS, CTS, RTR, and ACK frames were 
44, 38, 38, and 38 bytes, respectively, and the link capacity was 
1 Mbps [6]. A chain of homogeneous nodes that separated by 
equal distance was first studied. The maximum attainable 
throughput of the chain under an error-free wireless channel 
using both Ripple and standard 802.11 DCF were investigated. 
In the following, we will demonstrate the simulation results for 
the network topology depicted in Fig. 1. Specifically, a chain 
topology (i.e., m = k = 0) with chain length (i+j+1); and, a 
symmetric tree topology with two branches (i.e., i = j = k, m = 0, 
and the angle subtended by two adjacent branches is 120 
degrees) and three branches (i.e., i = j = k = m, and the angle 
subtended by two adjacent branches is 90 degrees), both with 
tree depth (2i+1) were simulated. 

Figure 5(a) shows the effective chain throughput (or 
end-to-end throughput) for various chain lengths and different 
DATA frame sizes, where the source and sink node were 
located at two ends of the chain in the simulation. In this 
example, the traffic source was always backlogged (i.e., offered 
load = 0.4 Mbps) and the effective chain throughput (or, 
end-to-end throughput) excluding the control overhead was 
evaluated at the sink node.  The accuracy of the analysis was 
first verified via simulation. For a chain with only two nodes, it 
is found that 802.11 DCF attained the maximum throughput of 
about 0.85 Mbps for 1000-byte frames, because there was no 
packet collision. However, the throughput of 802.11 DCF for 
chains with more than three nodes dramatically decreased to 
0.1 Mbps, which is far less than one-third of 0.28 Mbps under 



spatial-reuse [3]. Conversely, Ripple always attained the 
optimal throughput of 0.28 Mbps, which was irrelative to the 
chain length. Figures 5(b) illustrates the effective chain 
throughput of Ripple and 802.11 MAC, respectively, under 
various offered-load conditions for a chain length of 8 nodes. 
802.11 DCF attained a maximum throughput of about 0.2 Mbps 
but dropped below 0.1 Mbps as a result of excess collision 
under high traffic-load. In contrast, Ripple provides a stable 
throughput even under high traffic-load. Figure 5(c) shows the 
aggregated throughput of a symmetric tree topology for various 
tree depths. In this example, the source is located at the root 
node and the sink nodes are located at the end leaf of each 
branch. The aggregated throughput is an aggregation of the 
effective throughput for the two or three branches. Similar to 
the chain topology, Ripple attained a stable throughput while 
the performance of 802.11 MAC was severely degraded for 
long tree depth. 

III. CONCLUSIONS 

In [12], we proposed a distributed medium access control 
protocol, called Ripple, for WMNs. Ripple includes features of 
802.11 DCF but avoids its backoff inefficiencies and excess 
collisions. Therefore, it enhances the throughput of WMNs in 
chain topology. This paper further extends our work in [12] to 
accommodate a tree topology. The major extension we made is 
that, in downlink (uplink) transmission, the child nodes of the 
cross node are prohibited to send RTR (RTS) to prevent from 
packet collisions. Simulation results showed that Ripple 
achieved throughput and stability enhancement in both chain 
and tree topologies than that of 802.11 DCF under a highly 
loaded situation. 
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(a) Chain throughput for various chain lengths and different DATA frame size 

0.0

0.1

0.2

0.3

0.4

0.10 0.15 0.20 0.25 0.30 0.35 0.40
Offered Load (Mbps)

Ch
ai

n 
Th

ro
ug

hp
ut

 (M
bp

s) 802.11

Ripple

 
(b) Chain throughput for various offered load 
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(c) Aggregated throughput for different tree depth and branches 

Fig. 5. Performance evaluation
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