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A four-component dusty plasma consisting of electrons, ions, and negatively as well as positively
charged dust grains has been considered. Shock waves may exist in such a four-component dusty
plasma. The basic characteristics of shock waves have been theoretically investigated by employing
reductive perturbation technique (RPT). It is found that negative as well as positive shock potentials
are present in such dusty plasma. The present results may be useful for understanding the existence
of nonlinear potential structures that are observed in different regions of space (viz. cometary tails,
lower and upper mesosphere, Jupiter’s magnetosphere, interstellar media, etc).
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1. Introduction

The nonlinear behaviour of charged dust particles
has received much attention in the recent years because
of its vital role in understanding of electrostatic density
perturbations and nonlinear potential structures which
are observed in different regions of space environ-
ments, namely lower and upper mesosphere, cometary
tails, planetary rings, planetary magnetosphere, inter-
planetary space, interstellar media, etc. [1 – 4]. Most of
the dusty plasma studies have been confined in con-
sidering that the dust grains are negatively charged
[5 – 11]. Very recent it has been found that there are
some plasma systems, particularly in space plasma en-
vironment, where positively charged dust grains are
present and also play a significant role [2, 3, 12, 13].
There are three basic mechanisms by which the dust
grains in the plasma system mentioned above can be
positively charged [14]. These three mechanisms are
the following: (i) photoemission in the presence of a
flux of ultraviolet (UV) photons, (ii) thermionic emis-
sion induced by radiative heating, and (iii) secondary
emission of electrons from the surface of the dust
grains.

Chow et al. [12] have shown theoretically that due
to the size effect on secondary emission insulating dust
grains with different sizes in space plasmas can have
the opposite polarity (smaller ones being positive and
larger ones being negative). This is mainly due to the

0932–0784 / 10 / 0100–0085 $ 06.00 c© 2010 Verlag der Zeitschrift für Naturforschung, Tübingen · http://znaturforsch.com

fact that the excited secondary electrons have shorter
(longer) distance to travel to reach the surface of the
smaller (larger) dust grains [12].

There are also direct evidences for the existence
of both positively and negatively charged dust parti-
cles in different regions of space, viz. cometary tails
[2, 3, 12], upper mesosphere [13], Jupiter’s magneto-
sphere [15], etc. It has been suggested that the co-
existence of positively and negatively charged dust are
also present in laboratory plasmas [2, 3, 16]. On ba-
sis of theoretical predictions and satellite observations,
Mamun and Shukla [17] have considered a very sim-
ple dusty plasma system, which assumes positively and
negatively charged dust particles only, and have theo-
retically investigated the properties of linear/nonlinear
electrostatic waves that may propagate in such a dusty
plasma system. This simple system is only valid if a
complete depletion of background electrons and ions
in the dusty plasma is considered. However, a com-
plete depletion of background electrons and ions in
most of the cases is not possible. Recently, Armina
et al. [18] have considered a four-component dusty
plasma containing positively and negatively charged
dust and Boltzmann distributed electrons and ions.
They have investigated the possibility for the forma-
tion of shock waves and also found the existence shock
structures in this four-component dusty plasma. Re-
cent observations [19, 20] show that the ion distribu-
tion does not follow a Boltzmann distribution and in
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these cases the non-thermal distribution of ions is sug-
gested.

In our present work, we considered a four-com-
ponent unmagnetized dusty plasma system contain-
ing Boltzmann distributed electrons, non-thermal dis-
tributed ions, and also positively (smaller size) and
negatively (larger size) charged dust grains.

The manuscript is organized as follows: The basic
equations governing the dusty plasma system are pre-
sented in Section 2. The nonlinear Burgers equation for
the propagation of dust acoustic (DA) shock waves is
derived in Section 3. The stationary shock wave solu-
tion of the Burgers equation is analyzed in Section 4.
Finally, a brief discussion is presented in Section 5.

2. Governing Equations

We consider a one-dimensional (1D), unmagnetized
collision less dusty plasma consisting of Boltzmann
distributed electrons, non-thermal distributed ions, and
positively and negatively charged dust grains. The non-
linear dynamics of DA waves is governed by
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the non-thermal parameter that determines the num-
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3. Derivation of Burgers Equation

Now, we derive the Burgers equation from (6) –
(10) by employing the reductive perturbation technique
(RPT) and the stretch coordinates [21] ξ = ε1/2(X −
V0T ), and τ = ε3/2T , where ε is a smallness parame-
ter measuring the weakness of the nonlinearity and V0
is phase speed of the DA waves normalized by C1. We
now express (6) – (10) in terms of ξ and τ as
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N1 = (1 + µe− µi)N2 − µeeσψ

+ µi(1 + β1ψ + β1ψ2)e−ψ ,
(15)

where η1 = ε1/2η10 and η2 = ε1/2η20 are assumed
[17].

We can expand the variables N1, U1, N2, U2, and ψ
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(28) is the linear dispersion relation for the DA waves
propagating in our dusty plasma system. Similarly,
substituting (16) – (20) into (11) – (15) and equating
the coefficient of ε5/2 from (11) – (14) and ε2 from (15)
one obtains
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where the nonlinear coefficient A and the dissipation
coefficient C are given by
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(34) is known as Burgers equation which can describe
the nonlinear propagation of DA waves in our four-
component dusty plasma system.

4. Solution of Burgers Equation

The stationary solution of this Burgers equation is
obtained by transforming the independent variables ξ
and τ to ζ = ξ −U0τ and τ = τ , where U0 is a constant
velocity normalized by C1, and imposing the appropri-

ate boundary conditions, viz. ψ(1) → 0, ∂ψ(1)

∂ζ
→ 0, at

ζ → ∞. Thus, one can express the stationary solution
of the Burgers equation as
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Fig. 1. A = 0 (β vs. µi) curves for α = 0.01, σ = 0.5, µe =
0.2 (solid curve), µe = 0.3 (dotted curve), µe = 0.4 (dashed
curve).

Fig. 2. Positive shock potential profiles (ψ vs. ζ curves) for
α = 0.01, σ = 0.5, µi = 0.5, µe = 0.3, η10 = 0.1, η20 =
0.1 β = 400 (solid curve), β = 500 (dotted curve), β = 600
(dashed curve).

∆ =
2C
U0

. (39)

It is observed from (37) – (39) that the amplitude
(width) of the shock waves increases (decreases) as U0
increases. It is also clear from (35), (37), and (38) that
shock potential profile is positive (negative) when A is
positive (negative). To find the different range of values
of β and µi for which the positive and negative poten-
tial profiles exist, we obtain A = 0 (β vs. µi) curves.
The A = 0 (β vs. µi) curves are displayed in Figure 1.
From these A = 0 curves, we can have positive (nega-
tive) shock potential profiles for the parameters whose
values lie above (below) the curves.

Fig. 3. Negative shock potential profiles (ψ vs. ζ curves) for
α = 0.01, σ = 0.5, µi = 0.5, µe = 0.3, η10 = 0.1, η20 = 0.1
β = 50 (solid curve), β = 40 (dotted curve), β = 30 (dashed
curve).

Fig. 4. Positive amplitude profiles (ψm vs. µi curves) for α =
0.01, σ = 0.5, β = 400, η10 = 0.1, η20 = 0.1, µe = 0.2 (solid
curve), µe = 0.3 (dotted curve), µe = 0.4 (dashed curve).

Figure 2 and Figure 3 show how positive and neg-
ative shock potentials vary with β . Figure 2 shows
the positive shock potential profile, where the poten-
tial decreases with the increase of β . Figure 3 shows
the negative shock potential profile, where the poten-
tial decreases with decrease of β . Figure 4 and Figure 5
show the positive (negative) amplitude (ψm) profiles of
shock waves and how it varies with µe. Figure 4, for the
positive amplitude profile shows that the amplitude of
the shock waves increases as µe increases. Figure 5, for
the negative amplitude profile shows that the amplitude
of shock waves decreases as µe increases. Figure 6 and
Figure 7 show how the width of shock waves varies
(β = 400 for Fig. 6 and β = 40 for Fig. 7) with µe.
For both the values of β , the width (∆) of shock waves
always decreases as µe increases.
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Fig. 5. Negative amplitude profiles (ψm vs. µi curves) for
α = 0.01, σ = 0.5, β = 40, η10 = 0.1, η20 = 0.1, µe = 0.2
(solid curve), µe = 0.3 (dotted curve), µe = 0.4 (dashed
curve).

Fig. 6. Width profile (∆ vs. µi curves) for α = 0.01, σ = 0.5,
β = 400, η10 = 0.1, η20 = 0.1, µe = 0.2 (solid curve), µe =
0.3 (dotted curve), µe = 0.4 (dashed curve).

5. Discussion

We have considered unmagnetized dusty plasma
containing mobile positive and negative charged dust,
Boltzmann electrons, and non-thermal distributed ions,
and have theoretically investigated the basic features of
the DA shock waves by employing the reductive per-
turbation technique (RPT). It has been found in (35)
that if we consider there is no positive dust grains in
the plasma system, i. e. z2 = 0, hence α = 0 then A is
always negative. It indicates only the existence of neg-
ative shock potentials in the plasma system. We have
then investigated the effect of coexistence of positive
and negative dust grains, and we found that after cer-
tain values of α and β (which corresponds to the pres-

Fig. 7. Width profile (∆ vs. µi curves) for α = 0.01, σ = 0.5,
β = 40, η10 = 0.1, η20 = 0.1, µe = 0.2 (solid curve), µe = 0.3
(dotted curve), µe = 0.4 (dashed curve).

ence of certain number of positive dust), one can have
positive shock potential structures in the dusty plasma
system. Armina et al. [18] found the similar result
though they have considered the plasma system con-
taining positive and negative dust grains, Boltzmann
electrons and ions. The following features have been
noticed in this theoretical investigation: (i) the ampli-
tude of both the positive and negative shock poten-
tial structures increases with increasing of U0, (ii) the
width of both the positive and negative shock potential
structures decreases with increasing of U0, (iii) the pos-
itive and negative shock potentials are almost doubled
when ion distribution is considered as non-thermal in-
stead of Boltzmann ions [18], (iv) the potential of
the positive shock structures decreases with increas-
ing of β , (v) the potential of the negative shock struc-
tures increases with increasing of β , (vi) the ampli-
tude and the width of the DA shock waves are pos-
itive for β = 400 and both are decreasing with in-
creasing of µe, (vii) the amplitude of the DA shock
waves is negative for β = 40 and is increasing with
increasing of µe, and (viii) the width of the DA shock
waves is also decreasing for β = 40 with increasing
of µe.

It would be possible that the shock negative poten-
tial may trap positively charged dust particles which
can attract dust particles of opposite polarity to form
larger sized dust or to be coagulated into extremely
large sized neutral dust in cometary tails, upper meso-
sphere, Jupiter’s magnetosphere or even in laboratory
experiments.

The parameters chosen in our numerical calcula-
tions are completely relevant to different regions of
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space, viz. cometary tails [2, 3, 12], mesosphere [13];
Jupiter’s magnetosphere [15], etc. In conclusion, we
stress that our theoretical investigation and results may

also be applied to laboratory dusty plasma devices
which will be able to produce a plasma containing pos-
itive and negative dust grains.
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