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Multipartite W -type state is determined by its single-particle reduced density matrices
among all W -type states
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It is known that the n-qubit W -type state is determined by its bipartite reduced density matrices. In this paper,
we show that the multipartite W -type state is uniquely determined by its reduced density matrices among W -type
states in the sense of local unitary equivalence.
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I. INTRODUCTION

With entanglement being a proven asset to information
processing and computational tasks, much effort has been
spent on quantifying it as a resource and numerous results
have been obtained. It is extremely difficult to give a perfect
description of the entanglement in the multipartite case, even
though it is well understood for the bipartite pure state case.

One important approach is to consider their interconvertibil-
ity through manipulations that do not require quantum commu-
nication, which is to determine whether one can interconvert
between two given states |�〉 and |�〉 by local operation. A
widely studied equivalence relation of multipartite state space
is stochastic local operations and classical communication
(SLOCC) [1–3]: |�〉 and |�〉 are considered to be SLOCC
equivalent if they can be reversibly converted from one to
the other by operations belonging to the class of stochastic
local operations and classical communication. On the other
hand, if only local unitaries are allowed, the problem become
very interesting and significant: local unitaries (LU) do not
change entanglement, and LU equivalent states have the
same entanglement (both for type and amount). Thus, a LU
equivalent relationship can be considered as one key solution
of the characterization of multipartite entanglement. Two
multipartite states |�〉 and |�〉 are called LU equivalent if there
exist unitaries U1, . . . ,Un such that |�〉 = (U1 ⊗ · · · ⊗ Un)
|�〉. Generally, it is difficult to determine whether two given
multipartite states are LU equivalent, while it might be easier
in the SLOCC case.

In this paper, we study a special case of the following
interesting problem: how to check if two pure quantum states
are LU equivalent, provided they lie in the same SLOCC class.
In particular, we are most interested in the SLOCC class of the
|W 〉 state, whose entanglement has attracted a lot of attention
[4–6]. For the n-qubit pure quantum state, it was proved that
the maximum degree of entanglement (measured in terms
of the concurrence) between any pair is equal to 2/n [4] and
the maximum bound is achieved when the state is |W 〉n =

1√
n

(|0 · · · 01〉 + · · · + |10 · · · 0〉). For two n-partite pure states
which are SLOCC equivalent to |W 〉n, i.e., the W -type state, it
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was shown that the n-qubit W -type state is determined by its
bipartite reduced density matrices in [5]. Here, we generalize
this result to show that the W -type state is determined by its
single-particle reduced density matrices. More precisely, we
show that two W -type states are LU equivalent if and only
if they share the spectra of single-particle reduced density
matrices.

II. MAIN RESULT

The following lemma gives a very nice characterization of
the W -type state up to local unitaries [7,8]. Moreover, it relates
the W -type pure state to a n + 1-dimensional real vector.

Lemma. Any W -type pure state is LU equivalent to
√

x|0 · · · 0〉 + √
c1|0 · · · 01〉 + · · · + √

cn|10 · · · 0〉,
with some ck > 0 and x � 0.

Proof. Suppose |ψ〉 = (A1 ⊗ A2 ⊗ · · · ⊗ An)|W 〉n, with
Ak being an all nonsingular 2 × 2 matrix. For any Ak ,
there is a unitary Vk such that Ak = VkBk , with Bk being
an upper triangle matrix. Thus, |ψ〉 is LU equivalent to
(B1 ⊗ B2 ⊗ · · · ⊗ Bn)|W 〉n, that is,

d|0 · · · 0〉 + d1|0 · · · 01〉 + · · · + dn|10 · · · 0〉,
for complex d,dk . One can find the diagonal local unitaries to
transform it into the wanted formalism.

Now we can present our main result as follows:
Theorem 1. The multipartite W state is uniquely determined

by its single-particle reduced density matrices. In other words,
for two given W -type states |ϕ〉,|ψ〉 ∈ H1 ⊗ H2 ⊗ · · · ⊗ Hn,
if their reduced density matrices enjoys the same spectra, then
|ϕ〉,|ψ〉 are LU equivalent.

Proof. Without loss of generality, assume that |ϕ〉,|ψ〉 are
given as

|ϕ〉 = √
u|0 · · · 0〉 + √

a1|0 · · · 01〉 + · · · + √
an|10 · · · 0〉,

|ψ〉 = √
v|0 · · · 0〉 +

√
b1|0 · · · 01〉 + · · · +

√
bn|10 · · · 0〉.

If their reduced density matrices satisfy det ρk = det σk for all
k, then the following holds for all 1 � k � n:

ak

n∑
j �=k

aj = det ρk = det σk = bk

n∑
j �=k

bj .
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One can obtain that ak = bk for any 1 � k � n by proving
the following lemma. Thus, u = 1 − ∑

ak = 1 − ∑
bk = v,

which means that |ϕ〉 = |ψ〉.
The following interesting lemma completes the proof of

Theorem 1.
Lemma 2. {ak : 1 � k � n} and {bk : 1 � k � n} are two

sets of positive numbers with n � 3; if

ak

n∑
j �=k

aj = bk

n∑
j �=k

bj (1)

is true for any 1 � k � n, then ak = bk holds for any 1 � k � n.
Proof. Consider (1) as equations of {ak : 1 � k � n}; it is

sufficient to show that

ak

n∑
j �=k

aj = xk/4 (2)

has at most one positive root, where xk = 4bk

∑n
j �=k bj .

Let A = ∑n
j=1 aj ; we have

ak = A ±
√

A2 − xk

2
,

where

xk = 4bk

n∑
j �=k

bj = 4ak(A − ak) � (ak + A − ak)2 = A2.

There is at most one k such that ak � A/2, that is,

ak = A+
√

A2−xk

2 . Without loss of generality, suppose the
largest element of {ak : 1 � k � n} is a1, then for any k � 2,

ak = A−
√

A2−xk

2 and a1 = A − ∑n
j=2 aj .

We only need to show that there is at most one solution,
which satisfies Eq. (3) or Eq. (4), for given x1,x2, . . . ,xn > 0:

n∑
k=1

(
A −

√
A2 − xk

2

)
= A, (3)

A +
√

A2 − x1

2
+

n∑
k=2

(
A −

√
A2 − xk

2

)
= A. (4)

Equations (3) and (4) are just f (A) = 0 and g(A) = 0,
respectively, where

f (y) = −2y +
n∑

k=1

(
xk

y +
√

y2 − xk

)
,

g(y) =
n∑

k=2

(
√

y2 − xk) − [
√

y2 − x1 + (n − 2)y].

Case 1: Suppose there is some r > 0 such that f (r) = 0. It
is direct to verify that f (y) is a strictly monotone decreasing
function on [0, + ∞), which implies that f (y) has at most one
root.

Assume g(s) = 0 holds for some s > 0. Then, x1 � xk for
any k, otherwise g(s) < 0 by noticing s >

√
s2 − xk . Let z =√

s2 − x1, and for k > 1, zk = √
x1 − xk , then 0 � zk � √

x1.

First, we show that r = √
x1. To do so, we suppose

r >
√

x1. Since f (y) is monotone decreasing, we have

0 = f (r) < f (
√

x1)

= −2
√

x1 +
n∑

i=1

xi√
x1 + √

x1 − xi

⇒
n∑

k=2

√
x1 − xk < (n − 2)

√
x1

⇒
n∑

k=2

zk < (n − 2)
√

x1.

Define a real function for any l > 0:

hl(y2,y3, . . . ,yn) =
n∑

k=2

√
l2 + y2

k .

Invoking the concavity of function hz(y2,y3 . . . ,yn), 0 � zk �√
x1 and

∑n
k=2 zk < (n − 2)

√
x1, we have the following:

n∑
k=2

√
s2 − xk =

n∑
k=2

√
z2 + z2

k = hz(z2,z3, . . . ,zn)

< g(0,
√

x1, . . . ,
√

x1) =
√

s2 − x1 + (n − 2)s.

But g(s) = 0. This is a contradiction.
Thus, in this case, we know that r = √

x1. One can also
obtain that g(

√
x1) = 0 from f (

√
x1) = 0.

Now, suppose there are s1 > s0 > 0 such that g(s1) =
g(s0) = 0. Assume t = s2

1 − s2
0 , and we have

(n − 2)s1 +
√

s2
1 − x1

=
n∑

k=2

√
s2

1 − xk =
n∑

k=2

√
t + s2

0 − xk

= h√
t

(√
s2

0 − x2,

√
s2

0 − x3, . . . ,

√
s2

0 − xn

)
.

According to g(s0) = 0, we have
∑n

k=2

√
s2

0 − xk = (n− 2)s0 +√
s2

0 − x1. Noting that
√

s2
0 − xk < s0, we invoke the concavity

of hz(y2,y3, . . . ,yn) again and obtain

h√
t

(√
s2

0 − x2,

√
s2

0 − x3, . . . ,

√
s2

0 − xn

)

< h√
t (0,s0, . . . ,s0) = (n − 2)s1 +

√
s2

1 − x1,

which is a contradiction from g(s1) = 0. Therefore, g(y) can
have, at most, one root. Thus, f (y) has, at most, one root. If
f (r) = 0 and g(s) = 0, then r = s = √

x1.
Case 2: Suppose f (y) has no root. As we discussed above,

g(y) has, at most, one root. Thus, there is, at most, one solution,
which satisfies Eq. (3) or Eq. (4). Obviously, we can choose
A = ∑n

k=1 bk; then, ak = bk is the only possible case.

III. CONCLUSION

In this short paper, we show that the entanglement of
W -type states is uniquely determined by their reduced density
matrices. It would be quite interesting to generalize this
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argument to the SLOCC class of the symmetric state, for
instance, the Dicke state.

Note added in proof. Recently, we have learned about the
independent work by Sawicki et al. [9], in which the three-
qubit case is studied and they left the conjecture of the n-qubit
W -type state in their previous version. Our result provides a
positive answer to that conjecture.
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