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École Polytechnique de Montréal, Montréal
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Abstract

This paper presents a survey of the research on the Vehicle Routing Problem with
Time Windows (VRPTW), an extension of the Capacitated Vehicle Routing Problem.
In the VRPTW, the service at each customer must start within an associated time
window and the vehicle must remain at the customer location during service. Soft
time windows can be violated at a cost while hard time windows do not allow for a
vehicle to arrive at a customer after the latest time to begin service. We first present a
multi-commodity network flow formulation with time and capacity constraints for the
VRPTW. Approximation methods proposed in the literature to derive upper bounds
are then reviewed. Then we explain how lower bounds can be obtained using op-
timal approaches, namely, Lagrangean relaxation and column generation. Next, we
provide branching and cutting strategies that can be embedded within these optimal
approaches to produce integer solutions. Special cases and extensions to the VRPTW
follow as well as our conclusions.

Résumé

Cet article synthèse porte sur les récents développements concernant le problème
du routage de véhicules sous des contraintes de fenêtres de temps. Dans ce problème, le
service à un client doit débuter à l’intérieur d’un intervalle de temps. Celui-ci peut être,
soit relaché au prix d’une certaine pénalité, soit rigide, auquel cas, il n’est pas permis de
dépasser la limite supérieure. Nous présentons un modèle de réseau multi-flots avec des
contraintes de temps et de capacité. Les méthodes heuristiques permettant de calculer
des bornes supérieures sont d’abord présentées. Suivent les modèles d’optimisation
basés sur la relaxation lagrangienne et la génération de colonnes pour évaluer des
bornes inférieures. Enfin, on présente les stratégies de coupes et de branchements
liées à ces méthodes afin de déterminer des solutions entières. L’article se termine par
l’étude de cas particuliers et d’extensions ainsi que nos conclusions.

À venir dans/Forthcoming in:

The Vehicle Routing Problem, Chapter 7, Paolo Toth and Daniele Vigo (eds), SIAM
Monographs on Discrete Mathematics and Applications, SIAM, Philadelpia, Pa.
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The Vehicle Routing Problem with Time Windows (VRPTW) is the extension of the
CVRP where the service at each customer must start within an associated time window
and the vehicle must remain at the customer location during service. Soft time windows
can be violated at a cost while hard time windows do not allow for a vehicle to arrive at
a customer after the latest time to begin service. In the latter case, if it arrives before
the customer is ready to begin service, it waits. We will concentrate on hard time window
scenarios where research has flourished over the last two decades.

As mentioned in Chapter 1, the VRPTW is NP-hard. Indeed, even finding a feasible
solution to the VRPTW with a fixed fleet size is itself a NP-complete problem (Savels-
bergh [77]). Hence, the early work on the VRPTW has been case study oriented (Pullen
and Webb [73]; Knight and Hofer [56]; Madsen [65]). Later research shifted focus to the de-
sign of heuristics capable of solving realistic size problems and the development of effective
optimal approaches.

This chapter is organized as follows. The first section presents a multi-commodity
network flow formulation with time and capacity constraints for the VRPTW. Approxi-
mation methods proposed in the literature to derive upper bounds are then reviewed in
Section 2. The following section explains how lower bounds can be obtained using opti-
mal approaches, namely, Lagrangean relaxation and column generation. Next, Section 4
provides branching and cutting strategies that can be embedded within these optimal
approaches to produce integer solutions through a branch-and-bound scheme. Then, Sec-
tions 5 and 6 present special cases and extensions to the VRPTW, respectively. We review
computational experience with leading algorithms in Section 7. Finally, conclusions are
drawn in Section 8.

1 Problem Formulation

Starting from the notation given in Chapter 1, the VRPTW is defined on the network
G = (V, A) where the depot is represented by the two nodes 0 and n + 1. All feasible
vehicle routes correspond to paths in G that start from node 0 and end at node n + 1. A
time window is also associated with nodes 0 and n + 1, i.e., [a0, b0] = [an+1, bn+1] = [E, L],
where E and L represent the earliest possible departure from the depot and the latest
possible arrival at the depot, respectively. Moreover, zero demands and service times are
defined for these two nodes, that is, d0 = dn+1 = s0 = sn+1 = 0. Feasible solutions exist
only if a0 = E ≤ min

i∈V \{0}
bi − t0i and bn+1 = L ≥ min

i∈V \{0}
ai + si + ti0. Note also that an arc

(i, j) ∈ A can be eliminated due to temporal considerations, if ai +si + tij > bj , or capacity
limitations, if di+dj > C, or by other factors. Finally, let us mention that when vehicles are
allowed to remain at the depot, especially in the case where the primary objective consists
of minimizing the number of vehicles used, the arc (0, n+1) with c0,n+1 = t0,n+1 = 0 must
be added to the arc set A.

We next present a mathematical programming formulation for the VRPTW involving
two types of variables: flow variables xijk, (i, j) ∈ A, k ∈ K, equal to 1 if arc (i, j) is used
by vehicle k, and 0 otherwise; and time variables wik, i ∈ V, k ∈ K, specifying the start of
service at node i when serviced by vehicle k.
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Formulation. The VRPTW can then be formally described as the following multi-commodity
network flow model with time window and capacity constraints:

(VRPTW) min
∑
k∈K

∑
(i,j)∈A

cijxijk (1)

subject to
∑
k∈K

∑
j∈Δ+(i)

xijk = 1, ∀i ∈ N (2)

∑
j∈Δ+(0)

x0jk = 1, ∀k ∈ K (3)

∑
i∈Δ−(j)

xijk −
∑

i∈Δ+(j)

xjik = 0, ∀k ∈ K, ∀j ∈ N (4)

∑
i∈Δ−(n+1)

xi,n+1,k = 1, ∀k ∈ K (5)

xijk(wik + si + tij − wjk) ≤ 0, ∀k ∈ K, ∀(i, j) ∈ A (6)

ai(
∑

j∈Δ+(i)

xijk) ≤ wik ≤ bi(
∑

j∈Δ+(i)

xijk), ∀k ∈ K, ∀i ∈ N (7)

E ≤ wik ≤ L, ∀k ∈ K, ∀i ∈ {0, n + 1} (8)∑
i∈N

di

∑
j∈Δ+(i)

xijk ≤ C, ∀k ∈ K (9)

xijk ≥ 0, ∀k ∈ K, ∀(i, j) ∈ A (10)
xijk binary, ∀k ∈ K, ∀(i, j) ∈ A. (11)

The objective function (1) of this nonlinear formulation expresses the total cost.
Given that N = V \ {0, n + 1} represents the set of customers, constraints (2) restrict
the assignment of each customer to exactly one vehicle route. Next, constraints (3)–(5)
characterize the flow on the path to be followed by vehicle k. Additionally, constraints (6)–
(8) and (9) guarantee schedule feasibility with respect to time considerations and capacity
aspects, respectively. Note that for a given k, constraints (7) force wik = 0 whenever
customer i is not visited by vehicle k. Finally, (11) impose binary conditions on the flow
variables.

The binary conditions (11) allow constraints (6) to be linearized as:

(7.6a) wik + si + tij − wjk ≤
(

1 − xijk

)
Mij , ∀k ∈ K, ∀(i, j) ∈ A,

where Mij are large constants. Furthermore, Mij can be replaced by max{bi+si+tij−aj , 0},
(i, j) ∈ A, and constraints (6) or (7.6a) need only be enforced for arcs (i, j) ∈ A, such that
Mij > 0; otherwise, when max{bi + si + tij − aj , 0}=0, these constraints are satisfied for
all values of wik, wjk and xijk.
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Network Lower Bound. This can be derived by relaxing the time and capacity con-
straints (6)–(9). Generally, the bound deteriorates as time window width increases and/or
capacity constraints become tighter. It is often of poor quality as there is usually an
integrality gap with respect to the number of vehicles. Note however that if the latter
constraints are not binding and if ai = bi, for all i ∈ N , we obtain the fixed schedule
problem for which the network lower bound is optimal.

Linear Programming Lower Bound. This bound is obtained as the solution to the lin-
ear program using constraints (7.6a) in place of (6) and with the binary requirements (11)
omitted. This is the above network flow problem with the additional time and capacity
constraints. Nevertheless, in many cases, this bound is no better than the network re-
laxation bound. This is because it is relatively easy to obtain a fractional near optimal
linear programming solution to problem (1)–(10) for which the time constraints are inac-
tive. To see this, set the time variables at the center of their respective time window, i.e.,
wik = (ai + bi)/2, i ∈ N, k ∈ K. Then, constraints (7.6a) are satisfied if, for all (i, j) ∈ A
and k ∈ K:

(
ai + bi

2

)
+ si + tij −

(
aj + bj

2

)
≤ (1 − xijk)(bi + si + tij − aj).

Since any existing arc (i, j) ∈ A satisfies ai + si + tij − bj ≤ 0, and constraints (7.6a)
are only defined for arcs (i, j) such that bi + si + tij − aj > 0, the previous constraint set
can be rewritten as:

xijk ≤ 1
2
(1 +

bj − ai − si − tij
bi + si + tij − aj

), ∀k ∈ K, ∀(i, j) ∈ A.

In the above inequality, the right hand side is greater than or equal to 1
2 . Therefore,

(7.6a) is always satisfied if xijk ≤ 1
2 , for all (i, j) ∈ A, k ∈ K, such that bi +si +tij −aj > 0.

A similar argument can be used for the capacity constraints.

Algorithms. Much stronger lower bounds can be derived by decomposing the VRPTW
model into intelligently selected blocks and using these in the solution process. This re-
quires an extensive effort and is the subject of Section 3. In the next section, we focus
on the derivation of upper bounds through approximate methods. Virtually all methods
to be described in these two sections conduct some form of preprocessing. This involves
reducing time window width and eliminating infeasible arcs. These processes are described
at length in Desrosiers et al. [35].

2 Upper Bounds: Heuristic Approaches

Given the inherent computational difficulty of the VRPTW, a variety of heuristics have
been reported in the literature, mostly for the hard time window version. In this section,
we review some of these approximation methods.
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Route Construction. These algorithms build a feasible solution by inserting at every
iteration an unrouted customer into a current partial route. This process is performed
either sequentially, one route at a time, or in parallel, where several routes are consid-
ered simultaneously. Two key questions are posed in the design of such methods: Which
customer to select next for insertion? And, where will it be inserted? To address them,
researchers have considered criteria involving the minimum additional distance and time,
maximum savings, and others.

Sequential insertion heuristics were proposed by Solomon [83]. His extensive com-
putational results highlighted a two-phase insertion algorithm. In the first phase, each
unrouted customer is assigned its best feasible insertion position based on the minimum
additional distance and time required. In the second, the method selects the customer to
insert using a maximum savings concept. Solomon [82] also showed that the worst-case
ratio of this and many other approximation methods on n-customer problems is at least of
order n. A parallel variant of the above insertion procedure was suggested by Potvin and
Rousseau [71].

Route Improvement. These methods iteratively modify the current solution by perform-
ing local searches for better neighboring solutions. Generally, a neighborhood comprises
the set of solutions that can be reached from the present one by swapping a subset of
r arcs between solutions. An r-exchange is implemented only if it leads to an improved
feasible solution. It can be performed within and/or between routes. The process termi-
nates when a r-optimal solution is found, that is, one that cannot be improved by further
r-interchanges.

Early route improvement procedures were proposed by Russell [75], Cook and Rus-
sell [21], and Baker and Schaffer [5]. Even though these authors kept r small, r=2 or 3,
the neighborhoods generated still proved very large. This led to effective, but severely
time consuming methods. To alleviate this problem, later procedures relied on OR-opt
exchanges (Or [67]) which only consider currently adjacent customers for 2- and 3-opt
interchanges. Solomon, Baker, and Schaffer [84] extended this method to the VRPTW
by also accounting for the time orientation of a route. That is, at each iteration, up to
three adjacent customers are shifted to a later position on the same route, between two
currently consecutive customers. Schedule shifts are also used to speed up the screening
of infeasible solutions. The efficient implementation of this process and of the objective
function evaluation has also been addressed by Savelsbergh ([77], [78] and [79]). Recently,
further suggestions have been offered by Kindervater and Savelsbergh [55], and Cordone
and Wolfler Calvo [26].

Another OR-opt based algorithm has been suggested by Thompson and Psaraftis [91].
They define the neighborhood of the current solution in terms of feasible transfers of sets of
demands belonging to adjacent customers. The exchanges are attempted among a subset
of routes that form a cyclic permutation. The authors implemented a method based on 2-
and 3-cyclic 1-transfers.

Composite Heuristics. These methods blend route construction and improvement al-
gorithms. Kontoravdis and Bard [61] have devised a heuristic that combines a greedy
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heuristic and randomization to produce initial routes in parallel. These are then improved
through local search. As part of this phase, certain routes may be eliminated. The authors
also proposed three lower bounds for the fleet size. Two are based on Bin Packing struc-
tures generated by the capacity or time window constraints. Another is derived from the
associated graph created by pairs of customers who have incompatible demands or time
windows.

Russell [76] developed a procedure that embeds route improvement within the tour
construction process. The rationale is that this may alleviate some of the difficulties that
tour improvement algorithms have to subsequently improve initial solutions. He proposes to
switch customers between routes as well as the elimination of routes during the construction
process.

Cordone and Wolfler Calvo [27] use similar ideas in the design of a composite heuris-
tic, where local search is performed hierarchically. First, within a classical 2- and 3-opt
exchange framework, they attempt to decrease the number of routes by moving a route into
others, one customer at a time. Second, another heuristic is used to try to step away from
a local optimum. This procedure resolves the problem with a partly modified objective
function since the current solution may not be a local optimum for the related objective.

Metaheuristics. Metaheuristics are the core of recent work on approximation methods
for the VRPTW, and mainly include simulated annealing, tabu search and evolutionary
algorithms such as genetic search. Unlike local search heuristics that terminate once a
local optimum has been reached, these methods are aimed at exploring a larger subset
of the solution space in the hope of finding a near-optimal solution. Whereas simulated
annealing depends mostly on random steps to escape local optima, tabu search uses short
and long term memory to avoid cycling and orient the search toward unexplored regions of
the solution space. Evolutionary algorithms are derived from an analogy with the natural
evolution process and consist of iteratively selecting, recombining and mutating encoded
solutions in order to obtain superior individuals.

In recent years, several efficient tabu search approaches have been proposed. Taillard
et al. [87] described a metaheuristic based on tabu search for the VRP with soft time
windows. By strongly penalizing any lateness, the same approach can also be used to
address the problem with hard time windows. The metaheuristic relies on the concept of
adaptive memory first introduced by Rochat and Taillard [74] and on the decomposition
and reconstruction procedure previously proposed by Taillard [88] for the VRP. The adap-
tive memory is in fact a pool of routes taken from the best solutions visited during the
search. This memory is first partially filled with routes produced by a randomized inser-
tion procedure based on Solomon’s I1 heuristic (Solomon [83]). At each iteration of the
metaheuristic, a solution is constructed, through a randomized selection process, from the
routes in the adaptive memory. This solution is then improved through repeated calls to
the tabu search heuristic. The routes of the resulting solution are then stored in the adap-
tive memory (provided that the memory is not full or that the solution is better than the
worst solution stored in memory) and the process continues until some stopping criterion
is met.
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The calls to the tabu search heuristic are driven by a decomposition and reconstruc-
tion mechanism that partitions (through a sweep procedure) the current solution into a
number of disjoint subsets of routes. Each subset is then processed by a different tabu
search and the best routes found for every subset are merged to form the new solution for
the next decomposition and reconstruction step. These steps are repeated for a certain
number of iterations, and the decomposition changes from one iteration to the next by
choosing a different starting angle for creating partitions through the sweep procedure.
The tabu search is quite standard and consists of choosing at each iteration the best non-
tabu solution in the neighborhood of the current solution. This neighborhood is created
through an exchange procedure, called CROSS exchange, that swaps sequences of consecu-
tive customers between two routes. This operator generalizes both the 2-opt* (Potvin and
Rousseau [72]) and Or-opt (Or [67]) exchanges, but is a special case of the λ-interchanges
(Osman [68]) since it restricts the subsets of customers chosen in each route to be consec-
utive. To optimize individual routes, the neighborhood is enlarged by including CROSS
exchanges that apply to a single route: two edges are removed from a route, and the
segment between the two edges is moved at another location within the same route.

Whereas most tabu search heuristics are based on a two-phase approach in which an
improvement procedure is invoked after an initial solution has been completely constructed,
a metaheuristic embedding reactive tabu search in the parallel construction approach of
Russell [76] was developed by Chiang and Russell [18]. Reactive tabu search was first
proposed by Battiti and Tecchiolli [6] and consists of dynamically varying the size of the
tabu list during the search process: the list size is increased if identical solutions occur
too frequently, and is decreased if no feasible solution can be found because all feasible
moves are tabu. Using various customer ordering rules and criteria for measuring the best
insertion points, the procedure first constructs six different solutions by gradually inserting
customers and calling the tabu search heuristic on the partial solutions. The best of these
solutions is then used as a starting point for the final call to the heuristic. In all steps, the
λ-interchange mechanism (Osman [68]) is used to generate the neighborhood and two types
of exchanges are allowed: switch one customer from one route to another and exchange
two customers that belong to different routes. A very similar approach, embedding a tabu
list enhanced simulated annealing algorithm within a parallel construction procedure, was
also proposed by the same authors (Chiang and Russell [17]).

Other tabu search heuristics for the VRPTW were also developed by Carlton [16],
Potvin et al. [70] and Brandão [15]. Recently, Cordeau, Laporte, and Mercier [25] intro-
duced a tabu search heuristic that generates a single initial solution and applies a very
simple exchange procedure for a predetermined number of iterations. An exchange re-
moves a chosen customer from its current route and inserts it into the route of a different
vehicle by using a least-cost insertion criterion. When the search terminates, exchanges
within the routes of the best identified solution are performed by a post-optimizer that
uses a specialized TSPTW heuristic (Gendreau et al. [43]). A diversification mechanism
based on solution attributes is used to ensure a broad exploration of the solution space.
The heuristic was also enhanced to deal with different extensions of the VRPTW. Specif-
ically, using the algorithmic framework previously proposed by Cordeau, Gendreau and
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Laporte [23] for the Periodic VRP and the Multi-Depot VRP, the authors derived a uni-
fied tabu search procedure capable of handling these generalizations of the VRPTW. The
heuristic was adapted to these environments by introducing a new type of exchange that
modifies the combination of visit days or the depot assigned to a customer. In addition,
Cordeau and Laporte [24] showed that the Site Dependent VRPTW can also be solved
using the same methodology. In the latter problem, several types of vehicle are available
and compatibility constraints restrict the choice of vehicle that can visit each customer.

Another alternative to the two-phase construction and improvement approach used
in most metaheuristics is a guided local search method described by Kilby, Prosser, and
Shaw [54]. The guided local search paradigm is a memory-based approach that shares
similarities with tabu search, but operates by augmenting the cost function with a penalty
term based on how near the search moves to previously visited local minima, thus encour-
aging diversification. The method is used to drive a local search heuristic that modifies
the current solution by performing one of four moves: 2-opt exchanges within a route,
switching a customer from one route to another, exchanging customers that belong to two
different routes, and swapping the ends of two routes. Instead of building an initial solu-
tion with a complex procedure, all customers are first assigned to a virtual vehicle whereas
the routes for the actual vehicles are left empty. Because a penalty is associated with not
performing a visit, a feasible solution will be constructed in the process of minimizing cost.
The guided local search algorithm starts from this solution and performs a series of moves
until a local minimum is reached. The objective function is then changed by adding a term
that penalizes the presence of the arcs used in the solution. The search simply iterates
by finding new local minima and accumulating more penalties until a stopping criterion is
met.

Metaheuristics combining genetic algorithms, simulated annealing and tabu search
were proposed by Thangiah, Osman, and Sun [90]. Initial solutions for the metaheuristics
are obtained by either the Push-Forward insertion method (Solomon [83]) or a sectoring
heuristic based on genetic algorithms. This heuristic first clusters the customers using
the genetic algorithm and then routes the customers within each sector using a cheap-
est insertion method. At each iteration, the crossover operator exchanges a randomly
selected portion of the sector divisions between selected individuals to produce offsprings
for the next generation. The simulated annealing algorithm starts from an initial solution
produced by either of these methods and tries to identify an improved solution at each it-
eration using the λ-interchange mechanism of Osman [68]. In order to diversify the search
process and avoid moves that result in cycles, the simulated annealing algorithm is in fact
combined with tabu search, and moves are thus selected at each iteration from a list of
non-tabu candidates. The search process allows for intermediate infeasible solutions by
using an objective function that imposes penalties on capacity and time window constraint
violations. The authors also compared these metaheuristics with a less sophisticated local
search descent method with moves selected from the set of λ-interchanges.

Homberger and Gehring [48] proposed two evolution strategies for the VRPTW. Like
genetic algorithms, evolution strategies belong to the class of evolutionary algorithms, and
both methods manipulate populations of individuals that represent solutions to an opti-
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mization problem. However, evolution strategies do not encode individuals. Instead, the
evolution process is simulated on problem solutions and the search operators manipulate
these solutions directly. The two solution methods described by the authors are based on
the popular (μ, λ) evolution strategy. Starting from a population P (t) with μ individuals,
subsets of individuals are randomly selected and recombined to yield a total of λ > μ
offsprings. Each offspring is then subjected to a mutation operator and the μ most fitted
offsprings are finally chosen to form the new population P (t+1). The fitness of an individ-
ual is normally proportional to the objective function value of the corresponding solution.
Since the parents are not involved in the selection process, deterioration may occur during
the evolution and the search may thus escape from a local optimum.

In the first method, new individuals are generated directly through mutations and
no recombinations take place. Mutations are obtained by performing one or several moves
from the families of Or-opt (Or [67]), 2-opt* (Potvin and Rousseau [72]) and λ-interchanges
(Osman [68]). In the second method, offsprings are generated through a two-step recom-
bination procedure in which three individuals are involved. To initialize both methods,
the individuals of a starting population are generated by means of a stochastic approach
based on the savings algorithm of Clarke and Wright [20]. Throughout the evolution, the
fitness criterion first discriminates individuals by the number of vehicles used, and then by
total distance traveled. One important drawback of this approach is that the two methods
tend to produce solutions of inconsistent quality from one test instance to another. As a
result, choosing between the two strategies is very difficult and both methods should be
used to ensure that a good quality solution is obtained for any given instance. Related
work on genetic algorithms has been conducted by Potvin and Bengio [69], Blanton and
Wainwright [9] and Thangiah and Petrovic [89].

To date, these metaheuristics have produced excellent quality solutions but also have
to contend with two main difficulties. First, they are very time consuming in comparison
with local search heuristics. Second, finding appropriate transformations that change a
current feasible solution into another is a challenge. This is relatively simple for the
classical vehicle routing problem (see the survey paper by Golden et al. [45]) as well as for
the VRPTW, but it becomes extremely difficult for most extensions encountered in real-
world applications, such as multiple depots, heterogeneous fleet of vehicles, driver work
rule restrictions, and others. An interesting application of tabu search to a real-world
problem is described in Semet and Taillard [81].

Parallel Implementations. This line of research has been followed to explore whether
tabu search methods retain solution quality when computing time is truncated. Paral-
lelization consists of partitioning the neighborhood among several processors. The results
of their searches are fedback to a master processor which, in turn, supplies them with fresh
information. Schulze and Fahle [80] report encouraging results. Badeau et al. [4] examine
a parallel implementation of the heuristic by Taillard et al. [87]. The authors conclude that
parallelization of the sequential algorithm maintains solution quality, for equal computing
efforts. This implies a substantial speed increase in practice.
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Optimization-Based Heuristics. Koskosidis, Powell, and Solomon [62] exploit a mixed
integer programming model to generalize the Fisher and Jaikumar [40] heuristic for prob-
lems with soft time windows. At each iteration, customers are assigned to vehicles by
solving a Capacitated Clustering Problem. The route and schedule of each vehicle is then
derived by solving the corresponding Traveling Salesman Problem (TSP) with soft time
windows. The TSP solutions also generate the improved approximate clustering costs to
be used at the next iteration.

Approximation methods can also be derived directly from optimization algorithms,
by heuristically solving different phases of the process. More specifically, this includes
partial exploration of a branch-and-bound tree. For example, one can obtain an integer
solution by using a depth-first strategy and then explore the tree for the remaining available
CPU time. Alternatively, elimination of branches on heuristic ground rules accelerate the
decision process and may provide quite good solutions.

Asymptotically Optimal Heuristics. Such a method, called the Location Based Heuris-
tic (LBH), is proposed by Bramel and Simchi-Levi [12] and represents another generaliza-
tion of the Fisher and Jaikumar [40] approach. That is, while Koskosidis, Powell, and
Solomon [62] assign customers to vehicles by solving a capacitated clustering problem,
Bramel and Simchi-Levi [12] transform the VRPTW into a Capacitated Location Prob-
lem with Time Windows (CLPTW). This problem consists of determining where vehicles
should be housed given a set of possible depot locations and which customers they should
serve.

The constraints forcing each customer to be served by exactly one vehicle are relaxed
and the resulting problem is separable by site and solved through Lagrangean relaxation.
For a given set of multipliers, the solution to the Lagrangean problem provides information
used to construct feasible solutions to the CLPTW and the VRPTW. By identifying each
possible depot location with a customer site, the reduced costs of the N problems are
used to determine seed customers and the set customers that can feasibly be associated
with each seed. The cost of this solution is then compared to the cost of the best known
solution and the multipliers are updated to start a new iteration. The heuristic terminates
when the step size reaches a preset value. The authors use probabilistic analysis to prove
that the heuristic is asymptotically optimal. Note that the LBH variant for the VRP was
shown earlier to be asymptotically optimal by Bramel and Simchi-Levi [11]. Furthermore,
since the LBH is an extension of the Generalized Assignment Heuristic of Fisher and
Jaikumar [40], this also exhibits asymptotically optimal behavior (see [13]).

3 Lower Bounds from Decomposition Approaches

In this section, we present two decomposition approaches that derive lower bounds for the
VRPTW. Other work on optimization methods includes the early papers by Christofides,
Mingozzi and Toth [19] and Kolen, Rinnooy Kan, and Trienekens [60]. Their methods are
based on dynamic programming and state space relaxation.
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3.1 Lagrangean Relaxation

Lagrangean relaxation is a popular decomposition approach that can be used for differ-
ent VRPTW formulations and variants. The usual tradeoff between ease of solving the
Lagrangean subproblem and the quality of the bound obtained is straightforward for the
VRPTW. If the difficult time and capacity related constraints are relaxed, the resulting
Lagrangean subproblem is a pure network flow problem, for which the Integrality Prop-
erty holds (see Geoffrion [44]). The Lagrangean bound will then be no better than the
linear programming lower bound. As discussed above, the integrality gap will generally be
too large to be explored by branch-and-bound. To improve the Lagrangean bound, one
should then retain the complicating constraints in the Lagrangean subproblem and relax
part of the network flow constraints. Choosing these appropriately preserves a constrained
shortest path structure for the Lagrangean problem. At present, this type of structure
constitutes the basis of the most successful decomposition approaches for the VRPTW
(Lagrangean relaxations, bundle methods, and column generation).

Specifically, given the set of multipliers α = (αi, i ∈ N) associated with constraints
(2) requiring that each customer be visited once, the Lagrangean subproblem L(α) ob-
tained by relaxing these constraints in the objective function is defined as:

min
∑
k∈K

∑
(i,j)∈A

cijxijk +
∑
k∈K

∑
i∈N

αi(1 −
∑

j∈Δ+(i)

xijk)

subject to (3)–(11).

This subproblem involves a modified objective function and constraint sets (3)–
(11). That is, the path constraints (3)–(5); constraint set (6) and the time window
constraints (7)–(8), which together ensure the feasibility of the time schedule; also con-
straints (9), which guarantee capacity availability; and the binary requirements (11) on the
flow variables. An appealing property of this structure is that it can be decomposed into
|K| disjoint subproblems, one for each vehicle. Furthermore, each subproblem represents
an elementary shortest path problem with capacity and time window constraints, whose
solution can be obtained on a bounded polyhedron.

For any multiplier vector α, the optimal objective function value of the Lagrangean
subproblem L(α) is a (dual) lower bound for the solution of the respective VRPTW prob-
lem. In addition, when all vehicles are identical, only one subproblem needs to be solved
to compute this bound. The problem of finding the Lagrangean bound L defined as:

L = max
α

L(α),

is a concave non-differentiable maximization problem. Subgradient and bundle methods
(Kohl and Madsen [59]) have been applied to determine optimal multiplier values. Due to
the time window and capacity constraints, the subproblems do not possess the Integrality
Property. Consequently, solving them as integer programs narrows the integrality gap
between the optimal solution of the linearized version of formulation (1)–(10) and the
optimal integer VRPTW solution to (1)–(11).
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The Capacity and Time Constrained Shortest Path Problem. The elementary ver-
sion of this problem mentioned above is NP -hard and no polynomial or pseudo-polynomial
algorithms are known for its solution. However, when non-elementary path solutions are
allowed, i.e., solutions where paths may involve cycles of finite duration and/or load due to
the time window and capacity restrictions present in the subproblem, pseudo-polynomial
algorithms have been developed for its solution (see Desrosiers et al. [35]).

The inclusion of non elementary paths is a computational necessity that potentially
weakens the lower bound obtained. However, some strength in the bound can be regained
by using a 2–cycle elimination procedure (Houck et al. [49]; Kolen, Rinnooy Kan, and
Trienekens [60]) within the solution process for the constrained shortest path problem.
Note that a 2-cycle is a cycle where a customer is visited twice with only one customer
in between. Yet, paths containing cycles cannot appear in any solution to the VRPTW
since the covering constraints (2) enforce that each customer must be visited exactly once.
Hence, they have to be eliminated during the search for integer solutions.

In addition to the above schemes, Fisher, Jörnsten and Madsen [41] also used a
Lagrangean relaxation based on a K–tree structure, where K is the set of available vehicles.
This is an extension of the classical 1-tree approach for the traveling salesman problem
to the case of capacity constrained vehicles (Fisher [39]). In their approach it is assumed
that each route contains at least two customers. The authors relax the flow conservation
as well as the capacity and time constraints. Vehicle capacity is handled by introducing
constraints requiring that some nonempty subsets of customers S, S ⊂ N , |S| ≥ 2, must
be serviced by at least κ(S) vehicles, that is:

∑
k∈K

∑
i∈S

∑
i∈S

xijk ≥ κ(S),

where S = V \ S. Time windows are treated similarly: if the path (not necessarily from
node 0 to n+1) represented by the set of arcs A′ ⊂ A violates the time window restrictions,
the constraint: ∑

k∈K

∑
(i,j)∈A′

xijk ≤ |A′| − 1

is generated and Lagrangean relaxed. New capacity and time constraints are generated as
they are violated.

Variable Splitting. Generally, this leads to various Lagrangean relaxation schemes, each
one exploiting different solvable structures. In this dual approach, the variables in some of
the constraints are renamed. New constraints, coupling the original and the new variables,
are introduced and Lagrangean relaxed. This decomposes the problem into two or more
independent problems. In the VRPTW, the sums:

∑
j∈Δ+(i)

xijk, ∀i ∈ N, ∀k ∈ K,
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are replaced by the integer variables yik in some constraints. One may think of each such
variable as the number of times customer i is serviced by vehicle k. The new constraints:

∑
j∈Δ+(i)

xijk = yik, ∀i ∈ N, ∀k ∈ K,

are introduced and Lagrangean relaxed. The resulting Lagrangean subproblem now de-
composes into two problems, one in the yik variables and one in the flow, time and capacity
variables.

For the VRPTW, it is natural to decompose the problem into a semi-assignment type
problem, defined using the new variables in constraint set (2) and solved by inspection,
and a set of shortest path problems with capacity and time constraints, one for each
available vehicle. In this case, variable splitting does not allow for any improvement of
the Lagrangean lower bound since the semi-assignment problem possesses the Integrality
Property. The capacity constraints can alternatively be considered in the semi-assignment
problem, yielding a generalized assignment problem. In conjunction with the time window
constrained shortest path problem, this may result in a theoretical improvement of the
Lagrangean bound, unfortunately unobserved in practice. Halse [46] has implemented this
latter decomposition approach. Finally, the reader can find an analysis of the quality of
the bounds obtainable from Variable Splitting for the VRPTW in Kohl [57].

3.2 Column Generation

The column generation approach to be described in this section represents a generalization
of the Dantzig-Wolfe decomposition (Dantzig and Wolfe [28]). It has successfully been
applied to the VRPTW by Desrochers, Desrosiers, and Solomon [33] and Kohl et al. [58].
We would like to emphasize the importance of presenting the decomposition process in its
entirety starting from the multi-commodity network flow formulation rather than directly
formulating the problem as a Set Partitioning problem on which column generation is
applied. Indeed, this clearly illustrates how to exploit the multi-commodity network flow
model to devise efficient branching and cutting strategies compatible with the column
generation approach in order to obtain integer solutions as discussed in Section 4.

The decomposition is based on two structures: a master problem and a subproblem.
The master problem retains constraint sets (1)–(2), and (11), i.e., the objective function,
the covering of each customer exactly once, and the binary requirements on the flow vari-
ables. The subproblem involves a modified objective function, to be detailed later, and
constraint sets (3)–(11). Again, it decomposes into |K| independent subproblems, each
being an elementary shortest path problem with capacity and time window constraints.

The Set Partitioning Formulation. The master problem can be reformulated to high-
light a Set Partitioning structure. To see this, consider the process of solving the relaxed
subproblem that generates elementary paths and possibly paths containing finite cycles.
Each such path p can be described using integer flow values x̂ijkp, (i, j) ∈ A. Let Ω be
the path set. Then, for a given k ∈ K, any solution xijk to the master problem can be
expressed as a non-negative convex combination of paths:
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xijk =
∑
p∈Ω

x̂ijkpθkp, ∀(i, j) ∈ A,
∑
p∈Ω

θkp = 1, θkp ≥ 0, ∀p ∈ Ω.

Define now parameter ckp as the cost of path p for vehicle k. Let also the non-negative
integer constant aikp indicate the number of times customer i is visited by vehicle k on
path p. Formally:

ckp =
∑

(i,j)∈A

cij x̂ijkp, ∀k ∈ K, ∀p ∈ Ω,

aikp =
∑

j∈Δ+(i)

x̂ijkp, ∀i ∈ N, ∀k ∈ K, ∀p ∈ Ω.

Substituting these expressions into (1)–(2) and (11), and rearranging the summation order
expresses the master problem as a Set Partitioning structure:

min
∑
k∈K

∑
p∈Ω

ckpθkp (12)

subject to
∑
k∈K

∑
p∈Ω

aikpθkp = 1, ∀i ∈ N (13)

∑
p∈Ω

θkp = 1, ∀k ∈ K (14)

θkp ≥ 0, ∀k ∈ K, ∀p ∈ Ω (15)

xijk =
∑
p∈Ω

x̂ijkp θkp, ∀k ∈ K, ∀(i, j) ∈ A (16)

xijk binary, ∀k ∈ K, ∀(i, j) ∈ A. (17)

In (14), the coefficient of θkp is equal to 1, for all k ∈ K and p ∈ Ω. Indeed, this
constraint corresponds to (3) or to (5) in the original formulation, i.e.,

∑
j∈Δ+(0)

x0jk =
∑

i∈Δ−(n+1)

xi,n+1,k = 1, ∀k ∈ K.

A Lower Bound. A (primal) lower bound on the optimal integer solution of the VRPTW
model can be derived from the following bi-level solution process. At the top level, the
relaxed master problem is optimized over the current subset of columns as a linear program
defined by (12)–(15). At the bottom level, the subproblem looks for minimum marginal
cost columns given the available cost information. If the minimum is negative, the corre-
sponding column is sent above to be appended to (12)–(15) and this coordinating problem
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is solved again. Otherwise, the lower bound has been found as the current linear program-
ming optimal solution. This bound has proven very effective in practice for the VRPTW
and many other vehicle routing and crew scheduling environments (Desrosiers et al. [35]).
Recently, it was shown to be asymptotically optimal by Bramel and Simchi-Levi [14], which
explains in part its performance.

This bound is equal to the previously defined Lagrangean bound L. To see this, let αi,
i ∈ N , and γk, k ∈ K, be the dual variables associated with constraint sets (13) and (14),
respectively. These are obtained by solving (12)–(15) over the current subset of columns
with the simplex method. They can be used to define the marginal cost ckp of path p for
subproblem k as:

ckp = ckp −
∑
i∈N

αiaikp − γk

=
∑

(i,j)∈A

cij x̂ijkp −
∑
i∈N

αi

( ∑
j∈Δ+(i)

x̂ijkp

)
− γk

( ∑
j∈Δ+(0)

x̂0jk

)

=
∑

(i,j)∈A : i∈N

(cij − αi)x̂ijkp +
∑

(0,j)∈A

(c0j − γk)x̂0jkp.

In turn, the marginal cost cij , (i, j) ∈ A, of an arc can then be expressed as:

cij =
{

cij − αi if i ∈ N,
cij − γk otherwise.

The marginal cost column minimization problem over the set Ω can now be formulated as:

min
∑
k∈K

∑
(i,j)∈A

cijxijk

subject to (3)–(11).

This optimization problem is equivalent to solving the Lagrangean subproblem L(α)
defined in section 3.1.

A set of negative marginal cost paths is generated every time the subproblem is
solved by dynamic programming. At every iteration but the last, this set generally has
a fairly high cardinality. This observation forms the basis for accelerating the solution of
the linear relaxation of the master problem, i.e., the linear program (12)–(15), by selecting
several columns simultaneously. Moreover, node disjoint paths can be selected by using a
greedy algorithm. Such choices replicate the structure of integer solutions and often prove
beneficial downstream in the branching phase. The current best dual lower bound can also
be used at branching nodes to stop the iterative process before reaching the optimality
criteria. This diminishes the tailing-off effect experienced by column generation methods
for linear programming settings.
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Commodity Aggregation. When all vehicles are identical, as is the case for the generic
VRPTW, the linear relaxation of the master problem admits a commodity independent
formulation. This commodity aggregation results in a single subproblem and allows the
master problem to be formulated with fewer variables and constraints. The commodity
independent formulation is equivalent to the classical linear relaxation of the set partition-
ing formulation with an additional limit placed on the number of vehicles used. Indeed,
index k can be removed from parameters ckp and aikp. We then aggregate the convex
combination constraints (14) by letting:

θp =
∑
k∈K

θkp, ∀p ∈ Ω.

This results in
∑
p∈Ω

θp = |K|, making index k unnecessary for (12)–(13) and resulting

in the formulation:

min
∑
p∈Ω

cpθp (18)

subject to
∑
p∈Ω

aipθp = 1, ∀i ∈ N (19)

∑
p∈Ω

θp = |K|, (20)

θp ≥ 0, ∀p ∈ Ω (21)

θp =
∑
k∈K

θkp, ∀p ∈ Ω (22)

∑
p∈Ω

θkp = 1, ∀k ∈ K (23)

θkp ≥ 0, ∀k ∈ K, ∀p ∈ Ω (24)

xijk =
∑
p∈Ω

x̂ijkp θkp, ∀k ∈ K, ∀(i, j) ∈ A (25)

xijk binary, ∀k ∈ K, ∀(i, j) ∈ A. (26)

Relaxing the binary requirements, also eliminates constraints (25) which become ir-
relevant. For any fractional θp-solution to (18)–(21), there exists a solution in θkp that
satisfies (22)–(24). Setting

θkp =
θp

|K| , ∀k ∈ K, ∀p ∈ Ω,

provides such a solution. Consequently, since any solution consisting of the aggregated
variables θp, p ∈ Ωp, can be converted into a solution in terms of the disaggregated variables
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θkp, k ∈ K, p ∈ Ω, problem (18)–(21) can be used as the linear relaxation of the master
problem.

In the case where the solution of the aggregated linear relaxation of the master prob-
lem is integer, it is easy to convert it to a binary solution in terms of the variables θkp.
One has to simply assign the first solution path to the first vehicle, the second path to the
next vehicle, and so on. Finally, if the aggregated solution is mixed integer, both of the
above conversion processes need to be applied accordingly.

A Hybrid Approach. Recently Kallehauge [51] and Kallehauge, Larsen, and Madsen [52]
implemented a hybrid approach combining the Lagrangean relaxation approach used by
Kohl and Madsen [59] with the generalized Dantzig-Wolfe decomposition of Desrochers,
Desrosiers, and Solomon [33] and Kohl et al. [58]. In the first phase, Lagrangean relaxation
is used in order to take advantage of the faster multiplier convergence and the easier
subproblems. Then, in phase two, the authors switch to Dantzig-Wolfe decomposition and
use the columns found in phase one to initiate the procedure.

4 Integer Solutions

Usually, to solve the original multi-commodity flow formulation (1)–(11) optimally, one has
to make branching and cutting decisions on the binary flow variables, and on time variables
when their integrality is required. The decomposition process involving Lagrangean relax-
ation or column generation is then repeated at each branching node. Since the solutions
obtained from the Lagrangean subproblem L(α) of Section 3.1 define paths that are usu-
ally not feasible for the whole problem, it is rather difficult to design good branching and
cutting strategies. Alternatively, column generation offers much more flexibility since the
values of the original variables of the multi-commodity flow model can be easily derived.

Specifically, these can be divided into path exclusive and path shared decisions. The
former concern only a single path, such as fixing a flow variable at 0 or at 1, or dividing the
time window of a time variable. These local decisions are made directly on the subproblem
network without altering the shortest path solution approach. The columns that no longer
satisfy a branching decision are removed from the current master problem. The latter
decisions concern several paths, such as when an integer cut on the total cost is imposed.
These global decisions are kept at the master problem level. We now present several
examples of branching and cutting decisions on arc flow and time variables for the VRPTW.
Additionally, we discuss the possibility of making binary decisions on path flow variables.

Binary Decisions on Arc Flow Variables. Since any customer i must be covered ex-
actly once, the linear combinations of flow variables:

xiJK′ =
∑
k∈K′

∑
j∈J

xijk, ∀i ∈ N, ∀J ⊆ Δ+(i), ∀K ′ ⊆ K,

are good candidates for binary branching decisions. When xiJK′ is fractional at the current
branching node, it can be set to 1 on one branch and to 0 on the other. In the former
case, xiJK′ = 1 only requires that some customer (or the depot) in subset J be visited
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immediately after customer i by some vehicle. However, xijk = 1 forces customer i and j
to be consecutively serviced by vehicle k. Similarly, if |J | = 1, then this customer must
immediately succeed customer i. Finally, when J = Δ+(i), the decision xiJK′=1 assigns
customer i to a vehicle in subset K ′. In particular, if |K ′| = 1, then this vehicle must service
customer i. All the branching decisions discussed above do not affect the mathematical
structure of the constrained shortest path subproblem. As an example, setting the variable
xijK , with j ∈ N , to 1, eliminates the arcs {(i, j′) ∈ A : j′ �= j} and {(i′, j) ∈ A : i′ �= i}
from network G. Or, fixing variable xijK at 0, allows arc (i, j) ∈ A to be deleted from
network G.

Integer Decisions on Arc Flow Variables. While a number of other viable flow vari-
able mixes to be used for branching and cutting can easily be accommodated at the sub-
problem level, others cannot. As an illustration of linear combinations that need to be
addressed at the master problem level, consider the one that calculates the number of
vehicles routed in subset K ′:

x0JK′ =
∑
k∈K′

∑
j∈J

x0jk, K ′ ⊆ K, J = Δ+(i) \ {n + 1}.

When the value of this variable x̂0JK′ is fractional, branching forces it to values either less
than or equal to 	x̂0JK′
, or greater than or equal to �x̂0JK′�, respectively. As another
example, in a problem where the minimum number of vehicles is sought, a cut on the
variable x0JK , J = Δ+(i) \ {n+1}, can be introduced when this is fractional. Yet another
instance occurs when the objective function has integer cost coefficients but its current
value is fractional. Then:

∑
k∈K

∑
(i,j)∈A

cijxijk ≥ �
∑
k∈K

∑
(i,j)∈A

cij x̂ijk�,

is a valid cut. This is a specific case of the family of cuts that can be described as a
weighted sum of the flow variables:

∑
k∈K

∑
(i,j)∈A

bijxijk ≥ b, (27)

where bij , (i, j) ∈ A, and b are unrestricted parameters. Applying the decomposition
process to the above constraint results in an equivalent constraint in the master problem,
written as:

∑
p∈Ω

bpθp ≥ b,

where bp =
∑

(i,j)∈A bij x̂ijkp,∀k ∈ K, ∀p ∈ Ω, is the contribution of path p to con-
straint (27). Denoting by β its associated dual variable, it is fairly easy to show that
the marginal cost cij , (i, j) ∈ A, of an arc becomes:
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cij =
{

cij − αi − βbij if i ∈ N,
cij − γk − βbij otherwise.

Binary Decisions on Path Flow Variables. It is easy to show that replacing in the
aggregated set partitioning formulation (18)–(26) the binary requirements (26) by:

θp binary, ∀p ∈ Ω (28)

yields a formulation equivalent to the multi-commodity network flow formulation (1)–
(11). Using the simplifications presented in the last paragraphs of Section 3.2, this new
formulation can be restricted to (18)–(21) and (28). This transformation opens up the
possibility of defining branching decisions on the binary path flow variables θp, p ∈ Ω.

On the one hand, when such a variable takes a fractional value, it is very simple
to set it to 1 by adjusting the right-hand side of constraint (20), removing the covering
constraints (19) associated with the customers covered by the corresponding path, and
removing the nodes associated with these customers in the subproblem network. Such
a decision simplifies the problem without altering its structure. On the other hand, as
mentioned in several papers, it is much more difficult to impose the alternate decision,
that is, to set to 0 a fractional path flow variable. Indeed, in this case, one must ensure
that the corresponding path will not be generated again by the subproblem. Forbidding
the generation of specific paths modifies the nature of the subproblem and requires the use
of a different dynamic programming algorithm for solving it.

One possibility would be to use a k-shortest path algorithm, where k is set to the
number of forbidden paths plus one. However, such an algorithm has not yet been proposed
in the literature when time window constraints are considered. Another possibility consists
of using a dynamic programming algorithm for time constrained shortest path problems
(for example, that of Soumis and Desrochers [34]) coupled with a pre-labeling procedure,
such as the one proposed by Arunapuram, Mathur, and Solow [3]. A pre-label is defined
for each node of each forbidden path except for the last node. This pre-label represents the
part of the forbidden path from the source node to the node associated with the pre-label,
and contains additional information that forbids the extension of this label to the next
node on the forbidden path.

To our knowledge, this branching strategy has yet to be tested on VRPTW instances.
We conjecture that it should be useful for fixing path variables with a fractional value close
to 1 so as to rapidly reduce the size of the problem without losing the exactness of the
algorithm.

Subtour Elimination and 2-Path Cuts. For each nonempty subset of customers
S ⊆ N , define the following variable to represent the flow into S:

x(S) =
∑
k∈K

∑
i∈S

∑
j∈S

xijk,
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where S = V \ S. The usual subtour elimination constraints can be formulated as x(S) ≥
1, ∀S ⊆ N, |S| ≥ 2. These can be generalized by replacing their right hand side with κ(S),
the smallest number of vehicles needed to service all customers in S. Constraint:

x(S) ≥ κ(S)

is called a κ-path inequality since it requires that at least κ paths enter subset S in any fea-
sible integer solution. For the VRPTW, the lower bounds obtained by considering capacity
alone are unlikely to be very strong, especially when the time windows are relatively bind-
ing. Since the time constraints must be taken into account as well, it is difficult to calculate
κ(S). For this reason, Kohl et al. [58] have restricted their attention to subsets S satisfying:

1 < x̂(S) < 2 and κ(S) ≥ 2,

where x̂(S) denotes the value of x(S) in a given solution. In other words, the authors try
to identify subsets of customers S requiring at least two vehicles, but presently serviced by
less than two. To determine whether κ(S) = 1 for a particular S, one needs to check if the
available capacity on a single vehicle is sufficient - which can be done in linear time - and
the feasibility of the corresponding TSPTW. This latter problem is NP -hard in the strong
sense, but when |S| is rather small, the problem is relatively easy to solve by dynamic
programming (Dumas et al. [37]; Mingozzi, Bianco, and Ricciardelli [66]). Therefore, for
such problem sizes, there is a fast, though not polynomial, algorithm to determine whether
κ(S) ≥ 2.

Larsen [63] devised a parallel branch-and-bound implementation of the approach used
by Kohl et al. [58]. Further improvements proposed by the author include a forced early
stop and column deletion. The forced early stop terminates the route generation process
as soon as one route with negative reduced cost is returned. The idea behind this stopping
criterion is that the routes generated in the initial phase are often of low quality and
therefore it is profitable to cut down the execution time at this stage. The column deletion
procedure deletes from the master problem any column that has not been part of a basis at
a given number of branch-and-bound nodes. This reduces the time spent solving the linear
relaxation of the master problem, although some routes might have to be recomputed later
on. Experimental results indicated that in order to avoid having to regenerate deleted
routes, column deletion should not be performed too often. Larsen [63] suggests applying
it after every 20 branch-and-bound nodes. This approach was later used by Kallehauge,
Larsen, and Madsen [52].

κ-Path Cuts and Parallelism. Recently, Cook and Rich [22] enhanced the above method
by improving the search for κ-path inequalities, and allowing values of κ up to 6. Specifi-
cally, the authors used Karger’s [53] randomized minimum-cut algorithm to generate cut-
ting planes. Moreover, they parallelized the cutting plane generator and also the branch-
and-bound, using the TreadMarks [8] distributed shared memory system. The value of
κ(S), S ⊂ V , is derived by finding the minimum number of vehicles required in a smaller
VRPTW instance. If this number is greater than x̂(S), then a valid κ-path inequality is
generated. We discuss their computational results in Section 7.
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Integer Decisions on (Fractional and Integer) Time Variables. These variables
also constitute a meaningful branching tool for problems with fairly narrow time windows.
To describe their handling, we first compute the start of service at customer i ∈ N as:

wi =
∑
k∈K

∑
p∈Ω

ŵikpθkp, i ∈ N,

where ŵikp represents the unique start of service at customer i on path p of vehicle k. If
a customer i is visited more than once on path p, i.e., on a cycle, the start of service ŵikp

is taken as the sum of all the times when service begins. Then, wi above represents the
weighted average of these times. If variable wi is required to be integer, but presently takes
the fractional value, ŵi, then two branches are created:

wi ≤ 	ŵi
 and wi ≥ �ŵi�.
These decisions are imposed on the subproblem network G by redefining the time

window at node i. Note that this type of decision is also applicable for an integer value
ŵi obtained as a convex combination of different service times on several paths. The two
branches are then given by:

wi ≤ ŵi − 1 and wi ≥ ŵi.

On each branch, the columns that do not satisfy the corresponding decision are removed
from the current subset of master problem columns.

5 Special Cases

The following two special cases of the VRPTW have attracted attention in the literature.
Both can be addressed using the exact methodology presented in the previous sections.

The Multiple Traveling Salesman Problem with Time Windows. This problem,
an uncapacitated VRPTW, results from eliminating the capacity constraints (9) from for-
mulation (1)–(11). It is also an immediate generalization of the fixed schedule problem
where time windows are restricted to a single value. It has attested itself as a very reward-
ing model for applications in school and urban bus, ship, engine, and aircraft scheduling.

The early optimization-based heuristics of Appelgren ([1] and [2]) on ship scheduling,
Levin [64] on aircraft fleet size, and Swersey and Ballard [86] on school-bus scheduling, all
relied on discretizing the time windows. They contributed to the impetus for much more
powerful approaches developed recently. Such exact algorithms for m-TSPTW have been
developed in the context of urban bus scheduling by Bianco, Mingozzi, and Ricciardelli [7]
and Desaulniers, Lavigne, and Soumis [32], and in the setting of daily aircraft scheduling
by Desaulniers et al. [31]. The last two algorithms are variations of the column generation
approach for the VRPTW presented earlier.
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The Vehicle Routing Problem with Backhauls and Time Windows. We consider
the variant of this problem where all deliveries must be made before any pickups take
place. To show that this problem is a special case of the VRPTW, one must first define
load variables lik, i ∈ V , k ∈ K, specifying the quantity already delivered by vehicle k just
after servicing node i, and rewrite the capacity constraints (9) the same way as the time
window constraints:

xijk(lik + dj − ljk) ≤ 0, ∀k ∈ K, ∀(i, j) ∈ A (29)

di(
∑

j∈Δ+(i)

xijk) ≤ lik ≤ C(
∑

j∈Δ+(i)

xijk), ∀k ∈ K, ∀i ∈ N (30)

l0k = 0, ∀k ∈ K (31)
0 ≤ ln+1,k ≤ C, ∀k ∈ K. (32)

Next, one partitions N in two subsets of customers, ND and NP , that is, those
requiring a delivery and those requiring a pickup, respectively. Then one removes from A
all arcs linking a node in ND to a node in NP , and replaces constraint sets (30) and (32)
by the following three sets of constraints:

(7.30a) di(
∑

j∈Δ+(i)

xijk) ≤ lik ≤ C(
∑

j∈Δ+(i)

xijk), ∀k ∈ K, ∀i ∈ ND

(7.30b) (C + di)(
∑

j∈Δ+(i)

xijk) ≤ lik ≤ 2C(
∑

j∈Δ+(i)

xijk), ∀k ∈ K, ∀i ∈ NP

(7.32a) C ≤ ln+1,k ≤ 2C, ∀k ∈ K,

where di denotes the quantity of load to be delivered or picked up at node i. Given these
load intervals (7.30a), (7.30b) and (7.32a), as well as constraint set (29), one can see that
when the delivery portion of a vehicle route is completed, C new units of loading capacity
are restored to undertake pickups. Finally, note that (29) are always satisfied for cross arcs
between ND to NP . Hence, they are not defined for them.

Given the above transformation, optimal VRPTW algorithms can then be employed
for the Vehicle Routing Problem with Backhauls and Time Windows. Gélinas et al. [42]
illustrate such an approach. More complex algorithms are however necessary when the
pickup and delivery requests can be performed in any order. A real-world application for
this problem structure has also been reported by Braca et al. [10]. Given the very large
problem size, the authors used a Decision Support System based on a variation of the LBH
heuristic (Bramel and Simchi-Levi [11]) to route school buses for the New York City Board
of Education.

6 Extensions

In this section, we present several VRPTW extensions for which formulation (1)–(11) can
be adapted or generalized. Most of the resulting models can be directly treated using
Lagrangean relaxation or column generation embedded in a branch-and-bound search tree.



Les Cahiers du GERAD G–99–13 – Revised 22

For the others, the same methodology applies but with more complex tools, namely spe-
cialized constrained shortest path algorithms.

Heterogeneous Fleet, Multiple-Depot, and Initial Conditions. The VRPTW model
(1)–(11) can be generalized to account for vehicles of different size, for multiple depots, and
even for situations requiring specific initial conditions for each vehicle. Indeed, in these
settings, a specific network Gk = (V k, Ak), with its own origin and destination depot-nodes
is defined for each vehicle k ∈ K, and all cij and tij parameters are indexed by k. To some
extent, customer demands di and time windows [ai, bi] can also depend on the servicing
vehicle k.

In the presence of multiple depots and/or a heterogeneous fleet, vehicle aggregation
can be performed as long as the conditions are identical for all vehicles in the same group.
One constraint similar to (20) is retained for each group to describe the number of available
vehicles within that group. The assignment of a route to a specific vehicle within a group
can be done after the solution is obtained.

Fleet Size. Vehicle use can be taken into account by including a fixed charge c in the cost
of all arcs (0, j), j ∈ N . In this case, the number of vehicles utilized can be minimized by
assigning a very large value to c. On the other hand, one may wish to set an upper limit
κ on the number of vehicles that can be deployed. For the basic VRPTW, this can be
easily imposed by defining K such that |K| = κ. However, when considering several depots
or a heterogeneous fleet, the following constraint must be added to the multi-commodity
network flow formulation with one network Gk per vehicle:

∑
k∈K

∑
j∈Nk

x0(k),jk ≤ κ,

where Nk denotes the set of customers compatible with vehicle k and 0(k) the origin
depot-node of network Gk. Like the covering constraints (2), this constraint is relaxed in
the objective function when using Lagrangean relaxation or remains at the master problem
level in a column generation approach.

Multiple Time Windows. The definition of a single time window per customer can be
extended to include multiple service options. This may necessitate changing the objective
function to account for preferred service times. Multiple time windows have primarily been
examined in the multi-period vehicle routing problem framework where they constitute full
days. Each customer must be visited a specified number of times within the planning hori-
zon. This problem is discussed further in the survey by Solomon and Desrosiers [85]. Note,
however, that this generalization can also be treated by Lagrangean relaxation and column
generation schemes which use time window constrained shortest paths as substructures.

Soft Time Windows. Recall that these constraints allow the vehicle to start service at
the customer before or after its time window, respectively. As a result, the vehicle incurs
additional costs. Formulation (1)–(11) can be extended to include soft time windows as in
the following two scenarios. In the first, only deadlines can be violated at a cost and by a
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length of time limited by b′i, i ∈ N . In this case, enlarged hard time windows [ai, bi + b′i],
i ∈ N , are defined together with the following non-decreasing penalty functions that de-
pend on the start of service time of vehicle k:

ci(wik) =
{

0 if wik ∈ [ai, bi],
gi(wik) if wik ∈ (bi, bi + b′i],

where gi(·) is a positive non-decreasing function. This can be treated directly by La-
grangean relaxation or column generation with the sole modification of computing these
additional costs upon the arrival at a customer node in the constrained shortest path
dynamic programming algorithm (see Desaulniers et al. [29]).

Building on the previous instance, the second setting considers that the earliest start
times can also be violated at a cost and by a length of time limited by a′i, i ∈ N . Similarly,
augmented time windows [ai − a′i, bi + b′i], i ∈ N , are defined together with the following
penalty functions:

ci(wik) =

⎧⎨
⎩

λi(ai − wik) if wik ∈ [ai − a′i, ai),
0 if wik ∈ [ai, bi],
gi(wik) if wik ∈ (bi, bi + b′i],

where λi is a positive constant and gi(·) is again a positive non-decreasing function. This
more general case can also be addressed by the proposed methodologies but requires a
specialized dynamic programming algorithm developed by Ioachim et al. [50] which can
handle linear decreasing node costs.

Time- and Load-Dependent Costs. The VRPTW can be extended to include arc costs
zij(·), (i, j) ∈ A, that depend on time and load variables. Indeed, soft time windows can
be viewed as yielding such arc costs when j ∈ N :

zij(wjk) = cij + cj(wjk).

Another example is provided by Desaulniers, Lavigne, and Soumis [32] for the m-
TSPTW with linear waiting costs. For that problem, the arc costs are given by:

zij(wik, wjk) = cij + ω(wjk − wik − si − tij),

where ω is a positive constant corresponding to the cost charged for waiting one unit of
time, and wjk −wik − si − tij indicates the amount of time spent waiting on arc (i, j). As
mentioned by the authors, such waiting costs can be taken into account similarly in other
routing problems with time windows such as the VRPTW.

Arc costs depending on load variables were considered in the extension of the Vehicle
Routing Problem with Pickup and Delivery involving time window constraints proposed
by Dumas, Desrosiers, and Soumis [38]. In that version of the problem, the cost of using
an arc (i, j) depends on the load lik of the vehicle k traversing it:

zij(lik) = gi(lik)cij ,
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where gi(·) is a positive non-decreasing function. Such load-dependent arc costs can easily
be transferred to the VRPTW.

Driver Considerations. In order to devise vehicle routes that do not incur excessive
driver costs or infeasible driver schedules, some aspects of the driver scheduling problem
can be considered while solving the VRPTW. For instance, assuming that each driver is
assigned to a single vehicle route, the following three driver scheduling aspects are of in-
terest: a guaranteed minimum number of hours credited per route, a maximum number
of hours worked per route, and break periods of minimal duration within long routes.
As shown in Desaulniers et al. [30], the first two aspects can be modeled using resource
variables which are handled similarly to the time and load variables. The last aspect can
be treated by considering a multiple stage network where each stage contains a copy of
the customer nodes and a partial path through the nodes of the same stage corresponds
to a partial vehicle route without break periods. The maximum duration of these par-
tial routes is controlled through the use of resource variables. Arcs imposing a break
of minimum duration are defined from the nodes of each stage to the nodes of the next
stage. Other driver considerations can also be integrated into an extended VRPTW model.

Summary. The exact methodology presented in Sections 3 and 4 is general enough to
effectively contend with the VRPTW as well as a wide variety of supplementary issues.
In fact, as long as the extended model falls within the unified framework proposed by
Desaulniers et al. [29], the same methodology can be applied. This is a major advantage
over the heuristic methods presented in Section 2 which most of the time require substantial
effort to accommodate new situations.

7 Computational Results

In this section, we review computational experience with leading algorithms. To date,
the optimal algorithm of Kohl et al. [58] solved 70 of the 87 Solomon benchmark short
horizon problems (Desrochers, Desrosiers and Solomon [33]) to optimality. Recently, four
additional problems were solved by Larsen [63], and six more by Cook and Rich [22] and
Kallehauge, Larsen, and Madsen [52]. In particular, the new sequential implementation by
Cook and Rich [22] of Kohl et al.’s [58] algorithm using the 2-path cuts succeded in solving
three additional problems. Their computational experience indicates that the marginal
benefit of considering 3-path cuts in the sequential algorithm was an improved value of the
LP relaxation in several problems. Yet, these cuts did not lead to any additional problems
being solved or improvements in solution time. Three more problems were solved by using
the parallel version with up to 16 processors. Several unsolved instances that exhibited
attractive integrality gaps were resolved using 32 processors and increasing the maximum
value of κ to 6. Three other problems were solved this way. Insight gained from this phase
also led the authors to increase the time limit for the 16-processor version and solve one
additional instance.
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Larsen [63] was the first to provide exact solutions to any of the 81 Solomon long
horizon problems. He solved 17 problems in this set. Cook and Rich [22] solved 13 addi-
tional ones, while 16 more problems were solved by Kallehauge, Larsen, and Madsen [52].
Tables 1, 2, and 3, provide the cost of the best solutions, in terms of total distance,
identified by either Kohl et al. [58] (KDMSS), Larsen [63] (L), Kallehauge, Larsen, and
Madsen [52] (KLM) or Cook and Rich [22] (CR). The column NV indicates the number of
vehicles used in the solution. These solutions were computed with approximate distances
obtained by multiplying the real distances by 10 and truncating the result. Hence, some
routes may not satisfy all time window constraints if real distances were used.

Homberger [47] has extended the Solomon test problems to sizes of up to 1000 cus-
tomers. Cook and Rich [22] and Kallehauge, Larsen, and Madsen [52] have solved seven
problems with 200 customers (one r-problem and six c-problems). The latter authors have
also solved to optimality two additional c-problems, one with 400 customers and the other
with 1000 customers.

Several researchers have derived excellent near optimal results on Solomon’s test prob-
lems. In particular, high quality solutions were obtained in reasonable computing times
by the metaheuristics of Rochat and Taillard [74] and Taillard et al. [87]. The heuristics of
Homberger and Gehring [48] were also competitive and improved several previously best
known solutions. The approach of Kilby, Prosser, and Shaw [54] generated particularly
good results on problems with few vehicles and long routes. Similar results were reported
by Chiang and Russell [18]. Finally, Cordeau, Laporte, and Mercier [25] produced new
best solutions for a number of instances and competitive results for the others, even though
their metaheuristic was designed to primarily address various multi-level generalizations.
Table 4 provides the best known solutions obtained by these heuristics. Distances with at
least three decimal places were used. In addition, the heuristics considered a hierarchical
objective function where solutions with a smaller number of vehicles and larger total dis-
tance dominate those with more vehicles and shorter distances. The authors are denoted
as follows: Rochat and Taillard [74] by RT, Chiang and Russell [17] by CR2, Taillard et
al. [87] by TBGGP, Homberger and Gehring [48] by HG, Kilby, Prosser and Shaw [54] by
KPS and Cordeau, Laporte, and Mercier [25] by CLM, respectively.

The tables highlight the best known solutions that we are aware of at the time of writing
this paper. As the interest in this area will only continue to grow as industry is emphasizing
responsiveness, we would like researchers to help us keep current the best solutions found
for the Solomon problems available on this author’s web page.
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Problem NV Distance Authors Problem NV Distance Authors
r101.25 8 617.1 KDMSS r201.25 4 463.3 CR+KLM
r101.50 12 1044.0 KDMSS r201.50 6 791.9 CR+KLM
r101.100 20 1637.7 KDMSS r201.100 8 1143.2 KLM
r102.25 7 547.1 KDMSS r202.25 4 410.5 CR+KLM
r102.50 11 909 KDMSS r202.50 5 698.5 CR+KLM
r102.100 18 1466.6 KDMSS r202.100
r103.25 5 454.6 KDMSS r203.25 3 391.4 CR+KLM
r103.50 9 772.9 KDMSS r203.50
r103.100 14 1208.7 CR+L r203.100
r104.25 4 416.9 KDMSS r204.25
r104.50 6 625.4 KDMSS r204.50
r104.100 r204.100
r105.25 6 530.5 KDMSS r205.25 3 393.0 CR+KLM
r105.50 9 899.3 KDMSS r205.50 5 690.9 L+KLM
r105.100 15 1355.3 KDMSS r205.100
r106.25 3 465.4 KDMSS r206.25 3 374.4 CR+KLM
r106.50 5 793 KDMSS r206.50
r106.100 13 1234.6 CR+KLM r206.100
r107.25 4 424.3 KDMSS r207.25 3 361.6 KLM
r107.50 7 711.1 KDMSS r207.50
r107.100 11 1064.6 CR+KLM r207.100
r108.25 4 397.3 KDMSS r208.25 1 330.9 KLM
r108.50 6 617.7 CR+KLM r208.50
r108.100 r208.100
r109.25 5 441.3 KDMSS r209.25 2 370.7 KLM
r109.50 8 786.8 KDMSS r209.50
r109.100 13 1146.9 CR+KLM r209.100
r110.25 4 444.1 KDMSS r210.25 3 404.6 CR+KLM
r110.50 7 697.0 KDMSS r210.50
r110.100 12 1068.0 CR+KLM r210.100
r111.25 5 428.8 KDMSS r211.25 2 350.9 KLM
r111.50 7 707.2 CR+KLM r211.50
r111.100 12 1048.7 CR+KLM r211.100
r112.25 4 393 KDMSS
r112.50 6 630.2 CR+KLM
r112.100

Table 1: Optimal (total distance) solutions on the r1- and r2-problems.
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Problem NV Distance Authors Problem NV Distance Authors
c101.25 3 191.3 KDMSS c201.25 2 214.7 CR+L
c101.50 5 362.4 KDMSS c201.50 3 360.2 CR+L
c101.100 10 827.3 KDMSS c201.100 3 589.1 CR+KLM
c102.25 3 190.3 KDMSS c202.25 2 214.7 CR+L
c102.50 5 361.4 KDMSS c202.50 3 360.2 CR+KLM
c102.100 10 827.3 KDMSS c202.100 3 589.1 CR+KLM
c103.25 3 190.3 KDMSS c203.25 2 214.7 CR+L
c103.50 5 361.4 KDMSS c203.50 3 359.8 CR+KLM
c103.100 10 826.3 KDMSS c203.100 3 588.7 KLM
c104.25 3 186.9 KDMSS c204.25 2 213.1 CR+KLM
c104.50 5 358.0 KDMSS c204.50 2 350.1 KLM
c104.100 10 822.9 KDMSS c204.100
c105.25 3 191.3 KDMSS c205.25 2 214.7 CR+L
c105.50 5 362.4 KDMSS c205.50 3 359.8 CR+KLM
c105.100 10 827.3 KDMSS c205.100 3 586.4 CR+KLM
c106.25 3 191.3 KDMSS c206.25 2 214.7 CR+L
c106.50 5 362.4 KDMSS c206.50 3 359.8 CR+KLM
c106.100 10 827.3 KDMSS c206.100 3 586.0 CR+KLM
c107.25 3 191.3 KDMSS c207.25 2 214.5 CR+L
c107.50 5 362.4 KDMSS c207.50 3 359.6 CR+KLM
c107.100 10 827.3 KDMSS c207.100 3 585.8 CR+KLM
c108.25 3 191.3 KDMSS c208.25 2 214.5 CR+L
c108.50 5 362.4 KDMSS c208.50 2 350.5 CR+KLM
c108.100 10 827.3 KDMSS c208.100 3 585.8 KLM
c109.25 3 191.3 KDMSS
c109.50 5 362.4 KDMSS
c109.100 10 827.3 KDMSS

Table 2: Optimal (total distance) solutions on the c1- and c2-problems.
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Problem NV Distance Authors Problem NV Distance Authors
rc101.25 4 461.1 KDMSS rc201.25 3 360.2 CR+L
rc101.50 8 944 KDMSS rc201.50 5 684.8 L+KLM
rc101.100 15 1619.8 KDMSS rc201.100 9 1261.8 KLM
rc102.25 3 351.8 KDMSS rc202.25 3 338.0 CR+KLM
rc102.50 7 822.5 KDMSS rc202.50
rc102.100 14 1457.4 CR+KLM rc202.100
rc103.25 3 332.8 KDMSS rc203.25 2 356.4 KLM
rc103.50 6 710.9 KDMSS rc203.50
rc103.100 11 1258.0 CR+KLM rc203.100
rc104.25 3 306.6 KDMSS rc204.25
rc104.50 5 545.8 KDMSS rc204.50
rc104.100 rc204.100
rc105.25 4 411.3 KDMSS rc205.25 3 338.0 L+KLM
rc105.50 8 855.3 KDMSS rc205.50 5 631.0 KLM
rc105.100 15 1513.7 KDMSS rc205.100
rc106.25 3 345.5 KDMSS rc206.25 3 324.0 KLM
rc106.50 6 723.2 KDMSS rc206.50
rc106.100 rc206.100
rc107.25 3 298.3 KDMSS rc207.25 3 298.3 KLM
rc107.50 6 642.7 KDMSS rc207.50
rc107.100 rc207.100
rc108.25 3 294.5 KDMSS rc208.25
rc108.50 6 598.1 KDMSS rc208.50
rc108.100 rc208.100

Table 3: Optimal (total distance) solutions on the rc1- and rc2-problems.
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Problem NV Distance Authors Problem NV Distance Authors
r101 19 1650.80 RT r201 4 1252.37 HG
r102 17 1486.12 RT r202 3 1197.66 CLM
r103 13 1292.85 HG r203 3 942.64 HG
r104 10 982.01 RT r204 2 849.62 CLM
r105 14 1377.11 RT r205 3 998.72 KPS
r106 12 1252.03 RT r206 3 912.97 RT
r107 10 1113.69 CLM r207 2 914.39 CR2
r108 9 964.38 CLM r208 2 731.23 HG
r109 11 1194.73 HG r209 3 910.55 HG
r110 10 1125.04 CLM r210 3 955.39 HG
r111 10 1099.46 HG r211 2 910.09 HG
r112 9 1003.73 HG
c101 10 828.94 RT c201 3 591.56 RT
c102 10 828.94 RT c202 3 591.56 RT
c103 10 828.06 RT c203 3 591.17 RT
c104 10 824.78 RT c204 3 590.60 RT
c105 10 828.94 RT c205 3 588.88 RT
c106 10 828.94 RT c206 3 588.49 RT
c107 10 828.94 RT c207 3 588.29 RT
c108 10 828.94 RT c208 3 588.32 RT
c109 10 828.94 RT
rc101 14 1696.94 TBGGP rc201 4 1406.94 CLM
rc102 12 1554.75 TBGGP rc202 3 1389.57 HG
rc103 11 1262.02 RT rc203 3 1060.45 HG
rc104 10 1135.48 CLM rc204 3 799.12 HG
rc105 13 1637.15 HG rc205 4 1302.42 HG
rc106 11 1427.13 CLM rc206 3 1156.26 KPS
rc107 11 1230.54 TBGGP rc207 3 1062.05 CLM
rc108 10 1139.82 TBGGP rc208 3 832.36 CLM

Table 4: Best known solutions identified by heuristics

8 Conclusions

In the previous sections, we have highlighted the remarkable evolution of VRPTW method-
ologies for the last two decades. The models and algorithms presented are the stepping
stones on which progress in this area spiraled upward. Several have been successfully
applied in practice.

Optimization methods have relied on the intelligent exploitation of special prob-
lem structures and have benefited from the constant advances in computing technology.
Presently, optimal algorithms using branching and cutting on solutions obtained through
Dantzig-Wolfe decomposition are leading the field (Kohl et al. [58], Kallehauge, Larsen, and
Madsen [52], and Cook and Rich [22]). Their success exemplifies that valid inequalities are
a compelling way to strengthen the lower bounds for the VRPTW. These advances should
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create further interest in solving optimally the problems with many customers per route.
Nevertheless, the results reported by Cook and Rich [22] illustrate that even powerful
valid inequalities coupled with parallelism are not sufficient to solve all Solomon problems.
Additional research on polyhedral structures should prove valuable for this. Another di-
rection worth pursuing involves acceleration strategies. In a different context, du Merle et
al. [36] show that a stabilization method significantly decreases CPU time at the master
problem level. It is based on the use of bounded perturbation variables (i.e., bounded slack
variables) that virtually eliminate degeneracy, and estimates of dual variables that make
it unnecessary to solve the problem to optimality. Its adaptation to the VRPTW would
lead to more and larger problems to be solved.

Decomposition algorithms are also easily adaptable to other settings. This is be-
cause they comprise modules, such as dynamic programming, that can handle a variety
of objectives. Lateness, for one, is becoming an increasingly important benchmark in
today’s supply chains that emphasize on time deliveries. Moreover, they can be run as
optimization-based heuristics by means of early stopping criteria.

Research on approximation methods has also substantially increased in scope and ma-
turity. Metaheuristics have led the way in generating near optimal solutions as illustrated
by the results of Rochat and Taillard [74], Homberger and Gehring [48], and Cordeau,
Laporte, and Mercier [25] among others. Parallelism could resolve some of the efficiency
issues. Recent composite heuristics, such as that of Cordone and Wolfler Calvo [27], are
also showing much promise. They provide competitive solutions while being much faster.
As heuristics need to be especially effective for very large-scale problems, we expect work
on these to intensify. There is also a continuing need for standardization of the compu-
tational experiments. This should involve the data used - real or integer, the degree of
approximation in the travel time calculations, and the reporting of results - whether best
or average values are presented. An additional step in this direction could be for authors
to report the itineraries obtained. This would ensure that identical solutions do not seem
unequal simply because of differences in data type or its management.

Given the success to date of both optimization and approximate methods, we envi-
sion that hybrid methods, blending aspects of each, will constitute an important direction
for future research. In addition, the theoretical and practical importance of the above
developments can be further appreciated by realizing that they have also constituted the
backbone for much more complex models for fleet planning, crew scheduling and crew ros-
tering problems. It is our hope that this chapter has provided valuable insights for the
pursuit of solutions to many current and future challenging problems.
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[88] É.D. Taillard. Parallel iterative search methods for vehicle routing problems. Net-
works, 23:661–673, 1993.

[89] S. R. Thangiah and P. Petrovic. Introduction to genetic heuristics and vehicle routing
problems with complex constraints. In Advances in computational and stochastic
optimization, logic programming, and heuristic search, Oper. Res. / Comput. Sci.
Interfaces Ser. 9, pages 253–286. Kluwer, Boston, 1998.

[90] S.R. Thangiah, I.H. Osman, and T. Sun. Hybrid genetic algorithm, simulated an-
nealing and tabu search methods for vehicle routing problems with time windows.
Technical Report UKC/OR94/4, Institute of Mathematics and Statistics, University
of Kent, Canterbury, UK, 1994.

[91] P.M. Thompson and H.N. Psaraftis. Cyclic transfer algorithms for multi-vehicle rout-
ing and scheduling problems. Operations Research, 41:935–946, 1993.


