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Abstract

Specific features of X-ray compound refractive lens (XCRL) with parabolic profile of concave surfaces for hard X-

ray focusing and micro-imaging are analyzed theoretically. Large longitudinal size L of the XCRL requires a verifi-

cation of the thin lens approximation widely used in the literature. We show that the parabolic XCRL can be treated as

a thin lens placed in the middle of the XCRL with the focal length Fl ¼ F þ L=6, where F is the XCRL focal distance in

the thin lens approximation. The relatively small aperture of XCRL due to the absorption of X-rays leads to finite

resolution and phase effects (or artifacts) of the images. This feature reveals itself as a visibility of transparent objects. It

is shown that XCRL allows one to visualize the local phase gradient of the radiation wave field produced by the object.

This opens quite a new technique of micro-imaging for purely phase objects which is different from the traditional phase

contrast micro-imaging techniques. Optical properties of XCRL as a Fourier transformer are considered as well.

� 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Since the first successful demonstration [1] of X-

ray compound refractive lens (XCRL) for focusing

a synchrotron radiation beam delivered by the

third generation sources, the X-ray refractive op-

tics is under extensive development. In addition to

aluminium [2–9], different low-Z materials: beryl-

lium [2,5,7,9], silicon [10–12], organic compounds

[2,5,13–18] were experimentally tested. The lens
with cylindrical holes drilled in cross geometry

allows two-plane focusing [2–4,15]. The interesting

solution is the planar refractive lens with the par-

abolic profile which can be either single or com-

pound [10–12]. Of course, the lens with parabolic

profile and rotational symmetry around the optical

axis has a lot of advantages for the two-plane fo-

cusing and micro-imaging [6,8,9]. There are suc-
cessful attempts to develop the refractive optics by

means of various approaches [19–24]. Significant
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contributions in the XCRL theory are made in

[1,3,8,25–27].

Unlike visible light optics, X-ray collecting lens

has a concave shape and the material of the lens is

always absorbing. This leads to a significant limi-

tation of the XCRL effective aperture ac even
though the physical transverse size a of the lens

can be much larger. The XCRL has a rather large

longitudinal size L so that the thin lens approxi-

mation must be verified. We treat L as the XCRL

length. Compared to the visible light lens, the ratio

ac=L for the XCRL is very small. This property
influences the operation of XCRL as an imaging

device. When the ratio ac=L is extremely small, it
can be shown that the phenomenon like the X-ray

beam channeling occurs. However, in most prac-

tical cases XCRL satisfies the condition L=F � 1

where F is the XCRL focal length in the thin lens

approximation. Therefore it is sufficient to con-

sider only the linear corrections in L/F beyond the

thin lens approximation.

In this work we present the diffraction theory of
a parabolic XCRL. We explain the experimentally

observed phase-contrast artifacts in imaging

transparent objects which becomes visible even in

the image plane of the XCRL for which the lens

formula is fulfilled [28,29]. These images show up

as edge enhanced images where the boundaries

and interfaces of the object generate both bright

and dark contrast. These features cannot be ex-
plained within the geometrical optics approxima-

tion, and they are pure diffraction phenomena.

The paper is organized as follows. Section 2

presents the detailed theory of the one-dimensional

parabolic XCRL. We formulate the theory in

terms of the propagators, calculate the XCRL

propagator in first-order L/F approximation, and

obtain the total image propagator in the analytical
form. We found that the parabolic XCRL can be

treated as a thin lens, placed in the middle of the

XCRL, with the focal length Fl ¼ F þ L=6. We
also discuss properties of the quasi-Fourier image

at the back focal plane (distance equal to the

XCRL focal length) and the quasi-focused image

at the image plane (distance satisfying the lens

formula). The computer simulations allow us to
confirm the derived analytical formulas. In Section

3 we consider the problem of 2D imaging applying

the results, obtained in the Section 2. We show

that the XCRL two-dimensional propagator is a

product of one-dimensional propagators. This

property allows one to simplify the problem in

many practicable cases.

2. The diffraction theory of the 1-D imaging with

parabolic X-ray compound refractive lenses

For the sake of simplicity, we consider first a

one-dimensional case of an in-line setup where the

object and the parabolic XCRL are homogeneous

along the y-axis. Under these conditions, the re-
corded image or intensity distribution is homoge-

neous along the y-axis. Therefore we can omit the

calculation of the integrals over the y coordinate.

2.1. The formulation of the image problem via

propagators

We assume the optical axis to be coincide with
the z-axis of the coordinate system (see Fig. 1). The

x-dependence behind the object of the complex X-

ray wave field, including also the incident wave, is

described by the complex function AoðxoÞ which
hereafter is called the object wave field. We will

neglect the longitudinal size of the object com-

pared to the other distances of our setup. The

XCRL with the parabolic profile of individual
components is located at the distance ro from the

object. The XCRL has a length L so that the dis-

tance ro is assumed to be between the object and
the front side of the XCRL.

It is easy to write the x-dependence of the

complex wave field AfðxfÞ in front of the XCRL
in terms of the paraxial approximation to the

Kirchhoff integral [30]

Fig. 1. Geometrical parameters of the experimental setup (a)

and of the individual lens in the XCRL array (b).
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AfðxfÞ ¼
Z
dxoP ðxf � xo; roÞAoðxoÞ: ð1Þ

Here the coordinate xf is related to the axis in front
of the XCRL and P ðx; zÞ is the propagator for the
transversal x-dependence of the field through the

free space along the z-axis

P ðx; zÞ ¼ 1

ðikzÞ1=2
exp ip

x2

kz

� �
; ð2Þ

where k is a wavelength of the monochromatic
wave. Hereafter we imply that the limits of inte-

grals are infinite if the opposite is not specified.

The next step is to calculate the x-dependence
of the complex wave field behind the XCRL. Let

us represent the solution of this task through the

propagator of the XCRL in the form

AbðxbÞ ¼
Z
dxfPlðxb; xf ; LÞAfðxfÞ; ð3Þ

where xb is the coordinate in the direction normal
to the axis z behind the XCRL (see Fig. 1). The
complex wave field AiðxiÞ at the image axis, which
is placed at the distance ri from the back side of the
XCRL, can be expressed through the Kirchhoff

integral once again

AiðxiÞ ¼
Z
dxbP ðxi � xb; riÞAbðxbÞ: ð4Þ

Substituting (1) and (3) into (4) and changing
the order of integration, we obtain the relation

between the object wave field AoðxoÞ and the image
wave field AiðxiÞ in terms of the image propagator
Gðxi; xoÞ as follows:

AiðxiÞ ¼
Z
dxoGðxi; xoÞAoðxoÞ; ð5Þ

where

Gðxi; xoÞ ¼
Z
dxbP ðxi � xb; riÞ

�
Z
dxfPlðxb; xf ; LÞP ðxf � xo; roÞ: ð6Þ

In order to calculate the integral, we need to

specify the explicit form of the XCRL propagator

Plðxb; xf ; LÞ.
We note any solution of the Maxwell�s equation

must satisfy the reciprocity principle, i.e., the re-

placement xi by xo and simultaneously ri by ro and

vice versa must lead to the same result. Expression

(6) satisfies this principle if the XCRL propagator

is a symmetrical function of variables xb and xf .

2.2. The X-ray compound refractive lens propagator

So far the thin lens approximation, i.e., the ze-

ro-order approximation in parameter L/F was as-

sumed in the theory of imaging with XCRL.

Violation of this approximation in the specific case
of focusing the parallel beam was analyzed only

within the frame of the geometrical optics [19,25].

In the paraxial approximation the focal length

F ¼ R=2Nd [1], where R is the radius of curvature

of the parabolic profile (near the vertex), N is the

total number of the individual parabolic lenses (see

Fig. 1 where N ¼ 10), d is the decrement of the
complex refractive index n ¼ 1� d þ ib ¼ 1� g of
the lens material. The XCRL propagator in this

case has a form [3]

Plðxb; xf ; LÞ ¼ exp½�ikgtðxbÞ	dðxb � xfÞ: ð7Þ
Hereafter k ¼ 2p=k is the wave-number, dðxÞ is the
Dirac delta-function, and tðxÞ is the variable
thickness of XCRL material along the optical axis.

For the XCRL with a parabolic profile

tðxÞ ¼ N
x2

R

�
þ d
�
; jxj < a

2
; L ¼ t

a
2

� �
: ð8Þ

Here d is the minimum spacing between two pa-

rabolas, L is the XCRL length, and a is the XCRL
geometrical transverse size. Assuming that a is

larger than the effective aperture ac ¼ ðkF =cÞ1=2
where c ¼ b=d, we can neglect the geometrical
aperture of the XCRL. This expression for the

propagator corresponds to the local approxima-

tion, i.e., at each x point the wave field is multi-

plied by an exponential factor known as a

transmission function.
We want to obtain the XCRL propagator in the

first-order approximation, i.e., to take into ac-

count the corrections linear in L/F. The compound

lens consists of N closely packed identical indi-

vidual lenses. Taking this into account we can

consider XCRL as a periodic structure of N ele-

ments with the period L/N. If N is large each

simple lens makes slight perturbation of the wave
field. Under these conditions we can use the

V. Kohn et al. / Optics Communications 216 (2003) 247–260 249



continuous approximation [3] which is obtained

after averaging the density ofXCRLmatter over the

period along the optical axis. Then the Maxwell�s
wave equation inside the XCRL takes the form:

d2

dz2

�
þ d2

dx2
þ k2n2ðxÞ

�
Eðx; zÞ ¼ 0; ð9Þ

where Eðx; zÞ ¼ expðikzÞAðx; zÞ in the paraxial ap-
proximation and nðxÞ ¼ 1� gðxÞ with

gðxÞ ¼ c
L

x2

2F

�
þ ddN

�
; c ¼ 1� ic; c ¼ b

d
:

ð10Þ
This expression is valid only inside the geometrical

aperture of the XCRL jxj < a=2. Since we assume
that the geometrical aperture a exceeds the effec-

tive aperture ac, the region jxj > a=2 represents no
interest. Taking into account that jgðxÞj � 1 and

applying the paraxial approximation we obtain

from (9) the parabolic equation for the slowly

varying part of the field Aðx; zÞ as follows:
dA
dz

¼ �ikgðxÞAþ i

2k
d2A
dx2

: ð11Þ

This equation must be solved inside the interval

0 < z < L with the boundary condition Aðx; 0Þ ¼
AfðxÞ. We are interested in the function AbðxÞ ¼
Aðx; LÞ.
One can see that the transmission function

expð�ikgðxÞzÞ corresponding to (7) is a solution of
this equation if the second term on the right-hand-

side of (11) is negligible. On the other hand, the

propagator (2) is the solution of (11) with gðxÞ ¼ 0,
i.e., in a free space. We try the approximate solu-

tion of (11) in the form

Aðx; zÞ ¼ Aoðx; zÞ exp½�ikf ðx; zÞ	; ð12Þ
where

Aoðx; zÞ ¼
Z
dxfP ðx� xf ; zÞAfðxfÞ;

dAo
dz

¼ i

2k
d2Ao
dx2

ð13Þ

and f ðx; zÞ is new unknown function.
Substituting (12) in (11) and taking into account

(13), we obtain the equation for f ðx; zÞ as
df
dz

¼ gðxÞ � aðx; zÞ df
dx

þ 1
2

df
dx

� �2
þ i

2k
d2f
dx2

ð14Þ

with the boundary condition f ðx; 0Þ ¼ 0. Here

aðx; zÞ ¼ 1

ikAoðx; zÞ
dAoðx; zÞ
dx

ð15Þ

is the known function which slowly varies with z.
When L=F � 1, we can neglect the z-dependence

in aðx; zÞ and take aðxÞ at z ¼ 0. Then replacing Ao
by Af and taking into account (1), we have

aðxÞ ¼ ½x� �xxoðxÞ	
ro

;

�xxoðxÞ ¼
R
dx0P ðx� x0; roÞx0Aoðx0ÞR
dx0Pðx� x0; roÞAoðx0Þ

:

ð16Þ

We see that the average coordinate of an object
�xxoðxÞ has a rather complicated structure and does
not allow us to formulate the solution of the

problem in terms of linear propagator like the free

space propagator. We want to use the same ap-

proximation as in [3] and replace �xxoðxÞ by xo. This
approximation is well suited for the XCRL use as

an imaging device. Then aðxÞ ¼ ðx� xoÞ=ro.
The approximate solution for f ðx; LÞ is derived

by iterations (see [3]). For the zero approximation
we neglect the transverse derivatives in (14) and

obtain foðx; zÞ ¼ gðxÞz. The first approximation
f1ðx; LÞ ¼ flðxb; xoÞ is obtained by substitution the
transverse derivatives of foðx; zÞ instead of f ðx; zÞ
in the right-hand-side of (14). As a result we obtain

f ðx;LÞ ¼ gL� L2

2

ðx� xoÞ
ro

dg
dx

þ L3

6

dg
dx

� �2
þ iL

2

4k
d2g
dx2

: ð17Þ

Thus we obtain the propagator of a XCRL in the

next approximation in L/F as

Plðxb; xf ; LÞ ¼ exp½�ikflðxb; xoÞ	P ðxb � xf ; LÞ: ð18Þ
As a result, for the image propagator (6) we have

Gðxi; xoÞ ¼
Z
dxbP ðxi � xb; riÞ exp½�ikflðxb; xoÞ	

� P ðxb � xo; ro þ LÞ: ð19Þ

Here we applied the well-known property of

the free-space propagator (see discussion in [31])

that the convolution of two propagators is again

the propagator for the total distance, namely,

P ðx1 � x; z1Þ � P ðx� x2; z2Þ ¼ Pðx1 � x2; z1 þ z2Þ.
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We note the solution (19) does not satisfy

straightforwardly the reciprocity principle. In

principle, more accurate solution that satisfies the

reciprocity principle can be obtained. However,

the derivation is more complicated and the differ-
ence involves higher orders in small parameter L/

F. We will solve this problem later on at least for

the case of imaging.

2.3. Analytical solution for the image propagator

In this section we obtain an analytical expres-

sion for integral (19). Taking into account (2), (10)
and (17), we write

Gðxi; xoÞ ¼
C0

ikðroriÞ1=2
Z
dxb exp i

k
2
uðxi; xb; xoÞ

� �
;

ð20Þ
where

C0 ¼ exp c
��
� ikddN þ L

4F

��
;

u ¼ u0 þ u1 ¼ U � Vxb þ Wx2b;

u0 ¼
½xi � xb	2

ri
þ ½xb � xo	2

ro
� c

x2b
F
;

u1 ¼ �L
½xb � xo	2

r2o

 
þ x2b
3F 2

� xbðxb � xoÞ
roF

!
:

ð21Þ

Hereafter we take into account that our accuracy

does not exceed first order in L/F. We assume that

the parameter c is of the same order of smallness as
L/F or less. A correction from the distance L in the

pre-exponential factor does not influence the

transverse distribution of the wave field, i.e., the

object image.

The parameters U ¼ U0 þ U1, V ¼ V0 þ V1 and
W ¼ W0 þ W1 contain the terms of zero and first
order in L/F. To satisfy the reciprocity principle in

U1, V1 and W1, we apply the relations between xo,
ro, xi, ri and F, resulting from the conditions V0 ¼ 0
and W0 ¼ 0 which correspond to the thin lens
formula in zero approximation. This is possible, at

least for the imaging problem, because the differ-

ence is only due to the terms of higher order in
L/F. This way we obtain the expressions for U, V

and W in terms of the modified distances

rol ¼ ro þ
L
2
; ril ¼ ri þ

L
2
; Fl ¼ F þ L

6
ð22Þ

as follows:

U ¼ x2o
rol

þ x2i
ril
; V ¼ 2 xo

rol

�
þ xi
ril

�
;

W ¼ � c
Fl
þ 1

rol
þ 1

ril
:

ð23Þ

Now one can see that all the expressions (23) are

symmetrical with respect to the permutation of the

object and the image. New distances are measured
from the middle of the XCRL. The focal length of

XCRL increases by L=6 compared to the thin lens
approximation. New magnitude of the focal length

of a XCRL is the main result of our approach.

This result was already obtained [3], but in the

implicit form.

Applying the table integral, we arrive at the

analytical expression in the form

Gðxi;xoÞ ¼
C0

ðikrgÞ1=2
exp i

p
krg

gix2i
��

� 2xixoþ gox2o
��

;

ð24Þ
where

rg ¼ ril þ rol � c
rilrol
Fl

; gi ¼ 1� c
rol
Fl

;

go ¼ 1� c
ril
Fl
:

ð25Þ

The analytical solution allows us to analyze the

peculiarities of the XCRL operation in the specific

cases and to clarify the difference between the X-

ray optics and the visible optics. Notice that the

image propagator Gðxi; xoÞ coincides with the free-
space one (2) P ðxi � xo; ril þ rolÞ if Fl ¼ 1 and

C0 ¼ 1.

2.4. Quasi-Fourier image

Let us consider the complex coherent wave field

at the plane right after the object. This might be a

transmission function of the object illuminated by
a plane wave or a product of the transmission

function and the wave field created by the point

source or any other wave field resulting from dif-

fraction by other objects upstream. As is known

from the theory of classical refractive optics [30],

the complex wave field is converted into its Fourier
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transform in the back focal plane of the lens. The

distance before the lens does not influence the

modulus, but leads to the additional phase factor

which vanishes when the object is located in the

front focal plane. This property is valid approxi-

mately for a XCRL as well. As follows from (5)
and (25), the real part of the complex coefficient go
vanishes when the condition ril ¼ Fl or

ri ¼ F � L=3 is fulfilled.
Thus we conclude once again that the real focal

length of a XCRL is larger compared to the thin

lens limit by L=6, when it is counted from the

middle of the XRCL. Under this condition we

have

AiðxiÞ ¼
C0C1ðxiÞCfðxiÞ

ðikrfÞ1=2

�
Z
dxo expð�iqxo � ex2oÞAoðxoÞ; ð26Þ

where

CfðxÞ ¼ exp ip
x2

kFl

� �
;

C1ðxiÞ ¼ exp
�
� ip x2i

kFl

rol
rf

�
;

q ¼ 2pxi
krf

; e ¼ p
k

c
rf
; rf ¼ Fl þ icrol:

ð27Þ

The parameter rf is a complex magnitude. Its real
part equals Fl whereas the imaginary part is pro-
portional to rol.
The known result of the classical optics follows

from the formulas (26), (27) in the case of infinite
aperture and c ¼ 0. However, the XCRL is always
absorbing and this leads to the fact that the XCRL

reproduces the Fourier image of the modified ob-

ject function

~AAoðxoÞ ¼ AoðxoÞ exp
�
� p

k
c
rf
x2o

�
: ð28Þ

The modification is more stronger the larger the

parameter c is.
Another feature of XCRL is that, in general

case, the intensity distribution of the diffraction

pattern in the transform plane depends on the ob-

ject distance ro due to absorption of X-rays inside
the XCRL. This is in contrast to classical optics,
where lenses with large aperture are treated and the

modulus of the Fourier image is independent of the

wave field plane. This property is verified by (26),

(27). When c ¼ 0, the parameter rf coincides with
Fl. In the case of XCRL, where c > 0, the Fourier
image is conditional because the wave-number pa-

rameter q becomes complex. The imaginary part of
q can be decreased by placing the object just in front

of the XCRL when ro ¼ 0. We note the factor
jC1ðxiÞj2 becomes also position sensitive if c > 0.
Let us discuss the quasi-Fourier image in two

simple examples. In the first example the object

radiates the plane wave expðikzÞ, i.e., AoðxoÞ ¼
Ao ¼ const. The calculation of the integral (26) is
straightforward and we obtain

AiðxiÞ ¼ Ao
C0CfðxiÞ
ðicÞ1=2

exp

�
� p

k
x2i
cFl

�
ð29Þ

and for the integral intensity

�II1 ¼
Z
dxijAiðxiÞj2 ¼

kFl
2c

� �1=2
jAoC0j2: ð30Þ

It is of interest to compare these formulas with the
case of a thin transparent lens of finite aperture a.

The result can be obtained from (26) with

C0 ¼ 1, c ¼ 0, L ¼ 0, AoðxÞ ¼ Aohða=2� xÞ. Here
hðxÞ is the step function which equals unity for
x > 0 and zero for x < 0. We have

AitðxiÞ ¼ Ao
kF
i

� �1=2 C1ðxiÞCfðxiÞ
pxi

� sin ap
kF

xi
� �

;

�IIit ¼ ajAoj2:

ð31Þ

According to (29) the intensity IiðxiÞ ¼ jAij2 de-
pends on the coordinate xi as the Gaussian with
the FWHM rc ¼ 0:664ðkF cÞ1=2 independent of ro.
Let us compare this value with the diffraction

limited resolution ra of the thin transparent lens

limited by an aperture a taken from (31), namely,

ra ¼ 0:886kF =a. One can determine the effective
aperture of the XCRL via the condition rc ¼ ra.

This leads to the result að1Þc ¼ 1:334ðkF =cÞ1=2. An-
other way is to use the fact that the normalized
intensity, integrated within the focal spot, is equal

to the aperture for the transparent lens. Then from

(30) we obtain að2Þc ¼ 0:707ðkF =cÞ1=2. This is ap-
proximately twice as less than the preceding
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determination. Thus there is some difference be-

tween the transparent lens of the finite aperture

and the absorbing parabolic lens.

It is a good choice to use the intermediate value

ac ¼
kFl
c

� �1=2
� 2:51 R

lN

� �1=2
ð32Þ

for the aperture of the XCRL. In the second ex-

pression of (32) we replaced F by R=2Nd and took
into account the linear absorption coefficient

l ¼ 4pb=k. In case of using the numerical aperture
N:A: ¼ 2ðd=lF Þ1=2 (see, i.e., [16]) we see that
N:A: ¼ 1:77ac=F ¼ 1:18k=rc. We note the resolu-
tion rc ! 0 when R ! 0. This fact was used in [32]

for a justification of micro-ball refractive optics.

However, in this case the aperture and the integral

intensity are close to zero even for parabolic shape

of micro-lens. For the spherical micro-ball lens, the

aperture is smaller due to the inappropriate shape.

In the second example the object is very narrow

slit, i.e., AoðxoÞ ¼ Aodðxo � xSÞ. The calculation is
straightforward again and we obtain

AiðxiÞ ¼ Ao
C0CfðxiÞ
ðikrfÞ1=2

exp

�
� ip xi

krf
xi
rol
Fl

�
þ 2xS

��

� exp
�
� pc

krf
x2S

�
: ð33Þ

Now the intensity Ii ¼ jAij2 evidently depends on
ro. If rol � 0, rf � Fl the intensity does not depend
on the coordinate xi, i.e., it behaves like Fourier
image. However, its magnitude is modified by

absorption in the XCRL, and only the slit at the
position jxSj < ac=2 can be detected. As the dis-
tance ro increases, the intensity distribution shows
more and more complicated picture. In the limit-

ing case of very long distance when crol � Fl, we
can replace rf by the imaginary value icrol. Now
the intensity distribution considerably differs from

the Fourier image of the narrow slit

AiðxiÞ ¼ Ao
C0CfðxiÞ
iðkcrolÞ1=2

exp

 
� p

k
½xi � xis	2

cFl

!

� exp px2S
krol

i

��
þ Fl

crol

��
: ð34Þ

Here xis ¼ �xSFl=rol. As follows from this expres-

sion, the intensity distribution has a maximum

value at the point xis. The corresponding peak is
symmetrical and has the same width as in the case

of the plane wave considered above.

We conclude that the XCRL always transforms

the wave field distribution in front of the finite
aperture of the XCRL. The resolution of the

transformation is limited by the diffraction phe-

nomena due to the finite aperture. In the last ex-

ample, the small object far removed from the

XCRL produces approximately the plane wave in

front of the XCRL, and instead of the Fourier

image focusing will occur.

2.5. Quasi-focused image

Let us consider the image formation with the

XCRL when the lens formula

1

ril
þ 1

rol
� 1

Fl
¼ 0 ð35Þ

is fulfilled. In this case the real part of rg vanishes
and the XCRL propagator (24) can be written in

the form

Gðxi; xoÞ ¼
C0
i

rol
ril

� �1=2
exp i

p
k

x2i
ril

��
þ x2o
rol

��
� drðxo � xoiÞ; ð36Þ

where

drðxÞ ¼
1

rð2pÞ1=2
exp

�
� x2

2r2

�
;

r ¼ krol
acð2pÞ1=2

; xoi ¼ �xi
rol
ril

:

ð37Þ

We note drðxÞ becomes the Dirac delta-function
dðxÞ in the limit r ! 0.

For the transparent lens of the infinite aperture,

we have c ¼ 0. Replacing drðxÞ by dðxÞ, we obtain
from (5) the simple relation between the object

function AoðxoÞ and the image function AiðxiÞ as

AiðxiÞ ¼
C0
i

rol
ril

� �1=2
CiðxiÞAoðxoiÞ;

CiðxÞ ¼ exp ip
x2

kFl

rol
ril

� �
:

ð38Þ

Thus, the wave field measured in the image plane is

proportional to the wave field in the object plane,
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taking into account the magnification factor, i.e.,

the ratio between ril and rol. An additional phase
factor in the propagator does not influence the in-

tensity in this case. An opaque (absorbing) object

will produce the direct image, whether the trans-
parent (non-absorbing) object remains invisible,

although the phase profile after the object is modi-

fied.

As we mentioned, in reality, the XCRL has a

finite aperture ac and a finite resolution r because
c > 0. Therefore, if the transparent object pro-
duces a drastic perturbation of the phase profile of

the incident wave field with the characteristic
length less than r, it can be detectable in the image
plane. We note the resolution r is proportional to
the distance rol. However, contrary to Fourier

imaging, we have no possibility to decrease the

distance rol because it cannot be less than Fl due to
the lens formula.

Under coherent illumination with the quasi-

parallel beam the XCRL makes visible only the
finite region of the object. To show this we calcu-

late a quasi-image in the case where the wave field

behind the object is the plane wave directed along

the optical axis, i.e., AoðxoÞ ¼ 1. The integral (5)
for this case has the analytical expression as

AiðxiÞ ¼ QðxiÞ where

QðxiÞ ¼
C0
i

rol
rilp

� �1=2
CiðxiÞ exp

 
� p
p
x2oi
a2c

!
;

p ¼ 1� ic rol
Fl
:

ð39Þ

Here ac is determined by (32). When crol � Fl we
arrive at the result (29) again. The point is that

ril � Fl in this case, according to the lens formula
(35) and because c � 1. For more practicable case

when crol � Fl, we obtain the intensity varying as

IibðxiÞ �
rol
ril
exp

 
� 2p x2oi

a2c

!
: ð40Þ

The FWHM of the intensity distribution, is in-

dependent of distances and equal to aov ¼ 0:664ac

in terms of the corresponding coordinate at the
object xoi. The physical reason of this phenomenon
lies in the fact that the image propagator (36) in

addition to the finite resolution contains the phase

factor exp½iuðxoÞ	 with u ¼ px2o=krol modifying the

object wave field. For the given value of xi, the ef-
fective region of integration is xoi � r < xo <
xoi þ r. The speed of the phase change inside this
region can be estimated as du=dxo ¼ 2pjxij=kril,
whereas the total phase shift within the region is

Du ¼ 2rðdu=dxoÞ ¼ ð2pÞ1=2jxoij=ac. Substituting
jxoij ¼ aov=2, we obtain that the intensity decreases
twice when Du ¼ 0:83 � p=4.
Let us discuss the possible cases of visibility of a

transparent object.We consider first a simple object

which may be called the ‘‘phase step’’. It produces

the phase shift expðiwÞ in the region xS < xo < 1. In
this case one has to calculated the integral (5) with

AoðxoÞ ¼ 1þ ½expðiwÞ � 1	 hðxo � xSÞ. The first term
(unity) leads to expression (39) where the value of

complex Fresnel integral with infinite upper limit is

used. The second term leads to expression involving

the complex Fresnel integral

FUðZÞ ¼
Z Z

0

exp i
p
2
t2

� �
dt;

FUð�ZÞ ¼ �FUðZÞ
ð41Þ

with the finite upper limit. Taking this into ac-

count and calculating the accurate value of the

upper limit one arrives to the accurate solution

which may be written as follows:

AiðxiÞ ¼
1

2
QðxiÞð1þ expðiwÞ þ SðxiÞ½1� expðiwÞ	Þ;

ð42Þ

where

SðxiÞ ¼
2

i

� �1=2
FUðZÞ;

Z ¼ 1
r

ip
p

� �1=2
xS

�
� xoi

p

�
:

ð43Þ

The function FUðZÞ � Z for jZj < 1 and FUðZÞ �
ði=2Þ1=2 for jZj > 5. For typical values of parame-
ters crol � Fl and jp � 1j � 1, and the centre of the

image appears at the point xðcÞi ¼ �xSðril=rolÞ cor-
responding the modulo minimum value of the ar-

gument Zc, where xS ¼ xoi. This value can be written
as Zc ¼ ð2=iÞ1=2ðxS=acÞ. Assuming that the point of
the phase step is located near the XCRL aperture

centre (Zc is less than unity) and replacing FUðZÞ by
Z, we obtain
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IiðxðcÞi Þ � IibðxðcÞi Þ cos w
2

� ��
� 2xS

ac
sin

w
2

� ��2
;

ð44Þ

where IibðxiÞ is the background intensity, deter-
mined by (40). As the point of observation xi
moves from the image center xðcÞi , the intensity
profile approaches the background intensity be-
cause SðxiÞ � 1 for xi far from xðcÞi . The ‘‘phase
step’’ is apparently visible inside the region

jxi � xðcÞi j < 5rril=rol.
It should be noted that the intensity magnitude

inside the image region can be reduced (dark im-

age) or enhanced (bright image) compared to the

background magnitude. The contrast is different

for w and �w, for xS and �xS. However, the si-
multaneous replacement w by �w and xS by �xS
remains the image unchanged. The contrast dis-

appears when the object is placed at the position

xS ¼ �ðac=2Þ tanðw=4Þ. It is useful to write the
analytical solution (44) for the relative intensity in

the form

IiðxðcÞi Þ
IibðxðcÞi Þ

� cos
2 ðw=2� uÞ
cos2 ðuÞ ; tanðuÞ ¼ � 2xS

ac
:

ð45Þ

This formula allows us to determine the coordi-

nate of the ‘‘phase step’’ xS for maximum contrast.
In the region where uw < w2=4 the image consists
of the intensity pit. In the region where the op-

posite condition is fulfilled uw > w2=4 the intensity
peak must be observed. The relative height of the

peak or the pit increases with increasing the value

of ju � w=4j. We note the formula is valid only for
juj < 1.
Let us consider now the transparent object with

an arbitrary smooth phase profile wðxoÞ having the
finite derivatives nnðxoÞ ¼ dnw=dxno. Since for the
given image coordinate xi, the effective region of
integration in (5) is jxo � xoij < r, we can expand
the phase in Taylor�s series at the point xoi and
restrict ourselves only by the first three terms,
namely,

wðxoÞ � wðxoiÞ þ n1ðxoiÞðxo � xoiÞ

þ 1
2

n2ðxoiÞðxo � xoiÞ2: ð46Þ

This is correct if the residual terms of the Taylor�s
series are much less than unity within the interval

jxo � xoij < r. Using expression (46) for the object
wave field AoðxoÞ ¼ exp½iwðxoÞ	, we calculate the
integral (5) as

AiðxiÞ�
C0
i

rol
rilpo

� �1=2
CiðxiÞexp

 
� p
po

½xoiþX ðxoiÞ	2

a2c

!
;

ð47Þ
where

po ¼ 1� ic
rol
Fl

� in2ðxoiÞr2;

X ðxoiÞ ¼
krol
2p

n1ðxoiÞ:
ð48Þ

Evidently, if n1 ¼ n2 ¼ 0, this expression coincides
with (39).

We note that both the second and the first de-

rivatives of the object phase profile influence the

image intensity profile. However, the second de-

rivative influences the intensity only slightly if

jn2ðxoiÞr2j � 1. On the contrary, the first deriva-

tive significantly influences the intensity at the
point xi. The reason of this effect cannot be ex-
plained within the frame of geometrical optics

because it is a consequence of the fact that the

imaging provides a finite resolution because the

propagator is proportional to the Gaussian instead

of the delta-function. Mathematically, even the

plane wave leads to the uneven intensity profile

(see (39)) due to the integration of the phase factor
of the propagator with the linear phase depen-

dence. The additional linear phase profile of the

object changes the result of the integration. Under

these conditions even a transverse shift of the

XCRL will change the image of definite fragment

of the object. When ½xoi þ X ðxoiÞ	2 > x2oi the inten-
sity decreases compared to the background (dark

image). The bright image (increased intensity) can
be observed in some places where the opposite

condition ½xoi þ X ðxoiÞ	2 < x2oi is fulfilled. Of

course, when ½xoi þ X ðxoiÞ	2 ¼ x2oi the image is de-
termined by the second derivative alone. In the

latter case the intensity of X-rays differs slightly

from the background value.

The results of this section show that the X-ray

compound refractive lens is an excellent device for
phase contrast imaging of the transparent objects.
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However, the image formed by XCRL is qualita-

tively different from the image obtained using the

in-line phase contrast technique under the near

field condition [33]. The latter technique is based

on (1), (2) and that P ðx; zÞ is approximately dðxÞ
for z ! 0. Therefore the difference of P ðx; zÞ from
dðxÞ is determined by small distance z. In the case

of the XCRL the difference of the propagator

Gðxi; xoÞ from the delta function is more compli-

cated, namely, it is determined by the finite aper-

ture of the lens due to absorption. Moreover, an

additional phase factor becomes essential. A

comparison of two techniques for a simple object

is made in the next section. Here we note that our
results allow one to understand the significant

distinction between the images recorded experi-

mentally by the in-line phase contrast technique

and with the XCRL (see, for example, [9]).

2.6. Computer simulations

To illustrate the analytical results of 1D imag-
ing presented above, we choose the 1D silicon grid

as an object which is homogeneous along the y-

axis. The grid has the following parameters: period

p ¼ 20 lm, bar height h ¼ 10 lm, bar width

d ¼ 10 lm. Usually the grid is located normally to
the optical axis (axis z, see Fig. 1) to produce the

abrupt phase shift at the boundaries of the bars

(see Fig. 2, top profile). However, the grid can be
rotated along the y-axis by an angle h. The rota-
tion changes the phase profile produced by the

object. Calculations are made for the experimental

setup with the point source of E ¼ 20 keV X-ray
energy located at the distance rs ¼ 50,000 m from

the object.

We use standard algorithm of calculation of 1D

integral of exponential integrand which consists of
replacing the integral by a sum of many fragments

Within each fragment the argument of the expo-

nential is approximated by linear function, after

that the integral over the fragment is calculated

analytically. The short description of the algo-

rithm was done in [34]. We present the normalized

intensity as a ratio of the recorded intensity with

and without the object.
The very long distance from the source was

selected to eliminate some tiny extra oscillations

due to the beam divergence. However, it turned

out the divergence of the incident beam does not

influence the focused images which remain prac-
tically the same for rs ¼ 50 m. We note it is not the
case for the Fourier images which are dependent of

the source distance. The aluminium XCRL has the

focal length F ¼ 1 m. The refractive index pa-
rameters are d ¼ 1:352� 10�6, b ¼ 4:21� 10�9,
c ¼ 3:12� 10�3 for Al and d ¼ 1:21� 10�6,
b ¼ 4:72� 10�9 for Si. We take the magnification
M ¼ 1 and ro ¼ ri ¼ 2 m. Under these conditions
r ¼ 0:35 lm.
We present calculation results for three values

of the rotation angle h ¼ 0�, 10� and 30�. The
fragments of the periodical phase profile produced

by the grid are shown in Fig. 2. In the case h ¼ 0
the phase profile contains a series of positive and

negative ‘‘phase steps’’ with jwj ¼ 1:22, whereas in
two other cases the phase profile has regions of
constant phase gradient. We calculate both the in-

line phase contrast image after the grid and the

image produced by the XCRL. For the image

without lens we use the formulas (1), (2) with

ro ¼ 5 cm, and we convolute the strongly oscil-
lating intensity with the detector line spread

function as the Gaussain with FWHM 0:6 lm. In
the case of the image with the XCRL the convo-
lution is not necessary.

The results of computer simulations are shown

in Figs. 3–5 for h ¼ 0�, 10� and 30�, respectively.
One can see the computer simulations confirm all

Fig. 2. The central fragments of the phase shift profiles pro-

duced by a silicon grid at different angle of rotation h.
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the features of the XCRL imaging discussed ana-
lytically above (see (45)–(48) and discussion). We

note the XCRL image shows always the region

with the phase gradient in contrary to the near

field phase contrast image. In addition, it is sen-

sitive to the sign of the phase gradient. In the limit

case of the ‘‘phase step’’ with infinite phase gra-

dient the image is as sharp as possible taking into

account the XCRL resolution. We note these

properties can lead to the more single-valued and

straightforward solution of the phase retrieval
problem.

The results of computer simulations for the

Fourier-transform of the same Si grid are shown in

Fig. 6. In this case ri ¼ F in a thin lens approxima-
tion whereas ro ¼ 0 to obtain the better image, as it
follows from the analytical consideration. The fig-

ure shows the decimal logarithm of the relative in-

tensity because the intensity decreases sharply for
the image periphery. The top figure shows many

diffraction orders of the periodical grid. The all even

orders, except zero, are absent due to the structure

factor of the grid. All peaks are shown sharply de-

spite the significant difference in value. So the pe-

riphery peaks are in 10�4 times smaller than the

zero-order peak. The figure at h ¼ 10� does not
contain high order peaks, and the even orders be-
come visible. The figure at h ¼ 30� shows no dif-
ference between the even and odd orders peaks. The

high order peaks are sharply decreased. We note all

peaks are present but they are very weak.

Fig. 3. The normalized intensity distribution (image) for the

silicon grid obtained by near field in-line phase contrast tech-

nique at 5 cm (top curve) and by XCRL imaging without

magnification M ¼ 1 (bottom curve) at h ¼ 0, see text for de-
tails.

Fig. 4. The same images as in Fig. 3, but at h ¼ 10�.

Fig. 5. The same images as in Fig. 3, but at h ¼ 30�.

Fig. 6. The distribution of the normalized intensity (Fourier

transform) calculated for the distance equal to the XCRL focal

length. The silicon grid is placed in front of the XCRL. Dif-

ferent values of the rotation angle h are pointed at the curves.
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As follows from the theory, the Fourier trans-
formation becomes conditional with increasing the

distance ro. Fig. 7 shows the results of computer
simulation for the grid at h ¼ 0 and ro ¼ 2 m. The
higher orders become damped while the principal

orders remain practically unchanged.

3. The diffraction theory of the 2-D imaging with
parabolic X-ray compound refractive lenses

In this section we show that the wave field dis-

tributions along the x-axis and y-axis propagate

independently of each other within the paraxial

approximation.

First of all, the free-space 2-D propagator is

equal to

P ð2Þðx; y; zÞ ¼ P ð1Þðx; zÞP ð1Þðy; zÞ; ð49Þ

where P ð1Þðs; zÞ is determined by (2). Hereafter s is
any one of the coordinate x and y. For the para-

bolic XCRL with round aperture the variable

thickness along the optical axis is equal to

tðx; yÞ ¼ N
x2 þ y2

R

�
þ d
�
;

ðx2 þ y2Þ < D2

4
; L ¼ t

D
2
; 0

� �
;

ð50Þ

where D is a diameter of the XCRL aperture.

In the thin lens approximation the XCRL 2-D

propagator can be written as a product of the 1-D

propagators

P ð2Þ
l ðxb; xf ; yb; yfÞ ¼ P ð1Þ

l ðxb; xfÞP ð1Þ
l ðyb; yfÞ; ð51Þ

where

P ð1Þ
l ðsb; sfÞ ¼ exp

�
� ikcd d

2
N � ikc s2b

2F

�
dðsb � sfÞ:

ð52Þ
We note without a derivation that the XCRL 2-

D propagator has the same property in the linear

approximation in L/F considered above.

This allows us to calculate the integrals on x

and y variables independently. The calculations

are completely the same as presented above. Then

the image 2-D propagator is a product of two 1-D

propagators

Gð2Þðxi; xo; yi; yoÞ ¼ Gð1Þðxi; xoÞGð1Þðyi; yoÞ: ð53Þ
Here Gð1Þðxi; xoÞ is determined by (24) and (25)
with replacing d by d/2. The general image prob-

lem can be formulated as

Aiðxi; yiÞ ¼
Z
dxo dyoGð2Þðxi; xo; yi; yoÞAoðxo; yoÞ:

ð54Þ
In general case of an arbitrary object the two-di-

mensional integral must be calculated and further

simplification is impossible.
However, in special cases, when the object wave

field is factorisable, i.e., Aoðxo; yoÞ ¼ PoðxoÞQoðyoÞ,
the image wave field is factorisable too,

Aiðxi; yiÞ ¼ PiðxiÞQiðyiÞ, and the relation between
the object wave field and the image wave field can

be calculated for each axis independently. This

takes place, for example, for the homogeneous

object illuminated by the spherical wave in the
paraxial approximation and for one- or two-di-

mensional grid. It is worthwhile to note if the lens

formula is fulfilled, the propagator is strongly lo-

calized. In this case it is sufficient to have ap-

proximately local factorisation of the wave field.

4. Conclusion

We develop the diffraction theory for the for-

mation of the image with parabolic X-ray com-

pound refractive lenses in the paraxial

approximation. We obtain the analytical expres-

sion for the image propagator which allows us to

explain the imaging and focusing properties of the

Fig. 7. The distribution of the normalized intensity (Fourier

transform) calculated for the distance equal to the XCRL focal

length. The silicon grid is placed at 2 m before the XCRL. The

rotation angle h ¼ 0.
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XCRL. We develop the enhanced thin lens ap-

proximation for the relatively long XCRL with the

longitudinal size L taking into account the linear in

L/F corrections. We show that the focal length for

the long XCRL is F þ L=6 when it is measured
from its center, where F ¼ R=2Nd is the focal
length in the thin lens approximation.

The relatively small effective aperture of the

XCRL due to the absorption of X-rays on all

materials results in the finite resolution of the im-

age propagator. This leads to developing phase or

edge enhanced imaging effects, which make visible

transparent objects at the image distance which

satisfy the lens formula. We found out that these
edge enhanced images are associated with the local

phase gradient of the X-ray wave field modified by

the object. Moreover, these images are sensitive to

the sign of the phase gradient. Thus the XCRL-

based imaging is different from the conventional

in-line phase contrast technique [33]. It opens a

new possibility for micro-imaging of the non-ab-

sorbing objects.
We study the optical properties of the XCRL as

a Fourier transformer and show that the Fourier

transformation made by the XCRL at the focal

plane becomes conditional due to the finite XCRL

aperture. We obtain that the XCRL always shows

the Fourier transformation of the wave field

formed in front of the lens and modified by the

lens aperture. When the object is placed at the
remote distance from the XCRL the subsequent

propagation of the radiation through the free

space yields a significant modification of the wave

field.

The computer simulations allow us to confirm

the analytical formulas. We obtain that the two-

dimensional image propagator is a product of

one-dimensional image propagators for x-axis and
y-axis. This can simplify the calculation of the im-

ages for many objects which structure can be de-

scribed by a product of two functions, each of them

represents the separate coordinate axis.
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