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Summary: The test of independence of row and column variables in a (J ×K) contingency table is a widely used

statistical test in many areas of application. For complex survey samples, use of the standard Pearson chi-squared test

is inappropriate due to correlation among units within the same cluster. Rao and Scott (1981) proposed an approach

in which the standard Pearson chi-squared statistic is multiplied by a design effect to adjust for the complex survey

design. Unfortunately, this test fails to exist when one of the observed cell counts equals zero. Even with the large

samples typical of many complex surveys, zero cell counts can occur for rare events, small domains, or contingency

tables with a large number of cells. Here, we propose Wald and score test statistics for independence based on

weighted least squares estimating equations. In contrast to the Rao-Scott test statistic, the proposed Wald and score

test statistics always exist. In simulations, the score test is found to perform best with respect to type I error. The

proposed method is motivated by, and applied to, post surgical complications data from the United States’ Nationwide

Inpatient Sample (NIS) complex survey of hospitals in 2008.
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1. Introduction

A widely used statistical test in many areas of application is the test of independence in

a (J × K) contingency table. Even in settings where multivariable multinomial regression

analyses are subsequently performed, initial analyses focusing on bivariate associations are

regularly reported at the beginning of the results section in published papers. For a typical

simple random sample (independent observations), the Pearson chi-squared statistic is widely

used and can be shown to equal the score test statistic for testing independence in an

J ×K contingency table with row and column variables that are jointly multinomial. It is

also equal to the score test statistic for no row (column) covariate effect in a multinomial

logistic regression where the column (row) variable is considered the outcome. For complex

survey samples, use of the Pearson chi-squared test is not appropriate due to the lack

of independence of observations. Many large scale surveys involve stratified, multi-stage

sampling and correlation among units within the same cluster.

Recall that complex survey sampling is widely used to sample a fraction of a large fi-

nite population while accounting for its size and characteristics. Based on certain subject

characteristics (e.g., age, race, gender), some individuals are over or under sampled. Thus,

individuals in the population will often have different probabilities of being selected into the

sample. Further, the sampling design can be multi-stage. Because of the complex sampling

frame utilized in sample surveys, for generalizability of the sample to the finite population

(Korn and Graubard, 1999), the design must be incorporated in the analysis, including

sampling weights (derived from the probability of selection), strata and/or cluster variables.

A popular test for independence for (J ×K) contingency tables with complex survey data

has been proposed by Rao and Scott (1981). This approach uses a design effect to adjust

the usual Pearson chi-squared statistic for the complex survey design. Unfortunately, this

elegant test fails to exist when one of the observed (or weighted) cells in the contingency table
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equals zero, because the design effect is a function of the inverse of the weighted cell counts.

Even with the large samples typical of many complex surveys, zero (weighted) cell counts

can occur for rare events, small domains, or contingency tables with a large number of cells,

such as in a (5× 5) contingency table. With independent observations (without weighting),

Fisher’s exact test would be the preferred choice with small cell counts. However, Fisher’s

exact test requires independent observations and cannot be extended to complex survey data

due to the stratification, clustering, and weighting.

In this paper, we show that the multinomial logistic regression score test for independence

can also be expressed in terms of a linear model for the multinomial outcome; we also show

that the score test reduces to a weighted least squares (WLS) estimating equations score test

statistic. Further, we describe the properties of the WLS Wald statistic and show that the

WLS estimating equations score test statistic can be considered a Wald test statistic with

the variance estimated under the null hypothesis.

In Section 2 we introduce some notation for complex sample surveys and discuss poly-

tomous logistic regression and linear regression for the multinomial outcome. In Section 3

we discuss weighted estimating equations (WEE) for complex survey data and present our

proposed WLS Wald and score test statistics. Finally, in Section 4, we present the results of

a simulation study examining the finite sample properties of the proposed score and Wald

tests in comparison to the Rao-Scott chi-squared test. Before turning to these topics, we

introduce an example that motivated the development of the methods.

Our motivating example is from the United States’ Healthcare Cost and Utilization Project

(HCUP) Nationwide Inpatient Sample (NIS), sponsored by the Agency for Healthcare Re-

search and Quality. With more than 1400 robotic surgical systems installed in hospitals

throughout the United States (Yu et al., 2012) robotic-assisted laparoscopic surgery has been

rapidly adopted despite the dearth of evidence demonstrating superior outcomes compared
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to traditional surgical approaches (i.e., non-robotic-assisted laparoscopic surgery and open

surgery). The Institute of Medicine has prioritized robotic surgery for comparative effective-

ness research (versus the other two types of surgery). There is an absence of population-based

studies comparing robotic, laparoscopic and open surgery with respect to surgical compli-

cations. In the urological literature (Yu et al., 2012), we recently performed a population-

based analyses using the Nationwide Inpatient Sample (NIS) from the last quarter of 2008.

Our population-based study objectives are to compare post surgery complications between

robotic, laparoscopic and open surgery. In this paper, we focus on nephrectomy (kidney

removal) due to kidney cancer.

The NIS is a 20% stratified, cluster probability sample that encompasses approximately

8 million acute hospital stays per year from approximately 1000 hospitals in 37 states. It is

the largest all-payer inpatient care observational dataset in the U.S. and is representative of

approximately 90% of all hospital discharges. In the NIS, hospitals in the sampling frame are

stratified by five key characteristics. Then, a random sample of hospitals (clusters) is chosen

from each of the strata. The NIS includes all discharges from the selected hospitals. Each

hospital has a different probability of being selected in the sample depending on the five

characteristics that determine the strata. As a result, each hospital, and thus all discharges

within the hospital, are given a weight so that any results can be extrapolated to the entire

universe of hospitals in the United States. Because 20% of the universe of hospitals are

sampled, the weights (or inverse probability of being sampled) are usually close to five.

During the last quarter of 2008, there were 3,487 patients with nephrectomy (kidney

removal) due to kidney cancer within NIS. The sum of the patient weights equals 12,142; that

is, these 3,487 patients represent 12,142 patients in the US population. These 3,487 patients

come from 1,051 clusters (hospitals) in 60 strata. For our study, we are primarily interested

in determining whether the type of surgery (robotic, laparoscopic, and open) is independent
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of post-surgery complications (3 levels: no complications, at least one complication without

death, death due to surgery). Table 1 presents the 3×3 contingency table of the weighted cell

counts (which sum to 12,142); HCUP does not allow publication of observed (unweighted)

cell counts between 1 and 12 (although it does allow 0 cell counts) due to concerns about

the possibility that patients might be identified. The data in Table 1 suggest that patients

who had robotic-assisted laparoscopic surgery have the best complication profile. In Section

5, we present the results of analyses of the NIS data to illustrate the proposed methods.

2. Multinomial Regression with Complex Survey Data

For many complex sample surveys, the target population is usually thought to be of finite

size N, and a total of n subjects (or units) are sampled. To indicate which n subjects are

sampled from the population of N subjects, we define the indicator random variable δi = 1

if subject i is selected into sample, and δi = 0 otherwise, for i = 1, ..., N, where
∑N

i=1 δi = n.

Depending on the sampling design, some of the δi may be correlated (e.g., for two subjects

within the same cluster). We let πi denote the probability of subject i being selected, which is

typically specified in the survey design; πi may depend on variables of interest, or additional

variables (screening variables, for example) not in the analytic model of interest.

Suppose that we are interested in the association between two discrete random variables,

Xi and Yi, where, for subject i in the population, Xi can take on values 1, ..., J, and Yi can

take on values 1, ..., K; to simplify notation, for the remainder of this section we suppress

the unit index i. Specifically, we are interested in testing the null hypothesis that X and Y

are independent in the population, i.e. H0: pr[(X = j), (Y = k)] = pr(X = j)pr(Y = k), for

j = 1, ..., J and k = 1, ..., K. Equivalently, we can test for independence between X and Y

by treating one of the variables as the outcome and the other as a covariate in a multinomial

logistic regression model; the test for no covariate effect is a test for independence (see, for

example, Agresti, 2013). Without loss of generality, we treat Y as the outcome and X as the
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covariate; the test for independence can be rewritten as H0: pr(Y = k|X = j) = pr(Y = k).

We denote these conditional probabilities by pk|j = pr(Y = k|X = j). Note that there

are K − 1 non-redundant conditional probabilities for each value of X = j, since these

conditional probabilities must sum to 1 for each level j; so, for simplicity, we discuss the

conditional probabilities pk|j, k = 1, ..., K−1. In terms of these conditional probabilities, the

null hypothesis is H0: pk|j − pk|J = 0 for j = 1, ..., J − 1. This suggests a linear model for the

probabilities pk|j, with regression coefficients equal to linear contrasts pk|j − pk|j′ , can be fit

and used to test the null hypothesis of independence.

Next, we describe the linear and polytomous logistic regression models for the probabilities

pk|j. Note that there are J(K − 1) non-redundant conditional probabilities. Any model that

has J(K − 1) non-redundant parameters is referred to as a “saturated model”. Here, we

describe saturated linear and polytomous logistic regression models.

For the saturated linear regression model, we write pk|j as

pk|j = pk|J + (pk|j − pk|J) = α0k + αjk (1)

for j = 1, ..., J − 1 and k = 1, ..., K − 1. The null hypothesis of independence is αjk =

pk|j − pk|J = 0 for all j = 1, ..., J − 1 and k = 1, ..., K − 1. The saturated polytomous logistic

regression model for pk|j is

log

(
pk|j
pK|j

)
= β0k + βjk (2)

for j = 1, ..., J − 1 and k = 1, ..., K− 1. The interpretation of the regression parameters is as

follows. If we restrict to rows j and J and columns k and K of the contingency table, then

βjk is the log odds ratio for the resulting (2× 2) table. The null hypothesis of independence

is βjk = 0 for all j = 1, ..., J − 1 and k = 1, ..., K − 1. Transforming to the probability scale,

pk|j =
exp(β0k + βjk)

1 +
∑K−1

k=1 exp(β0k + βjk)
(3)

for j = 1, ..., J − 1 and k = 1, ..., K − 1.



6 Biometrics, November 2014

For both the linear and the polytomous logistic regression model, under the null hypothesis,

there are (J − 1)(K− 1) regression parameters equal to 0; this corresponds to the number of

degrees-of-freedom for the standard Pearson chi-squared test of independence for a (J ×K)

contingency table. Note, under the null, the intercepts in the linear and polytomous logistic

model are related as follows

pk|j = α0k =
exp(β0k)

1 +
∑K−1

k=1 exp(β0k)
. (4)

For estimation and testing, it is convenient to define the indicator random variables, Yk = 1

if Y = k and Yk = 0 otherwise (for k = 1, ..., K), and Xj = 1 if X = j and Xj = 0 otherwise

(for j = 1, ..., J). Then, for the linear model,

pr(Y = k|X) = α0k +
J−1∑
j=1

xjαjk , (5)

and for the polytomous logistic model,

log

(
pk|j
pK|j

)
= β0k +

J−1∑
j=1

xjβjk . (6)

Finally, the multinomial probability mass function equals

f(y1, y2, ..., yK |X) =
J∏

j=1

K∏
k=1

p
xjyk
k|j . (7)

In the following section, we propose weighted least squares estimating equations score

and Wald tests for independence, naively assuming the multinomial outcomes (the Yk’s)

from the same subject are independent in the linear model. Note that the Yk’s from the

same subject are negatively correlated because
∑K

k=1 yk = 1. Thus, the linear regression

score test makes two naive assumptions–that observations within a cluster are independent

and the Yk’s from the same subject are independent. In the following section, we also

propose a multinomial weighted estimating equations score test for independence based on

the polytomous logistic regression model; this test also naively assumes observations within

a cluster are independent, but does take into account the multinomial distribution for the

Yk’s from the same subject. For both the linear and polytomous logistic score statistics, we
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use a robust sandwich variance estimator that takes into account that the observations are

correlated and consistently estimates the covariance matrix of the score statistics.

3. Weighted Estimating Equations Score Test for Independence

In this section we first discuss the WLS estimating equations for αjk in the linear model, and

then the weighted estimating equations (WEE) for βjk in the polytomous logistic regression.

Then, we discuss the WLS score and Wald tests for independence from the linear model and

the WEE score test for independence from the polytomous logistic regression model.

3.1 Estimating Equations

We let αk = (α0k, α1k, ..., αJ−1,k)
′ represent the vector of parameters for the linear model for

the kth outcome in (1). To obtain a consistent estimate of αk with complex survey data, a

WLS estimating equations approach can be used, naively assuming the K−1 non-redundant

multinomial indicators Yik, k = 1, ..., K−1 are independent, as well as naively assuming that

subjects within a cluster are independent. The WEE score vector for outcome yik is

U(αk) =
N∑
i=1

wi

 1

Xi


yik − J∑

j=1

Xijpk|j

 =
N∑
i=1

wi

 1

Xi


yik − α0k −

J−1∑
j=1

xijαjk

 , (8)

k = 1, ..., K − 1, where Xi = (Xi1, ..., Xi,J−1)
′ denotes a (J − 1) × 1 vector of the first

J − 1 non-redundant indicators for Xi, and the complex survey “weights” are wi = δi
πi

(wi =
1
πi

if sampled, δi = 1). The WLS estimate α̂k is defined as the simultaneous solution

to Uk(α̂k) = 0, for k = 1, ..., K − 1. Because E(yik − pk|j) = 0, using method of moments,

the WLS estimating equations yield consistent estimators of αk. Even though we have not

constrained the p̂k|j’s to be between 0 and 1, the non-iterative WLS estimates are

p̂k|j =

∑N
i=1wixijyik∑N
i=1wixij

, (9)

the weighted proportion of subjects with Yi = k and Xi = j out of those subjects with

Xi = j, and α̂jk = (p̂k|j − p̂k|J). These estimates are used in a Wald test for H0: αjk = 0 for
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the linear model. Note, even when there is a zero cell count, i.e., p̂k|j = 0, all estimates α̂jk

will be finite and a Wald test can be conducted; we discuss this issue later.

Next, we let βk = (β0k, β1k, ..., βJ−1,k)
′ represent the vector of parameters for the polyto-

mous logistic regression model for the kth outcome in (3). To obtain a consistent estimator of

βk with complex survey data, a weighted pseudo-likelihood estimating equations approach

can be used; here, the estimating equations take into account the multinomial distribution

of the Yik’s from the same subject. The weighted pseudo-likelihood estimating equations

(WEE) score vector for the outcome yik is

S(βk) =
d

dβk

N∑
i=1

wi

J∑
j=1

K∑
k=1

xijyik log(pk|j) =
N∑
i=1

wi

 1

Xi


yik − J∑

j=1

Xijpk|j

 , (10)

for k = 1, ..., K−1. The pseudo-likelihood score equations have this simple form because the

polytomous logistic regression is the canonical model (McCullagh and Nelder, 1989). These

estimating equations are identical to the WLS estimating equations in (8), except that pk|j

here is expressed in terms of the polytomous logistic regression model. Because the model

is saturated (same number of pk|j’s as non-redundant model parameters), the estimates of

the pk|j’s in the saturated model equal those given in (9), and thus are the same as those

obtained for the saturated linear model when using WLS. The estimator of βjk is given by,

β̂jk = log

(
p̂k|j
p̂K|j

)
− log

(
p̂k|J
p̂K|J

)
.

Unfortunately, when there is a zero cell count, i.e., p̂k|j = 0, β̂jk will equal plus or

minus infinity, and a Wald test cannot be performed. Thus, WLS for the linear model and

the pseudo-likelihood for the polytomous logistic model yield the exact same form of the

estimating equations and identical estimates of pk|j for the saturated model. However, the

properties of the Wald statistic will be better when using WLS to estimate the linear model

because all estimated parameters will be finite. Thus, for the remainder of the paper, we

focus only on the WLS approach.
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Similarly, the score statistic, which uses the score vector under the alternative (saturated

model) with the pk|j’s estimated under the null, is identical using either the WLS for the

linear model or the pseudo-likelihood for the polytomous logistic model. For both cases the

score vectors are identical, and the estimate of pk|j under the null given in (4) is identical,

p̃k|j =

∑N
i=1wiyik∑N
i=1 wi

; (11)

the latter is simply the weighted proportion of subjects with Yi = k.

3.2 Wald Test

For the linear model, we denote the full J(K − 1) vector of parameters as

α′ = (α′
1, ...,α

′
K−1).

If we denote the (K − 1) × 1 vector of multinomial indicators for subject i by Yi =

(Yi1, ..., Yi,K−1)
′, then we can write the linear model for subject i as

E(Yi|Xi) = X′
iα ,

where X′
i is the (K − 1)× J(K − 1) matrix of covariates for subject i,

Xi = IK−1 ⊗

 1

Xi

 ,

IK−1 is a K − 1 identity matrix, and ⊗ is the Kronecker product symbol. Then, the WLS

estimate is non-iterative:

α̂ =

(
N∑
i=1

wiXiX
′
i

)−1 N∑
i=1

wiXiYi.

For the WLS approach for the linear model, we denote the full score vector as

U(α) = {U(α1)
′, ...,U(αK−1)

′}′ =
N∑
i=1

wiXi(Yi −X′
iα) .

Using a first-order Taylor series expansion and a suitable central limit theorem for sample

survey data (Binder, 1983), the WLS estimate α̂ is consistent and has an asymptotic

multivariate normal distribution with mean α and covariance matrix
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{
E

(
dU(α)

dα

)}−1

V ar{U(α)}
{
E

(
dU(α)

dα

)}−1

, (12)

where,

E

(
dU(α)

dα

)
= H =

N∑
i=1

wiXiX
′
i, (13)

Note, although (13) holds for any sampling design, the form of V ar{U(α)} in (12) depends

on the sampling scheme.

For an example of how to estimate V ar{U(α)} for a given sampling scheme, suppose we

have a design with independent clusters sampled from S strata, and for simplicity, suppose

the stratum population sizes are sufficiently large that no finite sample correction is required.

With a slight change in notation, suppose there are s = 1, ..., S strata, ℓ = 1, ..., ns clusters

within stratum s, m = 1, ...,Msℓ subjects within cluster ℓ of stratum s, and a total of n =∑S
s=1

∑ns
ℓ=1 Msℓ =

∑N
i=1 δi subjects in the sample. Then, a consistent estimate of V ar{U(α̂)}

in (12) is

G = n−1
n−J(K−1)

∑S
s=1

ns

ns−1

∑ns
ℓ=1{Usℓ+(α̂)− Ūs++(α̂)}{Usℓ+(α̂)− Ūs++(α̂)}′ , (14)

where

Usℓm(α̂)

is the contribution to the score vector from the mth subject within cluster ℓ of stratum s,

Usℓ+(α̂) =
Msℓ∑
m=1

Usℓm(α̂)

is the sum of the score vectors from the sample subjects in cluster ℓ of stratum s and

Ūs++(α̂) =
1

ns

ns∑
ℓ=1

Usℓ+(α̂)

is the mean of the Usℓ+(α̂)’s. Further, using the results of Morel (1989), an approximately

unbiased estimate of V ar{U(α̂)} in small samples is

V̂ar{U(α̂)} = G+ γϕH, (15)
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where

γ = max
{
1, trace

(
H−1G

)}
and

ϕ = min[0.5, {J(K − 1)}/{n− J(K − 1)}].

Thus, an approximately unbiased, consistent estimate (Morel, 1989) of the variance of α̂ is

V̂ar(α̂) = H−1(G+ γϕH)H−1 . (16)

The term γϕH in (15) guarantees that (16) is positive definite as long as H is invertible;

without this extra term, it is possible that (16) is positive semi-definite.

For the vector αk, the null hypothesis of independence for the linear model H0:αjk =

pk|j − pk|J = 0, for j = 1, ..., J − 1 is a linear contrast of the form

H0: rαk = 0

where the J − 1× J matrix r equals

r =
(

0 IJ−1

)
,

and IJ−1 is a J − 1 × J − 1 identity matrix and 0 is a J − 1 vector of zeros. For the full

vector α, the null hypothesis is a linear contrast of the form

H0:Rα = 0

where the (J − 1)(K − 1)× J(K − 1) matrix R = IK−1 ⊗ r.

For a stratified, cluster design with S strata and C clusters, the general Wald statistic

proposed by Korn and Graubard (1999) for testing H0:Rα = 0 is

FW =
(C − S)− (J − 1)(K − 1) + 1

(C − S)(J − 1)(K − 1)
(Rα̂)′{RV̂ar(α̂)R′}−1Rα̂, (17)

which has an F -distribution with (J − 1)(K − 1) and (C − S)− (J − 1)(K − 1) + 1 degrees-

of-freedom under the null. We use this latter approximation due to the “small sample” data

configurations for which we are proposing use of our test statistic.
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3.3 Score Test

To develop the WLS score statistic, we rewrite the WLS score vector for the linear model in

matrix terms as

U(α) = X′W(y −Xα) (18)

where X is a n(K − 1)×n(K − 1) matrix containing the covariates for all (K − 1) outcomes

for all subjects in the study, W is an n(K− 1)×n(K− 1) matrix containing the weights for

all subjects, and y is an n(K− 1)× 1 vector containing all (K− 1) outcomes for all subjects

in the study. Note, we can rewrite (18) as

U(α) = (X′WX)(α̂−α), (19)

where α̂ = (X′WX)−1X′Wy is the WLS estimate from the full model.

The WLS score statistic is based on the large sample distribution of

U(α̃) = (X′WX)(α̂− α̃), (20)

where α̃ is the constrained estimate of α under the null hypothesis that Rα = 0. To develop

the WLS score test, we use the Lagrange multiplier form of the score statistic, since the score

test and Lagrange multiplier test have been shown to be equivalent (Bera and Bilias, 2001).

The Lagrangian function (Silvey, 1959) is defined as

L(α,λ) = U(α)−R′λ = (X′WX)(α̂−α)−R′λ (21)

for the (J−1)(K−1)×1 vector of Lagrange multipliers λ. Subject to the constraint Rα̃ = 0,

the estimate of α under the null, α̃, can be obtained as the solution to

L(α̂, λ̂) = (X′WX)(α̂− α̃)−R′λ̂ = 0 . (22)

The Lagrange multiplier test for H0:Rα = 0 can be written as H0:λ = 0.

Using the results of Amemiya (1985), the constrained WLS estimate α̃ equals

α̃ = α̂− (X′WX)−1R′{R(X′WX)−1R′}−1Rα̂. (23)
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Plugging (23) in (22), we obtain

R′{R(X′WX)−1R′}−1Rα̂−R′λ̂ = 0 , (24)

from which it follows that

λ̂ = {R(X′WX)−1R′}−1Rα̂

The general form of the Lagrange multiplier (score) statistic for testing H0:Rα = 0 is

λ̂
′
V̂ar(λ̂)−1λ̂ . (25)

However, since

V ar(λ̂) = {R(X′WX)−1R′}−1RV ar(α̂)R′{R(X′WX)−1R′}−1 , (26)

when substituting (26) in (25), it is easy to show that (25) reduces to

(Rα̂)′{RV̂ar(α̂|H0)R
′}−1Rα̂. (27)

Typically, in a Lagrange multiplier (score) statistic, V ar(α̂) is estimated under the null

hypothesis, which we denote by V̂ar(α̂|H0) in (27). In general, for a stratified, cluster design

with S strata and C clusters, the score statistic is

FW =
(C − S)− (J − 1)(K − 1) + 1

(C − S)(J − 1)(K − 1)
(Rα̂)′{RV̂ar(α̂|H0)R

′}−1Rα̂ , (28)

which has an F -distribution with (J−1)(K−1) and (C−S)− (J−1)(K−1)+1 degrees-of-

freedom under the null (Rao, Scott, and Skinner, 1998). The estimate V̂ar(α̂|H0) is obtained

by replacing α̂ in (14) with α̃. Thus, we see that both the Wald statistic in (17) and the score

statistic in (28) are quadratic forms in the observed contrast Rα̂, so that we might expect

them to perform similarly. In fact, the score statistic can be considered a Wald statistic with

the variance estimated under the null.

For non-linear regression models such as logistic regression, the Wald test is known to

exhibit unreliable and aberrant behavior (for example, with zero cell counts the estimated

parameters are not finite); as a result, the score test is preferred for logistic regression in
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smaller samples. For WLS with a linear model, the parameters are always finite, and the

Wald and score statistics are similar quadratic forms in Rα̂, except that the score statistic

has the variance estimated under the null. Thus, any differences in performance of the WLS

Wald and score statistics will be dependent on how well the variance is estimated for each.

This is explored further in the following section where we perform a simulation study of the

finite sample properties of the test statistics.

4. Simulation Study

We conducted a simulation study primarily to explore the finite sample properties of the

proposed WLS Wald and score test statistics for the linear model versus the Rao-Scott

chi-squared test. For simplicity, in the simulation study, we used a cluster design without

stratification where individuals within a cluster had different probabilities of selection, and

thus different weights.

Specifically, we considered a (4×3) contingency table, where the row variable X = 1, 2, 3, 4

is a cluster-level variable, and given X the column variable Y = 1, 2, 3 for a subject within

a cluster follows a Dirichlet-multinomial distribution (Mosimann, 1962). In the Dirichlet-

multinomial distribution, the multinomial column probabilities follow a Dirichlet distri-

bution, and given these probabilities and X, the distribution of Y follows a multinomial

distribution. Also, in the Dirichlet-multinomial distribution, the intracluster correlation for

two subjects in the same cluster is denoted by ρ, and we specify the marginal probability

that Y = k given X = j using an adjacent category polytomous logistic regression model

(Haberman, 1974). In general, the adjacent categories logit is a special case of the polytomous

logistic regression model discuss earlier. Using the last level Y = K as reference, the jth

adjacent category logit is

log

(
pk|j
pK|j

)
= β0k + β(K − k)(J − j) ,
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for j = 1, .., J − 1 and k = 1, ..., K − 1. Although the adjacent category logit is a model

for ordinal data, we specified the model in this manner to simplify the description of the

alternative with a single association parameter (β). This specification allows us to easily

explore power as a function of β.

For a given simulation configuration, we generated 2000 clusters from the Dirichlet-multinomial

distribution, and considered this to be the ‘finite population’. In the population, 25% of the

clusters have each of the values of X; however, based on the selection probabilities below, the

proportion of subjects with each value of X in a given simulation sample could be different

than 25%. For a given configuration, we fixed the population cluster size at M = 10 and the

population intracluster correlation at ρ = 0.02. We note that the marginal probabilities from

the adjacent category logit and the population intracluster correlation completely specify

the Dirichlet-multinomial distribution.

From this finite population, we sampled clusters with different probabilities based on the

value of X for that cluster. Then, once a cluster was sampled, individuals within each cluster

were sampled with selection probabilities that varied as a function of both Y and X. This

type of sampling design is commonly used in complex surveys where, for example, the cluster

is the household, and X is a cluster level variable that represents quartiles of household

income and Y represents a variable that is individual specific, such as gender. If we denote

the selection probability by πjk = pr(δ = 1|X = j, Y = k), then for all simulations,

(π11, π12, π13, π21, π22, π23, π31, π32, π33, π41, π42, π43) =

(0.030, 0.023, 0.015, 0.038, 0.031, 0.025, 0.03, 0.026, 0.022, 0.025, 0.022, 0.020).

Thus, although the cluster sizes M = 10 were the same in the population, the cluster sizes

varied in the sample because πjk varied as a function of Y and X.

We explored both the type I error and the power of the WLS score test statistic, the Rao-

Scott chi-squared statistic, and the WLS Wald test statistic. Table 2 presents the rejection

percentages as well as the percent of simulations in which the test statistic exists (recall, if
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a cell count is zero, the Rao-Scott chi-squared statistic does not exist) for two simulation

sets in which at least one pk|j ≤ 0.02 under the null. For the first simulation set at the

top of Table 2, we let (β01 = −4, β02 = −0.5) so that, under the null, Y = 1 has a small

probability: (p1|j, p2|j, p3|j) = (0.011, 0.37, 0.62) for j = 1, ..., 4. We set β = 0 to examine

the type 1 error and then increased β to study power. As can be seen at the top of Table

2, the type I error for the WLS score statistic is approximately 5%, and the test statistic

always existed. The WLS Wald statistic also always existed, but had relatively high type I

error. The type I error for the Rao-Scott chi-squared statistic is approximately 5% in the

simulations for which it existed, but we also see that it only existed in approximately 27% of

the simulation replications. Comparing the score and Wald statistics with respect to power,

we see that the Wald statistic had the highest power, but that was to be expected given that

its type I error is high. We see that as β increases, the Rao-Scott statistic exists for a higher

percentage of simulation replications, but still only exists at most 78% of the time for any

given value of β.

Table 2 (bottom) presents the rejection percentages when (β01 = −4, β02 = −4) so

that, under the null, both Y = 1 and Y = 2 have small probabilities: (p1|j, p2|j, p3|j) =

(0.02, 0.02, 0.96) for j = 1, ..., 4. The type I error for the Rao-Scott chi-squared statistic is

very low, and we also see that it existed in approximately 50% of the simulation replications

(this percentage is higher than under the null for (p1|j, p2|j, p3|j) = (0.011, 0.37, 0.62) which

has only one small probability; we conjecture this is because p1|j and p2|j are both larger

than p1|j in the first simulation configuration). Again, the Wald statistic has high type I error

and the highest power, whereas the score statistic has type I error close to the nominal 5%

value. Also, as β increases, the Rao-Scott statistic exists for a higher percentage of simulation

replications, but still only exists at most 71% of the time for any given value of β.

For less rare events, Table 3 presents the rejection percentages when (β01 = 0, β02 = 0)
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so that, under the null, the 3 possible values of Y have equal probability: (p1|j, p2|j, p3|j) =

(0.33, 0.33, 0.33) for j = 1, ..., 4. The test statistics exist for all approaches (including the

Rao-Scott statistic) for all simulations replications, so these percentages are not reported in

the table. In Table 3, we see that the type I error for the Rao-Scott and Wald statistics are

slightly high, whereas the score statistic has type I error close to the nominal 5% value.

Overall, the results of this simulation study suggests that the WLS score statistic may be

preferred, since it has good properties relative to the Rao-Scott statistic in the simulations

with non-rare events where the Rao-Scott statistic exists, and has discernibly better prop-

erties (always exists and has the correct type I error rate) in simulations with rare events in

which the Rao-Scott statistic does not exist. Also, the type I error rate for the WLS Wald

statistic appears high in all simulation configurations displayed.

5. Application: NIS Nephrectomy Study

Next, we present results of analyses of data from the NIS nephrectomy example discussed

in the Introduction. Although the sampling of hospitals (clusters) was performed without

replacement in each stratum, the total (population) number of clusters within each stratum

was sufficiently large that the finite population correction factor can safely be ignored.

The weights used in the analysis are the (Horvitz-Thompson) survey weights provided by

NIS, so that the weights sum to the population total. These weights also account for unit

non-response. Our goal is to test for independence between the type of surgery (robotic,

laparoscopic, open) and post-surgery complications (3 levels: no complications, at least one

complication without death, death due to surgery). Table 1 presents the 3 × 3 contingency

table of weighted cell counts. Examination of Table 1 reveals that no patient who received

robotic surgery had a post-surgical death; further, robotic surgery appears to have a better

complication profile than the other two types of surgery. Because of the zero cell count, the

Rao-Scott chi-squared statistic is not computable. Instead, we computed the WLS score and
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Wald statistics proposed in Section 3; a SAS macro to calculate the WLS Wald and score

statistics is included as supplementary material for this paper at the Biometrics website.

The WLS estimating equation score statistic had an F-value (with 4 and 991 degrees-of-

freedom) of 5.22, with P−value < 0.001. The Wald test statistic had an F = 5.96, P < 0.001.

Here both statistics indicate that there is strong evidence that type of surgery is related

to post-surgery complications. When each of the three 2 degrees-of-freedom contrasts for

the pairwise comparisons of surgery type are considered, the dependence is primarily due

to differences in rates of post-surgery complications with open surgery versus each of the

other two types of surgery. We found significant differences when comparing open surgery

to robotic-assisted laparoscopic surgery (score statistic F(2, 991) = 7.34, P < 0.001; Wald

statistic F(2, 991) = 9.94, P < 0.001); as well as when comparing open surgery to non-

robotic-assisted laparoscopic surgery (score statistic F(2, 991) = 5.42, P < 0.005; Wald

statistic F(2, 991) = 5.69,P < 0.005). There were no significant differences when comparing

robotic-assisted to non-robotic-assisted laparoscopic surgery (score statistic F(2, 991) = 2.23,

P = 0.108; Wald statistic F(2, 991) = 2.41, P = 0.090). In summary, results of the analyses

indicate that there are significantly more post-surgery complications with open surgery.

6. Conclusion

In this paper we propose weighted least squares score and Wald tests for independence

with complex survey data. The proposed approach is not ad hoc, but is based on theory

for estimating equations score and Wald test statistics (Rao et al., 1998). Results of our

simulation study suggest that the proposed score test statistic has better properties than the

Rao-Scott test statistic in that the score test statistic always exists, and appears to have the

correct type I error. In addition, the results of the simulations suggest that the WLS Wald

test statistic has high type I error. In addition to having better type I error properties, the

score test may also be preferred due to the fact that the Wald test is not invariant under
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reparameterization. We note that in additional simulations (results not reported), for larger

cluster sizes, the Wald test statistic has the correct type I error. Finally, we note that the

approach used in this paper to develop a score test could also be used to formulate a test of

independence in other settings, e.g., an extension of the Cochran-Mantel-Haenszel statistic

for conditional independence of stratified categorical data to the complex survey setting.

7. Supplementary Materials

Web Appendices that include a description of the supplementary materials (Web Appendix

A), a SAS macro to calculate the WLS Wald and score statistics as referenced in Section 5

(Web Appendix C), and a data example illustrating the use of the SAS macro (Web Appendix

B), are available with this paper at the Biometrics website on the Wiley Online Library.
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Table 1. Surgery type by complication status for NIS nephrectomy data, weighted counts

and row percentages.

Complication Status

Surgery

Type None ≥ 1 Death

Robotic 166 71 0

70.0% 30.0% 0.0%

Laparoscopic 1476 742 13

66.2% 33.2% 0.6%

Open 6059 3476 139

62.6% 35.9% 1.5%
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Table 2. Simulations results for weighted, clustered data, with

(p1|j, p2|j, p3|j) = (0.011, 0.37, 0.62) and (p1|j, p2|j, p3|j) = (0.02, 0.02, 0.96) under the null.

Rao-Scott WLS Score WLS Wald

(p1|j , p2|j , p3|j) β % Rejected % Exist % Rejected % Exist % Rejected % Exist

(0.011,0.37,0.62) 0.00 4.8 27.3 5.8 100 9.1 100

0.10 15.6 46.6 11.3 100 17.6 100

0.125 26.1 47.6 29.1 100 38.9 100

0.15 43.1 63.6 42.4 100 53.4 100

0.20 68.2 69.3 72.2 100 78.8 100

0.25 89.5 78.4 92.7 100 95.9 100

(0.02,0.02,0.96) 0.00 1.0 50.2 4.1 100 11.3 100

0.10 3.0 63.2 8.1 100 18.3 100

0.20 12.7 65.2 17.8 100 29.3 100

0.25 32.3 71.0 32.0 100 43.8 100

0.30 69.9 70.0 62.2 100 72.1 100

0.35 83.7 67.1 80.7 100 87.5 100
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Table 3. Simulations results for weighted, clustered data, with

(p1|j, p2|j, p3|j) = (0.33, 0.33, 0.33) under the null.

Rao-Scott WLS Score WLS Wald

β % Rejected % Rejected % Rejected

0.00 6.8 4.3 6.8

0.05 14.8 10.1 15.7

0.08 27.4 19.9 25.2

0.10 40.8 32.9 44.6

0.15 65.7 62.1 72.2

0.20 92.7 92.8 95.6

Note: Test statistics exist for all approaches for all simulations
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