
Consumer-Producer API
for Named Data Networking

Ilya Moiseenko
UCLA

iliamo@cs.ucla.edu

Lixia Zhang
UCLA

lixia@cs.ucla.edu

ABSTRACT
This paper presents a new network programming interface to NDN
communication protocols and architectural modules. This new API
is made of (1) a consumer context which associates a name pre-
fix with consumer-specific data fetch parameters controlling Inter-
est transmission and Data packet processing, and (2) a producer
context which associates a name prefix with producer-specific data
transfer parameters controlling Interests demultiplexing and Data
packet production. Both API contexts are extensible to new func-
tionalities once they are identified.

Categories and Subject Descriptors
C.2 [COMPUTER-COMMUNICATION NETWORKS]: Distributed
Systems; D.2 [SOFTWARE ENGINEERING]: Software Libraries

Keywords
NDN; API; data producer and consumer

1. INTRODUCTION
As a new architecture, NDN requires a new API. Today’s socket

API cannot be reused for NDN communication because its founda-
tional concept is point-to-point virtual channel that does not exist
in NDN. The NDN architecture development has been following an
application-driven approach by going through the cycles of design
→ experimenting with pilot applications→ revision. Our experi-
ence with pilot NDN applications [1], [2], [3] has provided us with
enough hints to sketch a new NDN API, then we can put it back to
application development to verify and validate.

Unlike TCP/IP’s point-to-point data delivery, where data transfer
parameters are the properties of the channel between two endpoints,
in NDN network, data transfer parameters are the properties of the
namespace and the node that produces/consumes the data in that
namespace. Note that producer and consumer applications of the
same namespace do not directly talk to each other, thus they do not
share the same set of data transfer parameters as the two endpoints
do in TCP/IP networks.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, and that copies bear this notice and the full ci-
tation on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the owner/author(s). Copyright is held by the
author/owner(s).
ICN’14, September 24–26, 2014, Paris, France.
ACM 978-1-4503-3206-4/14/09.
http://dx.doi.org/10.1145/2660129.2660158.

Our proposed NDN API has two programming abstractions: con-
sumer context and producer context. A context keeps all necessary
state of ongoing data transfer related to a specific name prefix. A
contexts allow the following operations:

setOption(option, value)
consume(name prefix), or

produce(name prefix, content)

Consumer context is an abstraction that assists application de-
signer to perform unreliable or reliable retrieval of potentially multi-
segment content of a given name prefix. The context can perform
packet ordering, packet reassembly, as well as give access to raw
Interest and Data packets. It also provides event notifications to en-
able application designers to closely monitor data delivery progress
and various errors that may occur in the process.

Producer context is an abstraction that assists application de-
signer to publish single or multi-segment content under a specified
name prefix.

Both consumer and producer contexts allow application design-
ers to plug in user-defined, content-based security actions to secure
outgoing Interests or Data packets, and verify incoming packets.

2. CONSUMER CONTEXT
Consumer context associates a name prefix with a set of data

fetching, transmission, and verification parameters, and integrates
processing of Interest and Data packets on the consumer side. An
application designer interacts with consumer context by calling API
primitives listed in Table 1 and supplying callback functions to pro-
cess events that may be triggered by the consumer context.

consumer(name	  prefix,	  type,	  sequencing)	  è	  handle	  

consume	  (handle,	  name	  suffix)	  
stop	  (handle)	  
close	  (handle)	  
setcontextopt	  (handle,	  op:on	  name,	  value)	  
getcontextopt	  (handle,	  op:on	  name)	  è	  value	  

Table 1: API primitives for consuming data.

The first thing an application designer must do is to initialize
a consumer context with a desired name prefix and data transfer
parameters. The name prefix is a meaningful application-specific
name that is expected to bring Data packet(s) back. The required
data transfer parameters specify what type of protocol machinery
is to be used inside the consumer context. For example, specifying
the pair (UNRELIABLE, DATAGRAM) instructs consumer context
to send a single Interest and receive a single Data packet, whereas
the pair (RELIABLE, SEQUENCE) results in consumer context to

177

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357541963?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


involve necessary machinery to send multiple Interest packets, per-
form Interest retransmission when needed, manage flow control
window size, and reassemble received Data packets.

Any parameter of the consumer context can be obtained or mod-
ified using get/setcontextopt() API primitives. An application de-
signer can specify what Interest selectors, what flow & conges-
tion control parameters, what size of receive and send buffers to be
used by the consumer context during the data transfer. In addition,
callback functions can be passed as an argument to the setcontex-
topt() primitive to plug in user defined actions in packet processing
pipeline. For example, when consumer context has reassembled
enough content from incoming Data packets, it executes Content-
Callback to return the content to the application. As another ex-
ample, VerificationCallback accepts a Data packet to perform cus-
tomized Data verification operations. Other callbacks can be acti-
vated to monitor events such as Interest timeouts, Data packet ar-
rival, etc.

When all context parameters are set, an application designer can
start data transfer using consume() primitive that accepts name suf-
fix which augments name prefix of the consumer context. Name
suffix, such as version component, provides the flexibility of fetch-
ing multiple data objects without having to recreate a consumer
context for every object.

Data fetching in the consumer context can progress in non-blocking
way. An application designer can terminate the transfer at any mo-
ment by calling the stop() primitive, which will reset the consumer
context to its initial state.

When a consumer context is no longer needed, an application de-
signer can release all its associated resources by executing close()
primitive.

3. PRODUCER CONTEXT
Producer context associates a name prefix with a set of packet

framing, caching, content-based security, and namespace registra-
tion parameters, and integrates processing of Interest and Data pack-
ets on the producer side. An application designer interacts with
producer context by calling API primitives listed in Table 2 and
supplying callback functions to process events that may be trig-
gered by the producer context.

producer	  (name	  prefix)	  è	  handle	  

produce	  (handle,	  name	  suffix,	  content)	  
setup	  (handle)	  
close	  (handle)	  	  
setcontextopt	  (handle,	  op6on	  name,	  value)	  
getcontextopt	  (handle,	  op6on	  name)	  è	  value	  

Table 2: API primitives for producing data.
The application designer must first initialize a producer context

with a desired name prefix and parameters for data publishing. The
name prefix is to be used for publishing content under it, and de-
multiplexing incoming Interest packets.

Any parameter of the consumer context can be obtained and
modified using get/setcontextopt() API primitives. An application
designer can specify the size, freshness and security properties of
Data packets. In addition, callback functions can be passed as an
argument to the setcontextopt() primitive to plug in user defined
actions in the packet processing pipeline.

Prior to publishing any content, setup() primitive must be called
in order to set up Interest demultiplexing by name prefix, and to ac-
quire a routable prefix using the built-in prefix discovery/registration

protocol (similar to [4]) in cases when Interest packets need to be
routed to the producer.

An application designer can seamlessly transform any raw con-
tent (e.g. memory buffer) into Data packets with produce() primi-
tive. The producer context will use its own parameters to package
the content in a right number of Data segments (packets) that fully
conform with naming and other packet conventions.

When a producer context is no longer needed, an application de-
signer executes close() primitive.

4. USING NDN API CONTEXTS
We use NDN FileSync as a use case to illustrate the new API.

NDN Filesync is a distributed peer-to-peer application to support
file synchronization in a shared directory [3]. As one of the simple
pilot NDN applications, it requires reliable data delivery service,
but does not have an elaborate security model.

The application’s Interest packets contain a name of the file to be
downloaded from any other peer. When an Interest is received, the
application parses the name to locate the file on the disk, then pack-
ages the file in Data packets. Sample data packet name: /broad-
cast/apps/filesync/class217/Reports/Report.pdf/<timestamp>.

Pseudocode 1 Sharing a file
1: h← producer("/broadcast/apps/filesync")
2: setcontextopt(h, packet_size, 16KB)
3: setcontextopt(h, interest_callback, ProcessInterest)
4: setup(h)

5: function PROCESSINTEREST(Interest i)
6: Name suffix← extract file name from i.name to under-

stand what file is needed
7: content← read file from disk
8: Name suffix← append current time stamp
9: produce(h, Name suffix, content)

10: end function
Pseudocode 2 Downloading a file
1: h ← consumer("/broadcast/apps/filesync", RELIABLE, SE-

QUENCE)
2: setcontextopt(h, receive_buffer_size, 10MB)
3: setcontextopt(h, content_callback, ProcessContent)
4: consume(h, "/class217/Reports/Report.pdf")

5: function PROCESSCONTENT(byte[] content)
6: file← read content
7: Save file on disk
8: end function

Interested readers can find other use cases, such as streaming live
video (NDNvideo [1]) and building automation system (NDNlight-
ing [2]), from the full version of this paper [5].

5. REFERENCES
[1] D. Kulinski and J. Burke, “NDN Video: Live and Prerecorded

Streaming over NDN,” NDN, Tech. Rep., 2012.
[2] J. Burke, A. Horn, A. Marianantoni, “Authenticated Lighting Control

Using Named Data Networking,” NDN, Tech. Rep., 2012.
johnbernando@gmail.com

[3] J. Lindblom, M. Huang, J. Burke, L. Zhang, “FileSync/NDN:
Peer-to-Peer File Sync over Named Data Networking,” NDN, Tech.
Rep., 2013.

[4] [Online]. Available:
https://www.ccnx.org/releases/latest/doc/technical/Registration.html

[5] I. Moiseenko and L. Zhang, “Consumer-Producer API for Named
Data Networking,” NDN, Tech. Rep., February 2014. [Online].
Available: http://named-data.net/publications/techreports/
tr17-consumer-producer-api/

178




