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This paper is concerned with the topic of gravity matching aided inertial navigation technology using Kalman filter. The dynamic
state space model for Kalman filter is constructed as follows: the error equation of the inertial navigation system is employed as
the process equation while the local gravity model based on 9-point surface interpolation is employed as the observation equation.
The unscented Kalman filter is employed to address the nonlinearity of the observation equation. The filter is refined in two ways
as follows. The marginalization technique is employed to explore the conditionally linear substructure to reduce the computational
load; specifically, the number of the needed sigma points is reduced from 15 to 5 after this technique is used. A robust technique
based on Chi-square test is employed to make the filter insensitive to the uncertainties in the above constructed observation model.

Numerical simulation is carried out, and the efficacy of the proposed method is validated by the simulation results.

1. Introduction

Inertial navigation system (INS) is self-contained because
it neither emits nor receives radio signals. However, as a
dead-reckoning system, the navigational errors grow without
bounds due to the sensor errors and initial errors both of
which are inevitable in practice [1, 2]. Due to the inherent
complements between INS and the global navigation satellite
system (GNSS), they can be integrated and the growing errors
in the former can be restrained by the latter. The reception
of navigation signal from the GNSS satellites destroys the
self-containedness of INS which limits the application of
INS/GNSS integrated system in some special situations. It is
of significant importance to find an aid for INS with the fol-
lowing two merits; that is, it can provide modification infor-
mation to restrain the growing errors of INS, and the self-
containedness of INS should be preserved. The gravity of the
earth is an intrinsic physical field attached to the earth. The
gravity anomaly can be viewed as the function of location
on the surface of the earth [3], and hence it reflects to some
extent the information of the positions. So the gravity, or the
anomaly specifically, can be used for navigation in the vicinity

of the earth surface. Gravity matching navigation (GMN),
an analogue of the terrain matching navigation (TMN),
extracts positional information through matching the mea-
sured gravity (anomaly) in real time with the gravity database
predetermined and stored in the navigation computer. The
merits of the GMN are two-fold; first, its precision does not
decrease in contrast to the case of INS; second, it is free
of receiving and emitting radio signals; that is, it is self-
contained, in contrast to the case of TMN. So it is of strategic
significance to aid INS using GMN. In fact, GMN aided INS
has been widely studied recently; see, for example, [4-6].
Kalman filter (KF) is one of the most celebrated real-time
parameter estimators and has been implemented widely in
several disciplines, especially in the community of integrated
navigation where the extended Kalman filter (EKF) has in fact
become a standard component in the commercial INS/GNSS
product [7]. Although, Kalman did not make the assumptions
about the linearity, the Gaussianity, and the whiteness in the
seminal paper [8], it can be proved that KF is optimal in the
sense of unbiasedness, consistency, and asymptotical efhi-
ciency only when the above three assumptions are valid [9].
Many efforts have been made to extend KF to address the



nonlinearity [10], the non-Gaussianity [11, 12], the cross-
correlated process and measurement noises [13, 14], and the
colored noises [15].

KF is applied in GMN aided INS in this contribution. The
dynamic state space model for KF is constructed as follows.
The error equations of INS are adopted as state process
equation. A local gravity model is established through 9-
point surface interpolation and is adopted as the measure-
ment equation for KE The unscented Kalman filter (UKF)
is employed to address the nonlinearity of the above con-
structed measurement equation. Two refinements to the UKF
are also proposed. First, the marginalization technique is used
to exploit the conditionally linear substructure of the non-
linear measurement equation, so the computational load is
substantially reduced. Second the filtering algorithm is robus-
tified against the severe uncertainties of the measurement
model [16]. Finally the proposed method is applied in a sim-
ulation study, and its efficacy is validated by the simulation
result.

2. Model Establishment of the GMN Aided INS

In order to apply KE, the dynamic state space model of the
GMN aided INS problem should be constructed or in other
words the state process and measurement equations should
be constructed. In this contribution, the error equation, other
than the basic equation of the INS used in some literatures,
see, for example, [17], is employed as the state process
equation. And the local gravity model constructed through
9-point surface interpolation is adopted as the measurement
equation.

2.1. State Process Equation. According the principles of INS
[18], the dynamics of the errors of the INS is characterized by
the following differential equation:

X = &x + Gu, 1)

where the state vector is as follows:

x=[¢n ¢s ¢p Ovy vy O¢ S’X]T‘ 2)

The elements of which are north, east, and downward attitude
error angles, the north and east velocity errors, and the
latitude and longitude errors, respectively, and the process
noise vector is constituted as

u=[o6a} o] . (3)

The elements of which are measurement errors of the three
gyros and the three accelerometers, respectively. These six
error terms are treated as Gaussian noises in this contribu-
tion. The elements of the state transition matrix @ and the
process noise matrix G are given explicitly in several text-
books about INS (see, for example, [18]) and they are omitted
here for the sake of brevity.

Itis noted that the downward velocity error and the height
error are not included in the state vector or in other words
the vertical channel is not considered. The reason is as

Mathematical Problems in Engineering

follows. There is a severe divergence in the errors of the
vertical channel of the pure INS, and external information is
usually necessary to damp this channel to constrain the diver-
gence. Fortunately this kind of external information is always
available, for example, the height obtained through mea-
suring the air/water pressure [19]. In the presence of the
external information, on one hand, the vertical errors become
relatively trivial and, on the other hand, the character of these
errors depends on some other factors, so there are no uniform
equations in general to characterize their dynamics.

By integrating both sides of (1), we obtain the discretized
equation, or the difference equation, as follows:

X = Fixp +uy, (4)
where

F, = exp (®St) ~ I + DSt + 0.5 (5t)°,

Q. =E [ukuﬂ ~ exp (0.508t) GQG” exp (O.SG)T&) dot,
(5)

where Q = E[uu’] and 6t is the updating interval of the INS.

2.2. Measurement Equation. Summing the INS outputted lat-
itude and longitude with the corresponding error estimation,
the estimated position is obtained. Nine gravity anomaly data
together with their position information nearest to the esti-
mated position are selected from the gravity database. And
the interpolation function is constructed as follows:

Ag; =&AL, i=1,2,...,9, (6)
§=1[1 o 9, )
{i= [1 A A?]T’ (8)

where Ag; is the ith gravity anomaly extracted from the
gravity database; A is a 3-by-3 matrix to be estimated; ¢; and
A; are the latitude and longitude corresponding to the ith
gravity anomaly. There are 9 elements to be estimated in A,
and 9 equations corresponding to the 9 gravity anomalies as
in (6), so this proper-determined set of equations can be
solved to get A readily.
Let

a3,3]T > )

where g; ; indicates the ith row and jth column elements of A,
and we have

Vo =vec(A)=[a;, a;, -

Ag = EAL =& (8 o 1;) vy, (10)
where ® denotes the Kronecker product.
Let
Vg = [Ag, Ag, - A99]T’ (11)
& (¢ eL)
v |® (c;f ®l,) W)

& ((§®13)
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We have
v, =¥V, Vy = ‘I’_lvg. (13)
So we have
1
Ag=[1 ¢ ¢’ ]A| A | +e (14)
AZ
where
¢ = Pins + 09, A =As +0A. (15)

And € denotes the measurement errors or noises which repre-
sents the gravity measurement errors, gravity database errors,
the model errors, and so on. From (14), it is readily found
that the term of the highest order is (6g08/\)2, which is 4th
ordered, so this measurement equation is relatively strongly
nonlinear.

3. The Marginal Robust Unscented
Kalman Filter

In the above constructed dynamic state space model, the
involved values are (1) the state vector x; at the kth epoch
which is to be estimated, (2) the measurement vector y; which
can be measured, (3) state process noise w; which represents
the uncertainty of the state process model, and (4) the mea-
surement noise v, which represents the measurement errors
and the uncertainty of the measurement model. Without loss
of generality these four values are assumed to obey the
following equations:

X = f (Xpo1) + Wiy (16)

Vi = h(xg) + v (17)

Let %;;; be an estimate of the state vector at kth epoch
providing the measurements up to and including ith epoch.
Specifically X, _; and X, are also called a priori and a poste-
riori estimate, respectively. Let P, be the (cross)covariance
between the vectors a and b. X;, is obtained in KF as follows:

Xtk = Xige—1 + K€

_ T
Pik\kriklk - Pik\k—l’ik\k—l KkPeloekKk’

-1
K, = Pi}qk—l:ek (Pek’ek) >

€ = Yk — Yijk-1>

(18)

where e, is often called innovation vector [20]. For the model
in (16) and (17), generally we have [21]

L1 = E[f (k)]s (19)
_ _ T
Pz, = E [0k = Rgeer) (%5 — Reer)” | + Qirs (20)
Vi1 = E[h(x)], (21
Pek>ek = P?k\k—l’?klk—l + Ry
r (22)
=E [(Yk - ?klk—l) (vi - ?klk—l) ] + Ry,
_ _ T
Pire = [(Xk = Xpk-1) (Ve = Tigge1) ] , (23)

where Q,_, and R, denote the covariance of w,_,and v,
respectively.

In general for nonlinear system as (16) and (17), (19)
through (23) are not analytically tractable, and hence some
approximations are necessary. Different approximations
result in different nonlinear KFs. The most simple and most
straightforward strategy is to retain only the zeroth and first
order terms in the Taylor series of the nonlinear equations.
Then (19) through (23) can be solved; this results in the cele-
brated EKFE. High-order terms, the second order ones say, can
be retained in the hope of getting higher accuracy; this results
in the second order filters (SOF) [22].

3.1. Unscented Kalman Filter. In the presence of strong non-
linearities, there are some shortcomings of the simple lin-
earization technique in EKF and SOF The accuracy is often
not satisfactory; divergence of the filter even occurred in
some situations. Moreover, the Jacobian matrix in the EKF
may be rather hard to get; sometimes it even fails to exist; for
example, in the black box model, given any input permissible,
we can get the output readily; however, the mapping function
from the input to the output is not explicitly available; its Jaco-
bian matrix can by no means be calculated [23]. These short-
comings cannot be avoided in SOF in general. First, the accu-
racy improvement by SOF compared to EKF is rather limited
except for some special cases, for example, that the equation
happened to be quadratic and the SOF is exact in the prop-
agation of the mean and covariance [24]. In fact in the case
where EKF cannot converge SOF cannot either in most cases.
Second, if the Jacobian matrix is hard to be calculated, the
Hessian used in the SOF will be harder. As a matter of fact
SOF found rather limited applications [20].

In 1990s, many new-concept nonlinear filters are pro-
posed in order to overcome the problem concerning the
accuracy and applicability of the EKF and SOE some of
which belong to the same family, that is, the deterministically
sampling, derivative-free ones. These include the UKF [23],
the central difference filters [25], the divided difference filters
[26], the cubature Kalman filters [27], and the sparse grid
nonlinear filter [28]. There are also some other interpretations
about these filters; see, for example, [29, 30]. These filters are
named together the sigma point Kalman filters in [7]. These
filters have the merit of being more accurate and derivative
free. In this contribution the UKF is introduced in the most



heuristic manner following [23], after which two refinements
are provided in order to reduce computational burden and
improve the robustness against the uncertainties in the
measurement model.

As a variation of KF, UKF also employed the linear
structure of the KE. The core of UKF which distinguishes itself
from other nonlinear filters is a method called the unscented
transformation (UT) to propagate the mean and covariance
through nonlinear mapping functions. Without loss of gen-
erality, UT aims to solve the following problem.

Problem. Given an arbitrary nonlinear equation b = f(a) and
the mean a and covariance P, of the input variable a, we
want to know the mean b, the covariance Py, of the output

variable b, and the cross-covariance Py ; between b and a.
Solution. There are three steps of UT.

Step 1 (sampling). Based on a and P33, a set of 2, + 1 sigma
points (SP) is deterministically generated as follows. Note that
n, denotes the dimension of the vector a:

T KGRV B S SR

where [/(n, + A)P;z]; denotes the ith column vector of the

matrix /(n, + A)P;; which is the square root of the matrix

(n, + A)P; ;. The square root matrix can be obtained through
efficient Choleski decomposition [23] or the stable singular
value decomposition [24].

The associate weights of the SP are as follows:

(m) A
wim = ,
0 n,+A
© A 2
W= ——+1-a" +f5, 2
0 Tlu‘l'l [; (S)
A
wm=w9=_2 _  i=12,..,2n,
2(na+)t)

where W™ and W are used in the calculation of mean and
(cross)covariance, respectively. The scaling parameter A is
A = &*(n, + k) —n,, where a, B, and k are tuning parameters.
Different parameters result in different UT sampling strate-
gies and hence different versions of UKF; details about select-
ing the parameters can be found in [10, 23, 24, 31].

Step 2 (propagating). Substitute SPs into the nonlinear map-
ping function; a set of SP representing the output variable b
can be obtained. Consider

B,=g(A;), i=0,1,2,...,2n,. (26)
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Step 3 (inferencing). We get the following statistics using the
propagated SPs in the previous step:

b=y W"B, (27)
i=0
2n,
Pys ~ > W (B,~b)(B,~b)", (28)
i=0
2n, T
Pig =~ ‘/Vi(C) (A;-2) (Bi - l_)) : (29)

This is the end of the solution.

Apply UT to the state space equation (16) to get a priori
mean and covariance at the current epoch from a posteriori
mean and covariance at the previous epochy; it is essentially
the prediction stage of KF or the time update stage. Apply UT
to (17) to get the predicted mean and covariance of the mea-
surement from a priori mean and covariance of the state and
then substitute these values into the framework of the KF, the
a posteriori mean and covariance at the current epoch are
obtained; it is essentially the correction stage of the UKF or
the measurement update stage.

3.2. Marginal Unscented Kalman Filter. The above introduced
UT and UKF apply to general nonlinear process and/or
measurement equations ignoring the specific structure of
these nonlinear equations. Can the computational burden be
reduced without decreasing the accuracy for some special
nonlinear equations? It is fortunate that the answer is positive.
In this contribution a special family of nonlinear equations
with conditionally linear substructure is studied. The UKF is
refined using the marginalization technique to exploit the
substructure, and the computational burden is reduced
through using less SPs and the high accuracy and easy appli-
cability of the UKF are also preserved. The refined algorithm
is named marginal unscented Kalman filter (MUKF) with its
core called marginal unscented transform (MUT), which has
been used in iterated filters [32] and filters for cross-correlated
process and measurement noises [13]. Specifically, for the
nonlinear equation (14), the output variable is the function of
only part of the elements of the input variable, that is, the lati-
tude and longitude (error) of state vector, so in the MUT, only
the SPs representing the latitude and longitude need to be
generated. As a result, the number of SPs is significantly
reduced, from 15 to 5, after the MUT is employed rather than
the UT.

Without loss of generality, a nonlinear equation with
conditionally linear substructure is as follows:

a

y=r@=f([s])n-n@sn@n oo

where f,(-) is nonlinear equations while f,(-) is an arbitrary
equation (nonlinear or linear).

Before introducing MUT, a lemma called the conditional
Gaussian lemma is presented. It says the following: for two
jointly Gaussian variables a and b, b conditioned on a is still
Gaussian.
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Lemmal. Let
x=1[a b]" (31)

be Gaussian with mean and covariance

m, = [m, m,]", ()
— Paa Pab
P = [Pba Py | (33)

Then b conditioned on a is still Gaussian with mean and
covariance

my, =my, + Pba (Paa)_l (a - ma) > (34)
-1
Py, =Py — Py, (Py,) Py, (35)

Proof. A heuristic proof can be found in, for example, [13].
O

In fact, from (34), it can be found that my,, is the function
of a. So for the sake of apparentness we denote my,,(a) in the
sequel.

From (30) the mean of y is

m, =E () = J f12 (@) p(a)da, (36)

where f1,(a) = f,(a)+ f,(a)m,,(a) and p(a) is the probability
density function of a. It is equivalent to say that the mean m
in (36) is obtained through propagating a through the nonlin-
ear mapping function f;,(a). So it can be approximated with
rather high accuracy using UT

2N,
m, = Zwi(m)yi, (37)
i=0

where p; is the propagated SP. In this UT, SP representing only
a is needed. The covariance of y is

P, = _[ (y - my) (Y - my)TP (x)dx
= J [(flz(a) —my)(flz(a)—my)T (38)

+f, (@) Py, (f (a))T ] p(a)da.

The above calculation can also be approximated using UT

= ZwEC) ((Yi - my) (Yi - my)T + f, () Py (f2 (“i))T) >
(39)

where «; is representing the SP of a. The cross-covariance
between x and y is

Py~ [ (x-m) (F0-m,)" pdx
- | ([mw: (a)] ‘m"> (fi2@-m,)" p@da (40

|

Again it can be approximated using UT

Pay = 2101(5) ( ([mb:i(“i)] - mx> (- my)T

P(;a] (f, @)" p(a)da.

* [Pbm (ff («x,-))T] ) '

Equations (37), (39), and (41) demonstrate the formulation of
the MUT. Replacing UT with MUT in the framework of UKF,
we get the MUKE.

Qualitative analysis of the computational burden is given
here. In the standard UT, an N, x N, matrix P, needs to be
decomposed (Choleski decomposition or singular value
decomposition) to generate 2N, + 1 SPs, while in the MUT
only an N, x N, matrix P, needs to be decomposed to gener-
ate 2N, + 1 SPs, that is, {&;}. Additionally, in MUT P, needs
to be inversed and some matrix algebras need to be carried
out to get SPs representing b, that is, my,(a;). The matrix
decomposition of P,, in generating SPs can also be used in
inversing P,,, so some computations can be saved. Overall,
in generating SPs, that is, in the sampling step, the computa-
tional burdens of UT and MUT are comparable. But in the
second and third steps, that is, in propagating SPs and
calculating the propagated mean and (cross)covariance, only
2N, + 1 SPs are used in MUT while 2N, + 1 are used in UT.
Apparently, as N, < N,, less computation is needed in MUT
than in UT; especially in the case when N, <« N, the com-
putational savings will be significant.

3.3. Robust Unscented Kalman Filter. Gaussian distribution
is widely assumed in many statistic inference applications,
including the classic least squares method and the KF. This is
due to some elegant properties of this distribution, for exam-
ple, the Gauss-Markov theorem and the central limit theorem
[33]. Also it is rather simple hence making many problems
tractable because it can be characterized by the first two
moments, for example, the mean and the covariance. How-
ever, in many realistic applications, the errors may not
necessarily be Gaussian. Real data may follow a heavy-tailed
distribution implying that the occurrence of outliers may be
more frequent than that in a strict Gaussian distribution [34].
Outliers may not necessarily be gross errors, but the proba-
bility that an outlier is gross error will be rather larger than
that it is not. Naturally, a question should be asked that, in
the case that the assumed Gaussian distribution can only
approximate the real data, can the estimate by the least



squares method or the KF effectively approximate the true
value? It is unfortunate that the answer is negative. As a matter
of fact, when the real distribution deviates from the assumed
Gaussian distribution, the performance of KF will degrade
severely. This is due to its lack of robustness. More specifically,
in the presence of outliers, even only a few, the accuracy of
KF will decrease significantly; what is more serious is that the
filter will diverge.

Non-Gaussianity may occur in either process or mea-
surement noise or both. However, in this contribution, it is
our basic assumption that it only occurs in measurement
noise. This assumption makes sense in many real-world
applications. It is noted that there are some methods with
robustness against non-Gaussianity in both process and
measurement noises [12, 35, 36]; however, in these methods,
measurement redundancy is often needed [35]; at the same
time, the problem should be solved iteratively [36]. In many
applications, the measurement redundancy is not available,
and the iteration should be avoided to ensure real-time
implementation. As to the problem studied in this contribu-
tion, the state process equation, that is, the INS error equa-
tion, effectively represents the true dynamics of the errors,
and the process noise, that is, the errors in the gyros and accel-
erometers outputs, can be safely treated as Gaussian dis-
tributed after carefully calibration and initial alignment.
However the measurement model, that is, the local gravity
model constructed through 9-point surface interpolation,
may be unable to represent the real gravity field effectively,
because the gravity anomaly varies in a rather irregular
manner. Moreover, the ability of precise gravimetry can by no
means be thought to be satisfactory nowadays, especially in
the case of real-time (not after processing) and self-contained
(without use of GNSS) situations. So the ideal Gaussian distri-
bution may fail to exactly characterize the real measurement
errors or in other words the real error may follow some kind
of non-Gaussian distributions.

In this contribution, a new robust method, based on x*
test, is proposed to resist the influence of the non-Gaussian
distribution of the measurement noise. This method can be
interpreted as follows. If the measurement noise does follow
the assumed Gaussian distribution, then the real measure-
ment vector will also be Gaussian (at least approximately)
with the mean being the predicted measurement in (21) and
the covariance being the covariance of the innovation vector
in (22). Then the square of the Mahalanobis of the real mea-
surement from the predicted measurement should be y* dis-
tributed with the degree of freedom being the dimension of
the measurement. Let this square be the judging index and
carry out x” test to check the real measurement. Consider the
assumed Gaussian distribution of the measurement noise as
the null hypothesis. Set the significance level to be a small
number, say «, and the corresponding quantile can be
determined according to the x* distribution under the null
hypothesis. If the probability that the judging index, that is,
the P value, is larger than the quantile, the null hypothesis
should be rejected. It means that when the real measurement
is too distant from the predicted one, we can consider this
measurement as an outlier with rather high probability, that
is, 1 —a. And to this point, we say that the outlier is detected.
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In the presence of the outlier, a scaling factor is introduced to
tune the filter to be robust against this outlier. The robustness
is obtained because the scaling factor, being larger than 1,
inflates the covariance of the innovation and hence reduces
the weight of the real measurement in the update of the filter.
Finally the influence of the outlying measurement is
restrained. The scaling factor is solved as follows. For the
predetermined «-quantile, following the null hypothesis, we
have

p(ye) = '/V(Yk;?klk—l’Pek,ek)

exp (‘ (1/2) (yx - ?k|k-1)T (Pek,ek)_l (Vi - ?klk—l))

(2n)" [P

€€k |

(42)

Define the judging index as

-1

~ T ~
Ye = Mi = (Yk - Yklk—l) (Pek,ek) (Yk - Yk|k—1)> (43)

where M; = \/(Yk = Vi) (P e ) ™" (Vic = Vi) is the
Mahalanobis distance of y; from ¥ _;. Under the null
hypothesis, the judging index is y* distributed with degree of
freedom being the dimension of the measurement, say m. For
a predetermined significance level «, the quantile can be
calculated, that is, x, ,; then we have

Pr (e = xo) < % (44)

where Pr(-) denote the probability of an event. If (44) does
not hold, then introduce the scaling factor x; and let

- T -1 2
Yk = €k (KkPek,ek) € = Xm,ot' (45)
By solving (45) we have
T -1
_ €k (Pfk»ek) €k (46)
Kk - 2—.
Xm,oc

Hajiyev and Soken use tr(ekeZ) > tr(Pek’ek) to detect

outliers other than (44) [37], as tr(ekez) = (||ek||)2 and
tr(P, . ) = Xir, P, (i,1); it is easy to find that their method
neglected the off-diagonal elements of P, , , which is not
reasonable. Moreover, the statistical basis is not clear, and the
corresponding significance level is hard to determine.

4. Simulation Study

As in what was previously mentioned, the errors of the iner-
tial sensors, that is, the gyros and accelerometers, are treated
as random noise. We further assume that they are white
and Gaussian distributed. The statistics of the noises, or
specifically the variance or standard deviation, should be
determined to determine the parameter of the process noise.
However, these sensor errors are often characterized as
random walks, that is, the angular random walk (ARW)
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TABLE 1: Parameters in the simulation.

Name ARW VRW  Timespan INSperiods Initial latitude Initial longitude  Velocity = Heading  Standard deviation
Value 107" 107 36 1 15 110 L6 45 1
Unit °/vh g h s ° ° m/s ° mGal

Longitude (deg.)

14.5 \ \ \ \ )
110 110.5 111 111.5 112 112.5

Latitude (deg.)

—— True
—— INS

FIGURE 1: True and INS calculated trajectories.
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FIGURE 2: Errors in INS and GMN aided INS: pitch.

for the gyros and velocity random walk (VRW) for the
accelerometers. Note that for the accelerometer the random
errors may be characterized bias uncertainties other than the
VRW. We should calculate the variance or the standard devi-
ation from the random walk values; the details can be found,
for example, in [19]. The parameters in the simulation are
illustrated in Table 1.

The true trajectory and that calculated by INS are
depicted in Figure 1.

The attitude errors (only the pitch are demonstrated),
the heading errors (i.e., the yaw), the velocity errors (only
the north one), and the positioning errors (only the latitude
error) of the INS and that of the GMN aided INS are shown in
Figures 2-5, respectively.

It is noted that without the robust modification, the filter
diverged, and without the marginal modification, the perfor-
mance is essentially the same as that in the figures, so the
results corresponding to these two cases are not shown.
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FIGURE 3: Errors in INS and GMN aided INS: yaw.

5 ~
g N
5 0
: M
>§
_5 I
0 5 10 15 20 25 30 35 40
Time (h)
—— INS
—— GMN-INS

FIGURE 4: Errors in INS and GMN aided INS: north velocity.
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FIGURE 5: Errors in INS and GMN aided INS: latitude.



From Figure 1, the trajectory calculated by INS oscillates
around the true one with Schuler frequency, and moreover,
the amplitude of the oscillation becomes larger and larger.
This is the canonical phenomenon of the characteristic of the
INS errors.

From Figure 2, after the GMN is used, the attitude errors
of INS can be estimated to some extent which makes the
residual errors become smaller than those of the INS. This
demonstrates the efficacy of GMN aided INS. From Figure 3,
itis found that the improvement in the heading is rather small
if any after the GMN is used to aid INS.

From Figure 4, the velocity errors of INS are effectively
restrained after the GMN is incorporated. A direct result
of this improvement in the velocity is that the accuracy of
the position is also improved which can be validated from
Figure 5. It is noted that the improvement in the longitude
accuracy is not as significant as in the latitude though the
result is not demonstrated.

In measurement updates, UT and MUT are both per-
formed. In generating SPs, that is, in the sampling step, the
computational burdens of UT and MUT are comparable. But
in propagating SPs and calculating the propagated mean and
(cross)covariance, only 5 SPs are used in MUT while 15 are
used in UT. Apparently, less computation is needed in MUT
than in UT. Itis noted that the robustifying process, that is, the
outlier detection and suppression, involves rather little com-
putation increase. To be specific, as the measurement is one-
dimensional, the outlier detection in (43) and (44) and the
inflating factor calculation in (46) involve only scalar alge-
bras.

5. Concluding Remarks

The gravity matching navigation technique is employed to aid
the inertial navigation system using the unscented Kalman
filter. First, the dynamic state space model of the problem
is constructed; specifically, the error equation of the inertial
navigation system is used as the state process equation after
discretization, and the local gravity anomaly is modeled as
a surface interpolated using 9 points. Second, the unscented
Kalman filter is employed to solve the problem, and two
refinements to the unscented Kalman filter, that is, the
marginalization technique and the Chi-square test based
robust method, are provided to reduce computation and
improve robustness, respectively. Third, simulation study is
carried out, and the efficacy of the proposed method is
validated through the simulation results.

It is noted that the gravity matching aided INS is rather
complicated and this study is only preliminary. To ensure the
robustness and accuracy of the method, besides the filtering
algorithms, it also necessitates a rather high requirement for
the quality of the gravity measurement data and map data
including both the spatial resolution and the accuracy. How-
ever data with such high quality can hardly be available in this
stage. The filter should be carefully tuned to accommodate
to the single data sheet used and resulting limited generality
of the filtering algorithms. That is also the main reason for
not conducting sufficient simulating experiments and not
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obtaining further conclusions. Hopefully, the methodological
framework and the filtering algorithm in particular should
be of use in the future when gravity data with higher quality
become available.
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