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ABSTRACT 

The US Air Force’s two main aeropropulsion test 
centers, Arnold Engineering Development Center and the 
Air Force Flight Test Center, are developing a common 
suite of modeling and simulation tools employing 
advanced predictive modeling technologies.  These 
modeling and simulation tools incorporate real-time data 
validation, system identification, parameter estimation, 
model calibration, and automated model updating as new 
test results or operational data become available.  The 
expected benefit is improved efficiency and accuracy for 
online diagnostic monitoring of Air Force assets.  This 
paper describes the integrated approach to real-time data 
validation.  Implementation of a software package to 
enable efficient model handoff between test groups and 
centers and extension of the capability to aeropropulsion 
models is discussed.  An F/A-22 inlet model is used to 
demonstrate the approach.  Compact polynomial function 
models of the distortion and recovery flow descriptors 
and 40-probe pressure values are derived from quasi-
steady and instantaneous subscale wind tunnel data.  The 
total-pressure inlet distortion and recovery models are 
integrated in a real-time equipment health monitoring 
system designed to support test operations, and 
preliminary results are given.  A companion paper 
describes the integrated approach to system identification, 
parameter estimation, and model updating. 
1
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INTRODUCTION 

The United States Air Force has a long history of 
using modeling and simulation (M&S) in the test and 
evaluation (T&E) process [Ref. 1, 2, 3].  While most 
M&S usage to date has been in the aircraft performance 
and flying quality areas, advancing technology and 
complex integration requirements are resulting in 
increased M&S use across a broader spectrum of 
technical disciplines, including aircraft inlet/engine 
integration.  Modeling and simulation cannot replace 
testing the actual article; however, it can be used to 
significantly improve test capabilities across the three 
sub-processes of test planning, test execution, and data 
analysis and evaluation. 

Generally, M&S is used during T&E as a predictive 
tool.  Most predictive model generation techniques have 
some level of uncertainty.  In most cases, the level of 
uncertainty in predictive models requires that the models 
be updated based on tests of the actual article within its 
intended environment.  Arnold Engineering Development 
Center and the Air Force Flight Test Center, are 
developing a common suite of modeling and simulation 
tools employing advanced predictive modeling 
technologies to reduce the time and complexity of 
validating and updating component and system level 
models.  Two foundational technologies for this advanced 
M&S suite are the Algorithms to Update Simulation 
Parameters with Experimental Data (AUSPEX™) 
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MATLAB® modeling environment, developed by Barron 
Associates, and the Real-time Turbine Engine Diagnostic 
System™ (RTEDS) on-line monitoring framework, 
developed by Expert Microsystems.  This common set of 
tools will permit model handoff from ground test to flight 
test (or flight test to ground test) phases and ultimately to 
operational phases. 

AUSPEX provides a flexible suite of tools to assist 
the user in applying simulation, test, or operational data to 
create and update high fidelity models of systems and 
equipment.  The RTEDS tools provide a model-based 
diagnostics framework for real-time data validation and 
equipment health monitoring based on various model 
types, including AUSPEX models.  The capabilities and 
interactions of these tools are summarized in Fig. 1.  
RTEDS capabilities are the subject of this paper while 
AUSPEX capabilities are the subject of a companion 
paper [Ref. 4]. 

The AUSPEX modeling environment is used for the 
development of on-line capable system and equipment 
models, as shown in the model calibration and updating 
step of Fig. 1.  The models are derived from simulation or 
operating data using advanced orthogonal function 
modeling techniques [Ref. 4].  The modeling is currently 
performed off-line prior to use for on-line monitoring of 
the system and equipment.  An important aspect of the 
AUSPEX technique is its model updating capability.  As 
operational data are acquired, the AUSPEX tools provide 
a high fidelity automated means to improve the model 
representation of the system and equipment by learning 
an improved model from the data.   
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The RTEDS on-line monitoring tool uses the 
AUSPEX models as the predictive element of its fault 
detection and isolation (FDI) methodology.  The 
AUSPEX models are used to provide signal estimates 
(expected values) given each observation of the actual 
signal values.  Next, a fault detection model is used to 
evaluate for excessive residual error (difference) between 
the analytical signal estimates and the observed signal 
values.  Then, a probabilistic decision model is used to 
perform automated high-level fault and event 
classification for reporting to the engine or test operator. 

This paper describes an integrated approach to system 
identification, parameter estimation, and model updating 
using an F/A-22 inlet model.  Implementation of a 
software package to enable efficient model handoff 
between test groups and centers is discussed.  Compact 
polynomial function models of the inlet total-pressure 
distortion and recovery flow descriptors, and the 40-probe 
pressure values, are derived from quasi-steady subscale 
wind tunnel data.  The inlet distortion and recovery 
models are integrated into a real-time equipment health 
monitoring system to aid test execution, and performance 
analysis results are given.  One expected benefit is the 
development of models and analysis capabilities that 
allow an improved comparison of results from wind 
tunnel and flight test, including their use to predict results 
at flight conditions that haven’t been tested.  These 
resultant models could also be used for flight manual 
development, determining SPEC compliance, or to aid in 
real-time equipment monitoring.   
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Fig. 1.  Test Operations Support Using AUSPEX and RTEDS Tools 
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SUBSCALE F/A-22 INLET TEST CONFIGURATION 

The sub-scale F/A-22 model test configuration, 
shown in Fig. 2, is a subscale representation of the 
aircraft external duct and inlet duct geometry from the 
nose to the Aerodynamic Interface Plane (AIP).  Duct 
lines reflect the production aircraft configuration with 
fully modeled inlet with bleed and bypass systems.  Flow 
blockage associated with the F119 fan and fan nose 
spinner was not simulated.  Configuration variables 
included a simulated flight test nose boom assembly, nose 
landing gear assembly, inlet ramp bleed porosity, inlet 
ramp bleed exit area, weapons bay doors, bypass exit 
area, air data probes, and secondary air system.  
Additional details of the F/A-22 inlet testing are given in 
Ref. 5. 

 
Fig. 2.  Sub-scale F/A-22 Inlet Model 
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Fig. 3.  Wind Tunnel Engine Inlet Rake Configuration 

Forward Looking Aft 

A typical wind tunnel inlet instrumentation array for 
measuring inlet recovery and distortion is composed of 
eight equiangular-spaced rakes with five probes per rake 
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located at the centroids of equal areas (Fig. 3).  The 
number 1 rake for the inlet model was located 22.5 deg 
counterclockwise from top dead center (forward looking 
aft).  The inlet rake geometry used for the current analysis 
is consistent with the Society of Automotive Engineers 
(SAE) recommended practice for turbine engine inlet 
testing.  The steady-state pressures were measured with 
model-mounted Electronically Scanned Pressure (ESP) 
modules.  More than 300 additional steady-state and high-
response total and static pressure probes provided data to 
aid inlet development, for better understanding of the 
distortion patterns, and to determine off-schedule 
geometry effect, bleed effect, inlet stable range, and 
definition of control system/inlet destabilizing effects. 

SUMMARY OF THE MODELING APPROACH 

To aid in flight inlet performance analysis, AUSPEX 
M&S tools have been developed to predict flight inlet 
performance from the subscale wind tunnel database 
thereby facilitating a comparison of flight data with the 
performance expected based on sub-scale wind tunnel 
tests.  The AUSPEX tool suite includes system 
identification and parameter estimation algorithms.  The 
system identification algorithms enable the development 
of empirical models from simulation, test, or in-service 
data, and address the complete model selection problem, 
that is, they empirically determine the terms and 
parameters of the model.  The parameter estimation 
algorithms provide functionality to calibrate either the 
models created by the companion system identification 
software or an arbitrary user provided model including 
analytic, statistical, or black box model types.  A database 
updating capability permits the results to be merged to 
appropriate regions of existing simulations.   

For the current analysis, separate subsonic and 
supersonic models were developed for each flow 
descriptor because the inlet characteristics can change 
substantially as a function of Mach number.  This 
division of the data is also consistent with potential flight 
test program uses, where subsonic and supersonic 
conditions are evaluated in separate flight tests and the 
data can be analyzed between tests.  This modeling is 
discussed in detail in Ref. 4. 

The F/A-22 subsonic and supersonic wind tunnel data 
respectively contain up to 8,851 and 13,123 data points 
for a chosen screening parameter.  This application of the 
modeling algorithm to a typical estimation problem for 
the F/A-22 wind tunnel data demonstrates that compact 
models characterized by four to six candidate input 
variables and quadratic to fourth order polynomials can 
be used to represent this large body of empirical data.  In 
  3 Copyright © 2006 by ASME
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the current application, 84 steady-state flow descriptors 
are modeled for portions of the subsonic and supersonic 
envelopes.  Less than four hours are required to run the 
model selection and calibration algorithms demonstrating 
that it is feasible to use the algorithm for post-flight data 
analysis on a daily basis and without adversely impacting 
a typical testing schedule. 

MODEL-BASED FAULT DETECTION AND ISOLATION 

Integration of the AUSPEX models with the Real-
time Turbine Engine Diagnostic System (RTEDS) as well 
as integration of RTEDS with AEDC’s Data Validation 
Manager (DVM) is illustrated in Fig. 4.  AEDC’s Data 
Validation Manager (DVM) is described in Ref. 6.  
RTEDS provides the capability to monitor for, distinguish 
between, and classify the source and type of sensor, 
engine, and facility faults based on the AUSPEX model 
results.  This on-line diagnostic monitoring system will 
ultimately enable faster and more accurate decisions to 
certify or maintain an engine system in both test and 
operational environments. 

An RTEDS on-line diagnostic system is comprised of 
a combination of Predict, Detect, and Decide model 
elements working together to accomplish real-time data 
  4
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validation and fault detection and isolation (FDI) 
objectives.  In monitoring mode, the calibrated AUSPEX 
models provide expected values for each set of observed 
values from the test article. The difference between an 
observed value and an expected value is termed a 
“residual.”  The software fault detection procedures 
determine whether the observed residual values are 
uncharacteristic of the learned diagnostic model and 
thereby indicative of a sensor or equipment fault.  Instead 
of using simple thresholds to detect fault indications (i.e., 
declaring a fault when a signal’s residual value exceeds a 
preset threshold), the software’s fault detection procedure 
provides more definitive information about signal validity 
using a patented statistical analysis technique known as 
adaptive sequential probability testing.  This procedure 
provides a superior surveillance tool because it is 
sensitive not only to disturbances in the signal mean, but 
also to very subtle changes in the statistical quality 
(variance, skewness, bias) of the signals.  For sudden, 
gross failures of a sensor or item of equipment, the 
procedure will annunciate the disturbance as fast as a 
conventional threshold limit check.  However, for slow 
degradation, the procedure can detect the incipience or 
onset of the disturbance long before it would be apparent 
with conventional threshold limits. 
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Fig. 4.  Integration of RTEDS and AUSPEX for Test Operations Support 
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The presence of fault alarms related to the various 
signals can indicate several non-exclusive possibilities 
about the state of the monitored test article.  These 
include the failure of one or more signals to provide true 
readings of the monitored variables, the degradation or 
failure of an article of equipment, or the operation of the 
test article in a mode different from those modes learned 
from the calibration data.  An analysis regarding which of 
these states are most probable given the current state of 
the monitored system is made using a probabilistic 
decision manager.  The decision manager weighs all 
possible diagnoses against one another to determine 
which has the most evidence for its substantiation.  On 
completion, the software returns its diagnostic results to 
the user or to a host software process and waits for the 
next input observation from the test article. 

Taken together, these model elements are used to 
implement an advanced fault detection and isolation 
(FDI) methodology.  The FDI models will, in general, be 
used initially for their data validation function.  As 
operating experience is acquired, the equipment fault 
detection signatures will be incorporated into the FDI 
model to capture the expertise of the designers and test 
engineers for the future benefit of Air Force operations 
users of the system.  Additionally, the FDI models 
provide direct feedback to the predictive model designer 
as to the effectiveness of the model for equipment 
monitoring applications. 

As shown in Fig. 1, the methodology includes a 
model calibration or updating step prior to the on-line 
monitoring step.  In this work, the initial calibration step 
is performed using the AUSPEX tools.  The calibrated 
AUSPEX models are readily integrated with RTEDS by 
virtue of its open, standardized Predictive Model 
Interface (see discussion below).  Various other model 
types are also readily implemented. 

INTEGRATION OF THE WIND TUNNEL INLET FLOW 
DESCRIPTOR MODELS 

The RTEDS Predictive Model Interface allows one or 
more user-selected predictive models to operate 
simultaneously in the Predict step of the diagnostic 
decision method.  The Predictive Model Interface defines 
the object-oriented methods and attributes that must be 
implemented by a user-defined predictive model in order 
to enable interoperability with the other complementary 
elements of the RTEDS tool suite.  The interface allows 
for all data and control flows necessary to: 
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− Provide a dedicated graphical user interface for on-
line configuration of the predictive model. 

− Save predictive model configuration attributes within 
an RTEDS project file. 

− Specify RTEDS signal data streams for use as 
predictive model input and output variables. 

− Train or calibrate a predictive model in-situ using 
RTEDS provided data and data management. 

− Operate a predictive model as a parameter estimator 
to return a set of estimated signal values given each 
new set of observed signal values from a monitored 
system. 

− Operate a predictive model on-line at data rates 
consistent with the predictive model real-time 
capabilities. 

Two AUSPEX-calibrated inlet flow descriptor model 
sets were integrated with RTEDS using the Predictive 
Model Interface.  The first model set includes 84 
individual models of the inlet flow descriptors for low 
Mach number subsonic conditions, valid over the Mach 
number range from 0 to 0.5.  The second set includes 84 
additional models of the inlet flow descriptors for high 
Mach number subsonic conditions, valid over the Mach 
number range from 0.5 to 1.0.  Each model set is 
combined for convenience into separate low and high 
Mach range predictive models with each configured as an 
RTEDS plug-in module.  The two predictive models are 
then combined into a single RTEDS project using 
RTEDS’ patented automated mode partitioning capability 
[Ref. 7] to transparently switch between the two 
predictive models on-line as the actual inlet conditions 
vary over the test envelope.  For brevity, models and 
results for supersonic conditions are not presented herein.  
The nomenclature used in these models and in the 
following figures is summarized in Table 1. 

The RTEDS on-line monitoring user interface for 
surveillance of these 168 individual models (2 model 
sets) is illustrated in Fig. 5.  The screen image shown also 
illustrates the software detection of a simulated bias error 
for signal PREFPT31, the steady-state pressure ratio at 
the ring 3, rake 1 location.  The software fault simulator – 
which can be used to overlay shift, drift, and noise errors 
on top of the actual signals – was used to produce this 
simulated bias error for fault detection performance 
testing. 
  5 Copyright © 2006 by ASME
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REPRESENTATIVE RESULTS 

The AUSPEX inlet flow descriptor models were 
evaluated in RTEDS over the wind tunnel training data 
set to determine their baseline performance metrics.  One 
model quality metric computed by RTEDS is the root 
mean square (RMS) residual error value (formed as the 
difference between the observed and predicted values) 
normalized by the RMS observed signal value, expressed 
as a percentage.  The RMS Error metric for the steady-
state pressure ratio signals is plotted as a function of 
circumferential position for each radial ring number 
(identified by colored legend) at the low subsonic Mach 
number conditions in Fig. 6 and at the high subsonic 
Mach number conditions in Fig. 7.  Corresponding plots 
for the high response RMS pressure ratio signals are 
presented in Fig. 8 and Fig. 9.  The RMS Error metric is 
less than 1% for the steady-state pressure ratio signals and 
generally less than 10% for the high response RMS 
pressure ratio signals. 

The RMS Error metric results reported in Fig. 6 - 10 
provide a measure of the agreement between the 
AUSPEX models and the observed data for the nominal 
signal values.  Out of range data was removed from the 
data set prior to computing these results.  However, the 
inclusion of some inlet operating points exhibiting a buzz 
instability (discussed below) results in higher RMS error 
values than might otherwise be obtained had these 
unstable points been excluded during AUSPEX model 
development.  Because the flight vehicle control system is 
designed to prevent operation at inlet buzz conditions, it 
is recommended that future versions of the AUSPEX 
models be trained with buzz conditions excluded. 
  6
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Table 1.  Signal Nomenclature for Inlet Flow 
Descriptor Monitoring 

Signal Description Signal Name 
Input Signals  
Mach Number M 
Angle of Attack ALPHA 
Angle of Sideslip BETA 
Corrected Airflow WC2 
Predicted Signals  
Average Engine-Face Total-
Pressure Recovery REC 

Average Engine-Face RMS 
Turbulence PTRMSPT2 

Circumferential Distortion Intensity DPCAVG 
Tip Radial Distortion Intensity DPRTIP 
Ratio of Individual Steady-State 
Total-Pressure to Pt0, Free Stream 
Total-Pressure (i=Ring, j=Rake) 

PREFPTij 

Ratio of RMS of High Response 
Pressure to Pt2, Engine-Face Total-
Pressure (i=Ring, j=Rake) 

RMSPT2ij 
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Fig. 5.  RTEDS User Interface for On-line Inlet Flow Descriptor Monitoring 
with Detection of a Simulated Bias Error for Signal PREFPT13 
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Fig. 6.  Prediction RMS Error, %, for Steady-State Pressure Ratio 
at Low Subsonic Mach Condition 
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Fig. 7.  Prediction RMS Error, %, for Steady-State Pressure Ratio 
at High Subsonic Mach Condition 
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Fig. 8.  Prediction RMS Error, %, for High Response RMS Pressure Ratio 
at Low Subsonic Mach Condition 
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Fig. 9.  Prediction RMS Error, %, for High Response RMS Pressure Ratio 
at High Subsonic Mach Condition 
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The ability of RTEDS to automatically detect bad 
data and anomalous operating conditions greatly 
facilitated the data assessment process.  The F/A-22 wind 
tunnel database aptly illustrates the need for automated 
data validation and equipment diagnostic tools such as 
RTEDS.  The original database contained 17,354 test data 
points, each consisting of 147 individual parameter 
values.  This represents over 2.5-million data items in the 
database.  The inlet distortion descriptor data had been 
previously screened for outlier data items and the 
database was considered to be “clean” of bad data.  
However, RTEDS used in combination with the 
AUSPEX models easily identifies a number of data items 
that might be considered bad, missing, or inconsistent 
with “normal” operation.  Several of these are illustrated 
herein. 

Several of the parameter values were recorded as 0.0 
during some of the tests.  This is a common signature of 
data values that are known to be missing or incorrect at 
the time of data acquisition or data recording.  In 
comparing the recorded data with the expected data from 
the AUSPEX models, it may be seen in Fig. 10 that the 
models provide reasonable values for these parameters.  
The recorded values are considered invalid when they are 
not representative of the expected values of the 
parameters.  In this figure, the blue “x” symbols are the 
recorded values of the high response RMS pressure ratio 
and the red “∆” symbols are the model predicted high 
response RMS pressure ratio values for each observed 
value.  RTEDS automatically generates an alert when an 
inconsistency between the observed and expected values 
is detected.  Subsequent inspection of the F/A-22 wind 
tunnel database confirms that the parameter values noted 
as invalid in Fig. 10 are missing and have been replaced 
with values of 0.0.  There were multiple instances of this 
type of bad or missing data identified by RTEDS in the 
“clean” F/A-22 wind tunnel database. 

In another example, RTEDS detected the presence of 
“buzz” at the engine inlet for several operating points 
within the database.  Buzz is a low frequency oscillation 
that is the result of harmonic separation and reattachment 
of flow in the duct that may occur at low inlet mass flow 
ratio [Ref. 8].  If buzz occurs at transonic or supersonic 
conditions when a shock is present, the magnitude of the 
buzz can be significantly exacerbated, which may result 
in engine stall or flameout.  The signature of buzz is a 
sudden in-phase increase in high response RMS pressure 
as airflow is decreased, as shown in Fig. 11, which is 
usually accompanied by a drop in the total-pressure 
recovery value.  Confirmation of the inlet buzz is seen in 
the variation of high response RMS pressure ratio, 
  1

aded From: https://proceedings.asmedigitalcollection.asme.org on 06/29/2019 Terms of Us
Fig. 12, and total-pressure recovery, Fig. 13, with respect 
to corrected airflow. 

The buzz condition data is within the normal 
operating range for wind tunnel testing and was not 
considered anomalous by the model development team.  
Because the AUSPEX models were trained prior to 
recognition that the buzz events in the wind tunnel test 
database were unique to the wind tunnel test environment, 
the AUSPEX models are observed to follow the high 
response RMS pressure ratio characteristic of buzz at 
some, but not all of the low inlet mass flow conditions.  
As a result, the models overall effectiveness for 
discriminating a buzz condition from a no-buzz condition 
is reduced.  Since the occurrence of buzz conditions is 
sporadic at the low inlet mass flow conditions in this 
database, it is unlikely that effective AUSPEX models 
could be designed to accurately predict this behavior.  
Moreover, because the buzz conditions occurred in the 
sub-scale wind-tunnel test, and the flight vehicle control 
system is designed to keep the inlet out of buzz, it is 
recommended that the models be retrained with buzz 
conditions excluded.  Then, the RTEDS system could be 
used to detect and identify buzz automatically by using 
the inconsistent high response RMS pressure ratio 
measurements as a high probability indicator of an 
anomalous or buzz condition. 

The buzz detection example demonstrates the 
expected benefit of improved efficiency and accuracy for 
online diagnostic monitoring of Air Force assets that 
result from the evolving suite of modeling and simulation 
tools.  By combining the AUSPEX system identification, 
model calibration, and model updating tools with the 
RTEDS real-time data validation and equipment health 
monitoring tools, large data sets can be quickly and 
automatically processed to ensure that only high quality 
data is used for model development and for real-time test 
operations support. 

The RMS Error metric results (presented in Fig. 6 - 
10) would be improved by retraining the AUSPEX 
models with buzz conditions excluded.  The highest RMS 
errors occur when the models are presented with normal 
no-buzz data at low airflow conditions and erroneously 
predict buzz behavior.  This result is apparent in Fig. 14 
at the 4404 and 4431 test index points.  At these points, 
there is a small increase in the mean turbulence as the 
inlet approaches the buzz condition.  However, the 
AUSPEX models are trained to expect more buzz in the 
vicinity of these airflow points and the model agreement 
with the data is degraded.  Excellent agreement between 
the model and the data at higher inlet airflow values is 
evident in Fig. 14. 
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Fig. 10.  RTEDS Detection of Invalid Parameter Data (Multiple Tests Shown) 
Model Predicted and Observed High Response RMS Pressure Ratio versus Test Index 

 

Fig. 11.  RTEDS Detection of Inlet Buzz Condition (Left Side) 
Model Predicted and Observed Average RMS Turbulence versus Test Index 

Invalid Data 

Inlet Buzz

No Buzz 
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Fig. 12.  Confirmation of Inlet Buzz Condition 
Model Predicted and Observed Average RMS Turbulence versus Airflow 

 

Fig. 13.  Confirmation of Inlet Buzz Condition 
Model Predicted and Observed Average Total-Pressure Recovery versus Airflow 

Inlet Buzz 

Inlet Buzz 
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Fig. 14.  AUSPEX Model Error Increases at Low Airflow Condition (Multiple Tests Shown) 
Model Predicted and Observed Average RMS Turbulence versus Test Index 

 

Fig. 15:  Model Predicted and Observed Steady-State Pressure Ratio vs. Test Index 
without a Simulated Negative Bias Error 
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Fig. 16.  Model Predicted and Observed Steady-State Pressure Ratio vs. Test Index 
with a Simulated Negative Bias Error 
The ability of the model to reproduce the observed 
steady-state pressure ratio data is further illustrated in 
Fig. 15.  As before, the blue “x” symbols are the 
measured values of the steady-state pressure ratio and the 
red “∆” symbols are the model predicted steady-state 
pressure ratio values for each observed value.   

The RTEDS user interface warning of a sensor bias 
error is illustrated in Fig. 5.  The screen image shown was 
taken with a constant bias error of +0.025 simulated on 
the steady-state pressure ratio at circumferential rake 
position 1 (22.5°) and radial position 3.  The bias error 
causes the observed steady-state pressure ratio to deviate 
from the predicted steady-state pressure ratio thereby 
generating a diagnostic system alarm and a red visual 
indication on the RTEDS user interface. 

The effect of the simulated bias error on the predicted 
and observed steady-state pressure ratio is illustrated in 
Fig. 16.  Using the same symbol conventions, this figure 
shows the model behavior when the same data is 
modified for testing with a simulated bias error imposed 
on the steady-state pressure ratio.  The figure 
demonstrates that the model predictions are insensitive to 
the bias error and continue to accurately predict the 
expected value of the measured pressure.  The deviation 
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in the observed value is manifested as a negative mean 
shift in the residual error formed as the difference 
between the observed and predicted values and is readily 
detected as a data quality error condition by the RTEDS 
fault detection and decision management algorithms. 

LESSONS LEARNED 

Several important lessons were learned from applying 
these modeling and simulation capabilities to on-line data 
validation and diagnostics for the F/A-22 inlet test data.  
First, the effort underscored that the modeling algorithms 
are most effective when used as aids to an experienced 
analyst.  Second, the importance of carefully selecting 
training data when developing empirically derived 
models was shown and the utility of using automated data 
validation techniques to streamline the training data 
selection process was demonstrated.  It is important to 
highlight that the training data must not contain any 
“abnormal” features or else the empirical models will 
learn these as “normal”, as we have seen with the buzz 
anomaly above. 

Training data selection can be a time consuming 
process since very large data sets are often required to 
capture the full range of normal system behaviors.  When 
presented with a very large data set, it is impractical to 
 Copyright © 2006 by ASME
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expect the analyst to manually derive the most desirable 
subset of training data for empirical model development.  
A more practical solution is to use a “bootstrapping” 
technique as follows: (1) carefully examine and clean up 
a subset of the data; (2) generate models of expected 
parameter behavior using automated tools such as 
AUSPEX; (3) use these models of expected parameter 
behavior in an automated data validation and diagnostic 
application such as RTEDS to further screen the data; and 
(4) iterate steps 2 and 3 to converge on a high-fidelity 
model.  The bootstrapping method takes maximal 
advantage of the RTEDS software ability to discriminate 
normal data from abnormal data and the AUSPEX 
software ability to perform efficient model updating.  

CONCLUSIONS 

The utility of a common suite of modeling and 
simulation tools employing advanced predictive modeling 
and on-line diagnostic technologies was demonstrated.  
This common set of modeling and simulation tools 
incorporates real-time data validation, system 
identification, parameter estimation, model calibration, 
and enables automated model updating as new test results 
or operational data become available.  The expected 
benefit is improved efficiency and accuracy for online 
diagnostic monitoring of Air Force assets.  The 
foundational technologies for this modeling and 
simulation suite are the Algorithms to Update Simulation 
Parameters with Experimental Data (AUSPEX) 
MATLAB modeling environment, developed by Barron 
Associates, and the Real-time Turbine Engine Diagnostic 
System (RTEDS) on-line monitoring framework, 
developed by Expert Microsystems.  AUSPEX provides a 
flexible suite of tools to assist the user in applying 
simulation, test, or operational data to create and update 
high fidelity models of systems and equipment.  The 
RTEDS tools provide a model-based diagnostics 
framework for real-time data validation and equipment 
health monitoring based on various model types, 
including AUSPEX models. 

Excellent agreement between the AUSPEX models 
and the data was demonstrated at higher inlet airflow 
values.  At lowest airflow values, the agreement between 
the models and the data was degraded by the sporadic 
occurrence of inlet buzz conditions.  The ability of 
RTEDS to automatically detect bad data and anomalous 
operating conditions greatly facilitated the data 
assessment process.  It was concluded that the AUSPEX 
models should be retrained excluding the buzz condition 
data and that RTEDS should be used to automatically 
detect the occurrence of buzz conditions as well as other 
anomalies.  
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