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Abstract—Data loss is ubiquitous in wireless sensor networks
(WSNs) mainly due to the unreliable wireless transmission, which
results in incomplete sensory data sets. However, the completeness
of a data set directly determines its availability and usefulness.
Thus, sensory data recovery is an indispensable operation against
the data loss problem. However, existing solutions cannot achieve
satisfactory accuracy due to special loss patterns and high loss
rates in WSNs. In this work, we propose a novel sensory data
recovery algorithm which exploits the spatial and temporal joint-
sparse feature. Firstly, by mining two real datasets, namely
the Intel Indoor project and the GreenOrbs project, we find
that: (1) for one attribute, sensory readings at nearby nodes
exhibit inter-node correlation; (2) for two attributes, sensory
readings at the same node exhibit inter-attribute correlation; (3)
these inter-node and inter-attribute correlations can be modeled
as the spatial and temporal joint-sparse features, respectively.
Secondly, motivated by these observations, we propose two Joint-
Sparse Sensory Data Recovery (JSSDR) algorithms to promote
the recovery accuracy. Finally, real data-based simulations show
that JSSDR outperforms existing solutions. Typically, when the
loss rate is less than 65%, JSSDR can estimate missing values
with less than 10% error. And when the loss rate reaches as high
as 80%, the missing values can be estimated by JSSDR with less
than 20% error.

Index Terms—Wireless sensor networks, data loss, sensory data
recovery, joint-sparse, compressive sensing

I. INTRODUCTION

Wireless sensor networks (WSNs) [1] are widely used by re-

searchers for studying the physical word [13]. Through WSNs,

scientists gather information and reconstruct environmental

data, which is important for them to discover the physical

world around. For example, the sensory data of volcanos’

temperature and shaking can be used for the prediction of

eruption [23][17][21], and the one of the wind speed, air

humidity and temperature can help scientists to reveal the plant

evolution [12]. Usually, massive data missing is common in

WSNs. For instance, the data loss rates are 64% and 35%
in the Ocean Sense project [27] and the GreenOrbs project

[20]. Hence recovering these lost data with high accuracy is

challenging because of this situation.

The high loss rates break the structural features of values.

Therefore classical interpolation methods, such as K-Nearest

Neighbors (KNN) [7], cannot provide a satisfactory result

because values of neighbors are very likely to be missing.

Similarly, the performance of other classic interpolation meth-

ods is also influenced by high loss rates. A recently pro-

posed compressive sensing approach, the Environmental Space
Time Improved Compressive Sensing (ESTI-CS) [18][17], can

achieve better accuracy. However, the low-rank and sparse

features are also effected in the massive data loss scenario

where the ESTI-CS experiences the increased estimation error.
In this paper, we propose to further improve the recovery

accuracy by the correlation among multiple attributes. Our

work is based on the following facts. The first one is that,

a WSN’s node is able to gather multiple attributes at the same

time. For example, in [20], TelosB nodes are used to sense

temperature, light illumination and humidity. The second one

is that, there are stable correlations among many physical

attributes in nature, such as humidity and temperature [19].

These correlations, if formulated mathematically and suitably,

can be treated as the supplement of the inner attribute features

and be useful for enhancing the accuracy of the estimation.

Hence, how to mine and exploit such correlations is the key

point hereby.
In this paper, firstly, by observing the real sensory data

from the Intel Indoor project [14] and the GreenOrbs project

[20], we find that: (1) for one attribute, sensory readings at

nearby nodes exhibits inter-node correlation; (2) for multiple

attributes, sensory readings at the same node exhibits inter-

attribute correlation; (3) these inter-node and inter-attribute

correlation can be modeled as the spatial and temporal joint-

sparse features, respectively. Secondly, combing with the tra-

ditional compressive sensing theory, we propose two novel

algorithms, called the Joint-Sparse Sensory Data Recovery

(JSSDR), to recover single attribute or multiple attributes

jointly by exploiting those correlation. Thirdly, we simulate

the proposed approach on real data sets. We compare JSSDR

with the classical and state-of-the-art methods such as KNN

[7] and ESTI-CS [18].
Our contributions are summarized as following.

1) We mine two large WSN datasets and reveal the inter-

node and inter-attribute correlation of them.

2) We design two novel interpolation algorithms, called

JSSDR, based on compressive sensing theory.

3) The simulations are made based on real data, the result

shows that our approach is very effective for sensory

data recovery in WSNs.

The rest parts of this paper are organized as following. In

Section II, we present the related work. Section III shows the
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problem formulation. Section IV mines the internal and ex-

ternal features of attributes in WSNs. Section V proposes our

approach, JSSDR. The performance is evaluated in Section VI.

In Section VII, the conclusion and future work are presented.

II. RELATED WORK

There are a large number of excellent works with con-

tributions to the field of missing data interpolation. Among

them, K-Nearest Neighbors (KNN) [7] is a simple and classic

method, which makes the missing data evaluation by utilizing

the neighbors’ average value. When the situation of data

missing is mild, this classic interpolation method can achieve

acceptable performance of recovery. With the increasing loss

rate, the recovery accuracy of KNN turns bad rapidly, be-

cause of the lack of neighbor’s information. Another widely

used approach is: model the data as a time series and then

apply some kind of prediction method, for example, the grey

prediction method [11][22].

Recently, there is a popular solution for estimating massive

missing data, named Compressive Sensing (CS) [8][5][4]. To

deal with the problems in different fields, a series of CS-based

or CS-extended solutions are developed, e.g., Beyesian Com-

pressive Sensing [15], as well as Kalman Filtered Compressive

Sensing [26] are utilized in the field of signal processing.

Further, Multi-Task Compressive Sensing (MTCS) [16] points

at both signal and image processing.

Compressive Sensing was first introduced into WSNs [2] to

save energy consumption in the data connection process and in

turn prolong the network lifetime. Then [3] studied to estimate

the received signals taking advantage of joint source-channel

communication. Fornasier et al. [10] theoretically analyzed the

joint sparsity constraints. Although these works consider the

joint features and are advance and powerful in many fields,

they neither benefit from inter-attribute correlations nor fall

into the sensory data recovery field.

The most related work is ESTI-CS [18] and MACS [6],

which are the state-of-the-art CS-based data recovery methods

in WSNs. They exploit the low-rank feature, spatial-temporal

feature and inter-attribute correlation from the sensory data

against the special loss patterns of WSNs. Nevertheless, the

low-rank, sparse and inter-attribute correlation features are also

affected in the massive data loss scenario where the proposed

methods experience the increased estimation error.

To the best of our knowledge, all the methods we find are

against missing value problem on a single attribute. In nature,

there are stable correlations among many physical attributes

such as humidity and temperature [19]. We present our work

to go a step further, aiming at improve the recovery accuracy

exploiting such correlations.

III. PROBLEM FORMULATION

A. Sensory Data Recovery

SupposeN nodes are deployed in an area, each of which can

measure K different attributes at the same time. The sensing

action lasts in a suitable time period which includes T equal

time slots. Each node sends a data packet to the sink in every

time slot. The format of the data packet is as following:

Node ID Time Stamp Attribute 1 Attribute 2 ...

Hence N × T data packets are generated at the sensor

nodes after T time slots and each packet contains K different

attribute values. The sensory data matrix, the original data

matrix and the sample matrix are denoted as s ∈ R
K×N×T ,

x ∈ R
K×N×T and A ∈ R

N×T×T , respectively.

Data loss is ubiquitous in wireless sensor networks (WSNs)

mainly due to the unreliable wireless transmission, which

results in incomplete sensory data sets. We model the data loss

problem in the following way. For each node n, the sample

pattern is denoted as A(n) ∈ R
T×T , which is a diagonal

matrix and satisfies A(n, i, i) = 1, 1 ≤ i ≤ T if the sensory

value is received in the ith time slot, otherwise 0.

Here we assume that all vectors of the same node share the

same A(n) because if one data packet is lost, all attributes in

it is missing.

So

s(i, n) = A(n)x(i, n). (1)

In Eqn.(1), all x(i, n) and s(i, n) are T × 1 vectors. Equiva-

lently, for 1 ≤ i ≤ K, 1 ≤ n ≤ N and 1 ≤ t ≤ T , s(i, n, t)
is represented as following.

s(i, n, t) =

{
x(i, n, t), if A(n, t, t) = 1
0, otherwise.

(2)

Hereby s is incomplete, so we need to recover the missing

values of s.

B. Problem Statement

Our problem is to recover the original data x from the

sensory data s as precisely as possible. The recovered sensory

data, denoted as x̂ ∈ R
K×N×T , can be used by scientists

to discover the physical world around. The problem is called

sensory data recovery (SDR) problem.

1) Single Attribute Scenario: Consider the SDR problem

under the single attribute scenario, which is defined mathe-

matically as following.

Given s, find an optimal evaluation of x as x̂, i.e.,

min ||x̂(n)− x(n)||1, (3)

s.t. s(n) = A(n)x̂(n),

∀n, 1 ≤ n ≤ N,

where || · ||1 represents the l1-norm, which is used in [8][5],

e.g., for x = [x1, · · · , xn], the l1-norm is defined as ||x||1 =∑n
i=1 |xi|.
2) Multiple Attributes Scenario: Since we focus on exploit-

ing the correlation among multiple attributes, sensory data

of different attributes are estimated jointly. In the multiple

attributes scenario, the problem is formulated as following.
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Fig. 1. Filter the the original dataset by selecting the red parts to construct
a small but completed dataset as the ground truth [18].

TABLE I
SELECTED DATA SETS AS THE GROUND TRUTH

Data Name Matrix Size Time Interval
Intel Indoor 49 nodes × 149 intervals 15 minutes
GreenOrbs 281 nodes × 170 intervals 30 minutes

Given s, find a series of optimal evaluations of x as x̂, i.e.,

min

K∑
i=1

||x̂(i, n)− x(i, n)||1, (4)

s.t. s(i, n) = A(n)x̂(i, n),

∀i, 1 ≤ i ≤ K, ∀n, 1 ≤ n ≤ N.
IV. OBSERVATIONS IN SENSORY DATASETS

In this section, we analyze the real datasets of WSNs and

discover several features of them, which are the foundations

for our data recovery approach.

A. Real World Sensor Network Projects

1) The Intel Indoor Project: Intel Indoor project [14] was

carried by the Intel Berkeley Research Lab between February

28th and April 5th, 2004. In the project, 54 nodes were

deployed in the room, which can collect sensory data such

as humidity, temperature, light and voltage once every 31

seconds. Data was collected using the TinyDB in-network

query processing system, built on the TinyOS platform.
2) The GreenOrbs Project: The GreenOrbs [20] project

aims at all-year round ecological surveillance in the forest,

collecting sensory data such as temperature, humidity and light

illumination, and content of carbon dioxide.

GreenOrbs employs the TelosB nodes with a MSP430 pro-

cessor and CC2420 transceiver. The software on the GreenOrb-

s nodes is developed on the basis of TinyOS 2.1.

The project started at the year of 2008. Ever since then,

GreenOrbs has experienced a number of deployments at dif-

ferent places, with different scales, and for different duration.

Currently, over 1000 nodes are deployed.

B. Data Sets

To reveal inter and intra features among attributes, it is in

need to make observations on complete data sets. And integrat-

ed data sets are also required for evaluating the performance

of our approach. So the integrality of data sets is important in

this paper.

The original data sets are gathered from two projects,

GreenOrbs [20] and Intel Indoor [14]. After investigating the

raw data, the loss rates of these two data sets are 35% and

23%, respectively. In order to obtain the data sets as the ground

truth, two small but completed data sets are selected as shown

in Table.I. The selection method is shown in Fig.1, which

considers the maximization of the integrality in both time

and space. Each data set contains subsets of two attributes:

temperature and light illumination, both of which share the

same selecting entries.

C. Spatial Joint-Sparse Feature

The spatial correlation is already revealed in our recent work

[18]. Here, we study the spatial correlation of sensory data in

WSNs further. It is known that environments are often smooth

in a small area, which leads to the face that the readings

of nearby sensors are close. Hence, we mine the inherent

structure or redundancy of sensory vectors gathered by nodes

nearby.

According to [18], sensory vectors are approximately sparse

under the wavelet field and the Discrete Cosine Transform

(DCT) field. In this paper, DCT is used as the basis for

exploiting sparsity.

To environment data of an attribute, denoted as x ∈ R
N×T ,

consider several nodes, which are neighbors of a center node in

a r-radius circle. The attribute vectors gathered by these nodes

are represented as x(a1), ...,x(an), where 1 ≤ a1, · · · , an ≤
N are indices of these neighbors. Since the spatial correlation

is revealed, it is resonable to decompose them under the DCT

basis as following,

x(aj) = Ψθc +Ψθ(aj). (5)

where Ψ is the DCT basis, θc ∈ R
T and θ(aj) ∈ R

T , ∀aj .
The decomposition can be made by using the compressive

sensing method. Firstly, integrate Eqn.(5) of all aj , as,

⎡
⎢⎣
x(a1)

...

x(an)

⎤
⎥⎦ =
⎡
⎢⎣
Ψ Ψ · · · 0
...

...
. . .

...

Ψ 0 · · · Ψ

⎤
⎥⎦

⎡
⎢⎢⎢⎣
θc
θ(a1)

...

θ(an)

⎤
⎥⎥⎥⎦ , (6)

which is represented simply as y = Mθ. Secondly, solve the

l1-norm normalization problem, i.e., min ||θ||1, s.t. y =Mθ.
Thirdly, obtain θc and all θ(aj) from θ.

After the decomposition, ||θc||1/(||θc||1 + ||θ(aj)||1) are

calculated. As shown in Fig.2(a) and Fig.2(b), θc contains

the main part of x(aj) under the basis Ψ to data sets of

indoor/outdoor temperature and light illumination. It is also

observed that θc and all θ(aj) are sparse. Hence the spatial

joint-sparse feature of sensory data is revealed.

D. Temporal Joint-Sparse Feature

The temporal stability feature is also revealed in [18]. And

the inter-node temporal correlation leads to the sparsity of

sensory vectors under the DCT basis. However, the paper [18]
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Fig. 2. The decomposition in the DCT basis for real sensory data sets.

only talks about the inter-node temporal correlation feature of

sensory vectors.

In this paper, we mine the inter-attribute temporal joint-

spare feature. The relationship usually exists among natural

attributes. For instance, the empirical study [19] reveals that

temperature, dewpoint temperature and relative humidity have

linear correlation under some special cases. Intuitively, light

illumination and temperature have the same trend of change

in outdoor environment. Such a trend may be not clear in the

time field but can be reflected in other fields. Hence, we try

to mine the feature of attributes under the DCT field by using

decomposition.

Consider x(i) ∈ R
T , 1 ≤ i ≤ K, which are sensory

vectors of different attributes gathered by a given node. After

the process of normalization, decompose them under the DCT

field as following,

x(i) = Ψϑc +Ψϑ(i), 1 ≤ i ≤ K. (7)

where ϑc, ϑ(i) ∈ R
T .

During the observation of ϑ(1), · · · , ϑ(K) and ϑc, we find

that (1) all of them are sparse and (2) ||ϑc||2 is far larger than

any ||ϑ(i)||2, 1 ≤ i ≤ K, which means that sensory vectors of

different attributes share a common part under the DCT basis

as shown in Fig.2(c). Since all vectors are obtained from the

time field, we can say that the temporal joint-spare feature

exists in multiple attribute scenario.

V. OUR APPROACH

To address the SDR problem, we propose a novel relative

data estimation approach named Joint-Sparse Sensory Data
Recovery (JSSDR), which is designed to jointly recover the

attributes in a WSN.

We propose the approach in the single attribute scenario

first, and then in the multiple attributes scenario.

A. Single Attribute Scenario

1) Compressive Sensing: Assume that x(n) is k-sparse

under the basis Ψ and the following condition holds, i.e.,

T ≥ c · μ2(A(n),Ψ) · k · logT, (8)

where c is a positive constant value and μ(Φ,Ψ) is a metric

measuring the largest correlation between any two elements

of Φ and Ψ, which is defined as following,

μ(Φ,Ψ) =
√
T · max

1≤i,j≤T
|〈φi, ψj〉|, (9)

where 〈·, ·〉 is the inner product operator. According to the

compressive sensing theory, x(n) can be recovered by solving

an l1-norm normalization problem, i.e.,

min ||θ(n)||1 (10)

s.t. s(n) = A(n)Ψθ(n),

x̂(n) = Ψθ(n),

∀n, 1 ≤ n ≤ N,
where x̂(n) is the evaluation of x(n), and ||·||1 is the l1 norm.

Further, to avoid the overfitting problem, Eqn.(10) is relaxed

as following.

min ||θ(n)||1 (11)

s.t. ||s(n)−A(n)Ψθ(n)||2 < ε,
x̂(n) = Ψθ(n),

∀n, 1 ≤ n ≤ N,
where ε is a predefined threshold and || · ||2 is the l2 norm,

e.g., for x = (x1, · · · , xn), the l2 norm is defined as ||x||2 =√∑n
i=1 x

2
i .

2) Spatial Joint Sparse Recovery: Eqn.(11) can be solved

by compressive sensing. As the spatial joint-sparse feature is

revealed, our approach is designed to benefit from this feature.

Suppose x(a1), · · · ,x(an), 1 ≤ a1, · · · , an ≤ N are

vectors in a r-radius circle, whose values are close. Hence,

because of the spatial joint-sparse feature, it is reasonable to

assume that x̂(a1), · · · , x̂(an) satisfy the same feature and

they can be decomposed under the basis Ψ into a common

part and individual parts, i.e.,

x̂(aj) = Ψθc +Ψθ(aj), 1 ≤ a1, · · · , an ≤ N, (12)

where θ(a1), ..., θ(an) and θc are sparse vectors under the

basis Ψ.

370



5

Algorithm 1 JSSDR for the single attribute scenario

Input:
x: sensory data
A: sample matrix
P: positions of nodes
r: radius of neighbor circle

Output:
x̂: estimated environment data

Notation:
Nr(n): a set of neighbors of the nth node
�Nr(n): the number of neighbors of the nth node
SolveLasso: the least angle regressio[9] solver
Main Procedure:

1: for n ∈ 1 to N do
2: bn = �Nr(n);
3: y ← Eqn.(13)
4: M← Eqn.(13)
5: θ = SolveLasso(y,M)
6: x̂n(n) ← Eqn.(14)
7: for i ∈ Nr(n) do
8: x̂n(i) ← Eqn.(14)
9: end for

10: end for
11: for n ∈ 1 to N do
12: x̂(n) ← Eqn.(15)
13: end for
14: return x̂

Then, to Eqn.(11) in a1, · · · , an, integrate them as,

⎡
⎢⎣
s(a1)

...

s(an)

⎤
⎥⎦ =
⎡
⎢⎣
A(a1)Ψ A(a1)Ψ · · · 0

...
...

. . .
...

A(an)Ψ 0 · · · A(an)Ψ

⎤
⎥⎦

⎡
⎢⎢⎢⎣
θc
θ(a1)

...

θ(an)

⎤
⎥⎥⎥⎦ ,

(13)

which is represented as y =Mθ, for simplicity.

x(a1), · · · ,x(an) is able to be recovered by solving the

following minimization problem,

min ||θ||1 (14)

s.t. ||y −Mθ||2 < ε,
x̂(ai) = Ψ(θc + θ(aj)),

θ = [θTc , θ(a1)
T , · · · , θ(an)T ]T

1 ≤ a1, · · · , an ≤ N

3) Weighted Average of multiple calculations: If a node i
is involved in m r-radius circles, x̂(i) will be calculated by m
times. Here, a weighted average method is proposed to obtain

x̂(i).

Suppose each r-radius circle contains bj nodes, then

x̂(i) =

∑m
j=1 bj · x̂j(i)∑m

j=1 bj
(15)

where x̂j(i) is the evaluation of x(i) in the jth circle.

The detail of the approach in the single attribute scenario

is shown in Alg.1.

B. Multiple Attributes Scenario

1) Normalization: : Because attributes are in different di-

mensions, the process of normalization is required to ensure

that all vectors are in the same dimension. The process is in

need of the maximum value of each vector, i.e., max(x(i, n)).
But the real maximum value is possible to loss, hence we

adopt the maximum value in gathered vectors instead, i.e.,
max(s(i, n)) is used on the normalization for 1 ≤ i ≤ K.

This process is based on the observation that the natural

attributes changes gradually. In other words, the gap between

maximum values of the observed matrix and the original ma-

trix is small compared with the magnitude, i.e., for 1 ≤ i ≤ K
max(x(i, n))−max(s(i, n))	 max(x(i, n)) (16)

.

2) Temporal and Spatial Joint Sparse Recovery: After

the process of normalization, all vectors are in the same

dimension. Since we find the temporal joint-sparse feature of

vectors among attributes, the estimation approach can benefit

from this feature.

Suppose sensory vectors of K different attributes in a r-
radius circle, represented as x(i, a1), ...,x(i, an), where 1 ≤
i ≤ K. Because of both the temporal and spatial joint-sparse

feature, x(i, n) can be decomposed according to Eqn.(5) and

Eqn.(7), i.e.,

x(i, n) = ϑ+ θi + δ(i, n), 1 ≤ i ≤ K (17)

where ϑ is the inter-attributes common component, θi is the

inter-node common component and δ(i, n) is the individual

component.

Similarly, it is reasonable to assume that x̂(i, n) satisfies

Eqn.(17). Hence, the decomposition is used in our estimation

approach in multiple attributes scenario.

Consider the integrated matrix as following,

Y =Mη (18)

where M is defined as following,

⎡
⎢⎣
A(a1)Ψ A(a1)Ψ · · · 0 A(a1)Ψ · · · 0

...
...

. . .
...

. . .
...

A(an)Ψ 0 · · · A(an)Ψ 0 · · · A(an)Ψ

⎤
⎥⎦ ,

(19)

and

y = [s(1, a1)
T , ..., s(1, a1)

T , · · · , s(K, a1)
T , · · · , s(K, an)

T ]T

(20)

as well as

η = [ϑT , θT1 , ..., θ
T
K , δ(1, a1)

T , ..., δ(K, an)
T ]T (21)

Eqn.(18) can be solved like Eqn.(14). For calculations in

different r-radius circles, the weighted average process is still

used to obtain x(i, n).

The pseeudo-code of the approach in the multiple attributes

scenario is presented in Alg.2.
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C. Complexity Analysis

In JSSDR, the main operation is the joint-sparse recovery.

The normalization and weighted average calculating opera-

tions are both in the complexity of O(N), which are negligible

compared with the one of the joint-sparse recovery operation.

Hence the complexity of our approach depends on two issues,

i.e.,
1) the complexity of the method for solving l1-norm min-

imization problem.

2) the network topology of the environment where the

sensors deployed.

For example, suppose the complexity of solving an l1-norm

minimization problem is f(p, q) where p is the number of

measurements and q is the size of the spare vector, each node

is involved by m r-radius circles and each circle contains z
nodes in average. Then in the single attribute scenario, the

number of the l1-norm minimization problems is N ·m, so that

the average complexity of JSSDR is N ·m ·f(z ·T, (z+1) ·T ).
Similarly, the complexity is K ·N ·m·f(z ·K ·T, (z ·K+1)·T )
in the multiple attributes scenario.

If the least angle regression [9], whose complexity is O(p3+
qp2) in average, where p is the number of measurements and

q is the size of the spare vector, is used in solving l1-norm

minimization problems, the complexity will be O(T 3) in both

scenarios because N,K,m, z 	 T . In this paper, the least

angle regression [9] method is adopted to solve all the l1-norm

minimization problems.

VI. PERFORMANCE EVALUATION

A. Compared Methods

Lots of works have contributed in missing data interpolation.

1) K-Nearest Neighbors (KNN) method: The most classic

interpolation method is K-Nearest Neighbors (KNN) [7]. Sim-

ple nearest neighbors uses the nearest neighbor for missing

value interpolation. KNN extends this by using a weighted

average of the k nearest-neighbors’ values. The KNN perform

well in common situations where a moderate number of values

are missing. As loss rate grows, the estimation error increases

quickly due to the lack of one-hop neighbors.

2) ESTI-CS: Compressive Sensing (CS) [8][5] is currently

an advanced and powerful technique for estimating massive

missing data.

Originally, the goal of CS is to recover a signal x ∈ R
m

from random measurements b = Ax, where A ∈ R
n×m and

n 	 m. This problem is ill posed in general and has many

solutions. The basic idea of CS is to seek the sparsest solution.

A condition that x is sparse under a given basis P is required.

Then in CS, the problem becomes

ŝ = argmin ||s||1 s.t. b = APs (22)

where || · ||1 is the l1-norm. The recovered signal is x̂ = P ŝ.
There are a series of CS based solutions being used in

different fields, e.g., Beyesian Compressive Sensing [15],

Kalman Filtered Compressive Sensing [26] and Multi-Task

Algorithm 2 JSSDR for the multiple attributes scenario

Input:
x: sensory data
A: sample matrix
P: positions of nodes
r: radius of neighbor circle

Output:
x̂: estimated environment data

Notation:
Nr(n): a set of neighbors of the nth node
�Nr(n): the number of neighbors of the nth node
SolveLasso: the least angle regressio[9] solver
Main Procedure:

1: for n ∈ 1 to N do
2: for k ∈ 1 to K do
3: s(k, n) = s(k, n)/max(s(k, n))
4: end for
5: bn = �Nr(n)
6: y ← Eqn.(20)
7: M← Eqn.(19)
8: η = SolveLasso(y,M)
9: for k ∈ 1 to K do

10: x̂n(k, n) ← Eqn.(21)
11: x̂n(k, n) = x̂n(k, n) ∗max(s(k, n))
12: end for
13: for i ∈ Nr(n) do
14: for k ∈ 1 to K do
15: x̂n(k, i) ← Eqn.(21)
16: x̂n(k, i) = x̂n(k, i) ∗max(s(k, i))
17: end for
18: end for
19: end for
20: for n ∈ 1 to N do
21: for k ∈ 1 to K do
22: x̂(k, n) ← Eqn.(15)
23: end for
24: end for
25: return x̂

Compressive Sensing (MTCS) [16] are utilized in the fields

of signal processing and image processing.

The state-of-the-art CS based interpolation method utilized

in the field of WSNs is ESTI-CS [18]. ESTI-CS exploits the

low-rank feature and spatial-temporal feature from the sensory

data against the special loss patterns of WSNs.

B. Methodology

Performance evaluation is based on real data driven simu-

lation.

1) Ground Truth: The real data including the temperature

and light attributes from GreenOrbs and Intel Indoor projects.

In Sec.IV-B, we have presented the method to obtain the

ground truth from raw data in detail.

2) Metric: To compare results evaluated from different

data sets, the error rate of approximation under the l2 norm,

err(x, x̂), is applied [18][25], which is defined as:

err(x, x̂) =
||x̂− x||22
||x||22

. (23)
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Fig. 3. The accuracy of missing value estimation methods.

3) Procedure: The procedure of simulation is as following.

Firstly, actively lose the data from the ground truth to simu-

late the gathered data in WSNs. Generate A randomly. The

quantity of data loss is from 20% to 90%. And using data

sets of two physical attributes, compute s. Secondly, s and A
serve as the inputs of the estimation algorithms, i.e., KNN,

ESTI-CS and JSSDR. Finally, Compare the performance of

the algorithms on the error rate defined by Eqn.(23).

C. Simulation Results

In Fig.3, we plot the comparison result of three algorithms in

the case of two attributes. According to the simulation, JSSDR

can obtain less than 5% error rate under the loss rate less

than 60%, where ESTI-CS can provide 10% and KNN is far

weaker. Even in high loss rate (80%), the error rate of JSSDR

is still less than 10%. The main reason is that JSSDR uses

the correlation between two attributes. Hence, the accuracy of

estimating missing values increases if the correlation exists.

And even there are no relation between two data sets, the

performance of JSSDR is as equal as ESTI-CS.

The recovery accuracy of the temperature is higher than

the one of the light illumination. The main reason is that the

temperature in outdoor WSNs changes slowly and has small

amplitude, which leads to its strong time and space stabilities

benefiting estimation methods. While the accuracy of light

illumination in GreenOrbs is a little weak, the reason is that

light illumination varies considerably in nature.

As shown in Fig.3, the estimation performance of KNN is

barely satisfactory and reduces quickly as the increasing of

data loss rate. The possible reason is that the massive data

loss in WSNs veils the time and spatial correlations between

attributes. Hence the interpolation methods can not benefit well

from these features.

Totally, JSSDR outperforms ESTI-CS and KNN in random

loss pattern, whatever the correlation between attributes exists

or not.

VII. CONCLUSION

We investigated the sensory data recovery (SDR) problem

of WSNs in this paper. We observed environmental data sets

from real projects, i.e., Intel indoor and GreenOrbs. The

inter-node spatial joint-sparse feature and the intra-attribute

temporal joint-sparse feature were revealed. After making such

observations, we are enlightened and designed the JSSDR

algorithm to estimate the missing values. The algorithm is

extended from the basic compressive sensing method and can

benefit from both the inner and intra correlations of attributes.

It turns out that JSSDR outperforms existing interpolation
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methods under the test of data-driven simulations.

The future works are as following. First, considering the

integrity of the environment sensory data and developing better

estimating approach. Second, improving the time and space

complexity of our approach. Third, generalizing the multiple

attributes data reconstruction to more fields.
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