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Abstract. In this paper we investigate the exact optimization of BDDs
with respect to path-related objective functions. We aim at a deeper
understanding of the computational effort of exact methods targeting
the new objective functions. This is achieved by an approach based on
Dynamic Programming which generalizes the framework of Friedman
and Supowit. A prime reason for the computational complexity can be
identified using this framework.
For the first time, experimental results give the minimal expected path
length of BDDs for benchmark functions. They have been obtained by
an exact Branch&Bound method which can be derived from the general
framework. The exact solutions are used to evaluate a heuristic ap-
proach. Apart from a few exceptions, the results prove the high quality
of the heuristic solutions.

1 Introduction

Reduced ordered Binary Decision Diagrams (BDDs) were introduced in [6] and
are well-known from logic synthesis and hardware verification.

Run time and space requirement of BDD-based algorithms depend on the
size of the BDD. However, this size is very sensitive to a chosen variable ordering
[6]. In general, determining an optimal variable ordering is a difficult problem.
It has been shown that it is NP-complete to decide whether the number of
nodes of a given BDD can be improved by variable reordering [4]. Therefore,
heuristic methods have been proposed, based on structural information or on
dynamic reconstruction [23]. Evaluation of heuristic solutions showed that they
are often far away from the best known solution. Consequently, for applications
like logic synthesis using multiplexor-based BDD circuits exact methods are
also required: here a reduction in the number of BDD nodes directly transfers
to a smaller chip area. Moreover, exact methods can provide the basis for the
evaluation of heuristics.

Similar questions arise for alternative, path-related objective functions. The
optimization with respect to the number of paths in a BDD has been studied in
[14]: the number of paths in a circuit derived from a BDD corresponds to the
number of paths in the BDD. It is proportional to the number of faults under the
path delay fault model. Hence minimizing the number of paths can significantly
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reduce the time for testing BDD circuits [10]. It also can be used for minimizing
Disjoint-Sum-Of-Products (DSOPs) which are used in the calculation of spectra
of Boolean functions or as starting point for the minimization of Exclusive-
Sum-Of-Products (ESOPs): in a BDD for a Boolean function f , each path to
the 1-terminal corresponds to a (partial) assignment to the variables, i.e. to
a product of the literals of f . The products derived from different paths are
disjoint. Collecting them in a sum yields a DSOP. Another field of application
is Boolean satisfiability (SAT): the number of paths in BDDs is related to
the number of backtracks of a SAT-solving procedure [22]. Optimization can
support concepts to integrate SAT and BDDs. The optimization with respect to
the Expected Path Length (EPL) has e.g. been studied in [20, 12]. It is motivated
by the reduction of the time needed to evaluate many test vectors with a BDD
in functional simulation, e.g. [19, 18]. Minimization of EPL as well as of the
Maximal Path Length (MPL) in BDDs is also motivated by logic synthesis:
first, every variable missing in a path of the BDD corresponds to a don’t care.
Thus shortening the EPL can help providing don’t care values for minimization.
Second, the longest path in the BDD corresponds to the critical path in a
derived circuit. Hence minimization with respect to MPL/EPL is expected to
support synthesis approaches targeting the delay of the resulting circuits. The
minimization of MPL has been studied in [12, 21].

To evaluate the quality of heuristic results, again a comparison with ex-
act solutions is of great help. In this paper a new exact EPL minimization
algorithm is given and the computational hardness of the remaining exact opti-
mization problems is analyzed. For that purpose a known approach to sequenc-
ing optimization problems [2, 3, 16] based on Dynamic Programming (DP) is
generalized. This is done by replacing the previously used sufficient condition
by a weaker sufficient and necessary condition. In this sense, a least restric-
tive framework is obtained. Next, this framework is used as a formal tool to
analyze the given problems. The problems of exact BDD node minimization
as well as of EPL-minimization can be solved with DP-based approaches for
Branch&Bound (B&B) derived by this framework. However, the problems of
minimizing the number of paths in BDDs and of MPL-minimization can not be
solved even with the new conditions. A prime reason for this can be identified,
the violation of Bellmann’s principle [1].

Experiments show that, apart from a few exceptions, the results of a recent
heuristic approach to minimize the EPL in BDDs [12] are of the same quality
as exact solutions.

2 Preliminaries

In this section, basic notations and definitions are given.
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(a) An α-minimal ordering (see
Sec. 2.3) for {x1, x2, x3}.
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(b) A suboptimal ordering for
{x1, x2, x3}.

Fig. 1. Two BDDs for f1 = x1 · x2 + x1 · x3 and f2 = x1 · x2 + x2 · x4.

2.1 BDDs

Reduced ordered Binary Decision Diagrams (BDDs) are directed acyclic graphs
(DAGs) where a Shannon decomposition

f = xifxi + xifxi
(1 ≤ i ≤ n)

is carried out with each node. Nodes v are labeled with variables in Xn =
{x1, . . . , xn} (denoted by var(v)), edges are 1- or 0-edges, leading to one of the
two child nodes denoted then(v) and else(v). The variables are bound to values
in B := {0, 1}. They are encountered at most once and in the same order,
the “variable ordering” denoted π, on every path from the root to one of the
two terminal nodes 1 and 0. For this reason the nodes can be partitioned into
n levels, each of which contains the nodes labeled with one particular variable.
If this is the first variable in the ordering, the level is called the first level, etc.
For 1 ≤ k ≤ n, the level is called the kth level if the variable is π[k]. Formally,
variable orderings map level numbers to variables. The set of all orderings is
denoted Π. For a BDD F , a prefix π, i.e. πF , expresses that F respects the
ordering π. The term nodes(F, xi) denotes the set of nodes labeled with xi (the
“xi-level” of F ) and label(F, xi) abbreviates |nodes(F, xi)|.

Note that reduced diagrams are considered, derived by removing redundant
nodes and merging isomorphic subgraphs. In the following we assume shared
BDDs with Complement Edges (CEs) [5] without mentioning it further (and
without using CEs in the illustrations). Note that all results reported here
directly transfer to BDDs without CEs. For examples of shared BDDs, see
Fig. 1 (for now, the additional annotations can be disregarded, they will become
important in Section 7), for more details see [6].

For a BDD F over Xn representing a Boolean function F , let c(F, k) denote
the set of nodes in levels below the kth level of F (including the terminal



nodes) that are either externally referenced (i.e. they represent user functions)
or referenced directly from the nodes in levels 1, . . . , k of F . The set c(F, 0) is
equal to the set of externally referenced nodes (output nodes) in F . We will
also need the notation k(F, k) = c(F, k) \ {1,0}. By the definition of c, every
path starting at an output node and ending at a terminal node must traverse
a node in c(F, k). This property can be used to derive formulas that describe
path related objective functions, as is seen later in Section 5.

The nodes in c(F, k) represent the cofactors of f in the first k variables of
the ordering F respects. To denote sets of cofactors of f with respect to a set
of variables X ⊆ Xn, we use the notation cof(f, X).

2.2 Path-Related Objective Functions

Paths in a BDD start at a root node and end at a terminal node. The length of
a path is the number of inner nodes on the path. Next, path-related objective
functions are defined: the EPL of a BDD expresses the expected number of
variable tests needed to evaluate an input assignment along a path from an
output node to a terminal node. This number is determined as the average
path length under all such input assignments. For a BDD F it is denoted ε(F ).
For a BDD node v, ε(v) is the EPL of the sub-BDD rooted at v. In case of a
single-rooted BDD F , the EPL is simply the ε-value of the root node, otherwise
it is the average of the weighted1 ε-values for all output nodes. In [7], the
term Average Path Length (APL) of a BDD is used for the unweighted sum
of the EPLs of the single-rooted component BDDs forming the multi-output
BDD. Further, let ωε(v) denote the probability that an evaluation of input
assignments which starts at an output node traverses v. Other path-related
objective functions for BDDs are the number of paths and the maximal path
length: let α(v) denote the number of paths from v to a terminal node, and
let α(F ) denote the number of paths from an output node to a terminal node,
respectively. Let μ(v) denote the maximal length of a path from v to a terminal
node, and let μ(F ) denote the maximal length of a path from an output node
to a terminal node, respectively. For a node v, let ωα(v) denote the number of
paths from an output node to v and let ωμ(v) denote the maximal length of
a path from an output node to v, respectively. Further, μ via(v) denotes the
maximal length of a path via v.

2.3 Miscellaneous

For the sake of completeness, the classical objective function BDD size will
also be denoted by a Greek letter, namely ν. Sequences s are denoted using
brackets, e.g. s = 〈e1, . . . , ek〉. By s ◦ e we denote the concatenation of s with
e to 〈e1, . . . , ek, e〉. Further, let last: IRn → IR; last(x1, . . . , xn) = xn for all
x1, . . . , xn ∈ IR.

1 The weight equals the number of external references to the output node.



We also make use of the following notations: let I ⊆ Xn. Throughout the
paper, Π(I) denotes the set of all orderings whose first |I| positions constitute
I. Let cost: {F | F is a BDD}× 2Xn → IR be a cost function on BDDs, e.g. for
BDD size, cost(F, I) denotes the number of nodes in F labeled with a variable
in I and it is cost(F, Xn) = |F |. If cost(F, Xn) = κ(F ) for an objective function
κ, we have a cost function for κ. Then

min costI = min
π∈Π(I)

cost(πF, I)

denotes the minimal cost under all orderings in Π(I). In the case of a cost
function for κ, we call the ordering π leading to this minimum a κ-minimal
ordering for I. We write ΠI for the set of all κ-minimal orderings for I. Note
that min costXn = minπ∈Π κ(πF ).

3 Previous Work

To keep the paper self-contained, we briefly review previous work related to our
studies. Our analysis is founded on results from two fields of research: the first
field is sequencing optimization by DP, the second is BDD optimization. This
paper presents research in the intersection of both fields.

3.1 Sequencing Optimization

Aiming at exact optimization with reasonable run times, it is mandatory to keep
the size of the search space within sane limits: an exhaustive search essentially
would compare every single input datum to every other input datum to find
the solution. Hence, an exhaustive search requires n! operations on the data.
More mature methods manage to reduce the size of the search space to one of
only 2n states. Moreover, this space can often be pruned by B&B. Following
this general outline, the framework for exact BDD minimization [15] was based
on a more general approach to solve sequencing optimization problems [3, 16].
It makes use of Bellmann’s principle [1]:

If the (total) sequence e1, . . . , ek, . . . , en via ek is optimal then
the sub-sequence e1, . . . , ek must be optimal. Moreover, op-
timality of the overall sequence is preserved if the optimal
sub-sequence is replaced by another optimal sub-sequence over
e1, . . . , ek.

(1)

Sometimes it is useful to define the optimality of a sequence over {e1, . . . , ek}
as the cost minimality under all sequences over {e1, . . . , ek} that respect some
condition, e.g. the condition of ending with the last element ek. E.g., it is clear
that when computing the shortest path between two nodes in a finite DAG,
optimal sub-paths ending at some intermediate node must be part of a shortest
path via the intermediate node.



This principle makes it possible to base the computation of optimal solu-
tions on that of optimal partial solutions. Once partial solutions have been
calculated, they may be reused several times during the algorithm, i.e. mem-
oization can be used. A programming paradigm that is based on Bellmann’s
principle and memoization is Dynamic Programming [1]. In [3, 16], n-element
sequencing problems were solved with DP-approaches that make use of recur-
rent equations for the partial solution costs. These are derived by repeatedly
applying (1) to m-element starting sequences (1 ≤ m ≤ n) with a fixed last
element (an example will be given at the end of the section).

The tackled problems all respected the following condition:

For all k = 1, . . . , n:

– Let cost(e1, . . . , ek) =
∑k

i=1 cost(ei).
– Let cost(ek) depend only on what elements are preceding

ek (i.e. be independent of their order).

(2)

This is a sufficient condition for the validity of (1): cost(ek) is invariant un-
der all orderings for e1, . . . , ek. Hence, cost(e1, . . . , ek−1) must be minimal iff
cost(e1, . . . , ek) = cost(e1, . . . , ek−1) + cost(ek) is minimal. Hence, Bellmann’s
principle holds, and it is not necessary to construct all of the n! orders for the
n elements of the sequence.

In the following, this framework will be referred to as the framework of
Bellmann/Held/Karp. Next, as an illustrating example, it is described how this
idea has been used by Friedman and Supowit for exact node minimization [15].
In brief, the optimal variable ordering is computed iteratively by computing for
increasing k’s min costI for each k-element subset I of Xn, until k = n: then,
the BDD has a variable ordering yielding a BDD size of min costXn . This is
an optimal variable ordering.

This is done by a gradual schema of continuous minimum updates.
Let F be a BDD. Before the first step of the schema, I = ∅. Considering step

k, let I ⊆ Xn be a state which has been generated in the previous (i.e. (k−1)th)
step. I ′ is a successor state of I, generated in the kth step by transitions I −→
I ∪ {xi} =: I ′ (xi ∈ Xn \ I).2 The minimal cost and the best sequence for I ′ is
computed using the following reccurrent equation [15].

min costI′ = min
xi∈I′

[
min costI′\{xi} + label(πiF, xi)

]
(3)

where πi is a variable ordering contained in Π(I ′ \{xi}) such that πi(|I ′|) = xi.
The starting value is min cost∅ = 0.

This recurrence is based on the principle expressed in (1). The optimal order
for an |I ′|-element sub-sequence of variables is determined by minimizing over
all possible last variables xi. By (1), for every such variable the optimal sub-
sequence of the first (|I ′|−1) variables must be part of the optimal sub-sequence
2 The notation . . . =: I ′ is used for convenience. It has the same semantics as I ′ := . . .

which is that of a defining assignment.



for all |I ′| elements ending with xi (since “ending with xi” is just a special case
of “via” as stated in (1)). In essence, (1) holds as a direct consequence of the
following: the term label(πiF, xi) only depends on which variables occur before
xi in the ordering. This has been shown in [15] and is a sufficient condition
following (2).

The state space considered here is 2Xn which is of a size growing much slower
with n than n!. By the use of B&B with lower and upper bounds on BDD size,
it can be further reduced [9, 11]. But also recent approaches like the A∗-based
approach in [13] still depend on the use of such a smart state encoding.

3.2 BDD Optimization

Section 1 already gave an overview of work in this field. Our approach in part
is founded on the following previous results [12], [17].

Theorem 1. Let F be a BDD representing a Boolean function f and let v be
a node in F . Fixed probabilities are assumed for the variable assignments to
values in B. The term ωε(v) is invariant with respect to variable ordering iff a)
the function represented by v and b) the number of the v-level are preserved.

Theorem 2. Let F be a BDD with the underlying DAG (V, E). Then

ε(F ) =
∑

v∈V \{1,0}
ωε(v). (4)

4 Generalized Cost Function for Path-Related Objective
Functions

Let a function acc map series with at most n elements to IR and let it respect
the following condition:

acc(c1, . . . , ck) = acc(acc(c1, . . . , ck−1), ck) (1 ≤ k ≤ n)

Then, for I ⊆ Xn, a general form of a cost function that is appropriate for a
recursion schema is:

cost(πF, I) = acc(c1, . . . , c|I|) where

ck =
⊙

v∈Cut(πF,k)

C(v) (1 ≤ k ≤ |I|)

Since a cost function can be uniquely determined by the choices of acc,�,Cut,
and C, it is convenient to give cost functions by tuples (acc,�,Cut, C),
e.g. cost size = (

∑
,
∑

, nodes, 1). For all nodes v, the contribution is 1(v) = 1.
By this, in the kth summand of acc, only the nodes in the kth level are counted,
respectively. Depending on the choice of acc and �, more complex cost functions
can be expressed.



5 Sufficient Condition for DP-based Exact Minimization

All path-related BDD optimization problems are special sequencing problems.
This raises the question whether DP-based B&B optimization methods using
the framework of Bellmann/Held/Karp outlined in Section 3 can be found.
Assuming this framework could be used, an approach following the framework
would be promising since a B&B method for node minimization already is
known (see Section 3). For this reason it is investigated whether the sufficient
condition (2) holds for the remaining path-related objective functions ε, α, and
μ. In the course of the analysis, a new exact method for exact minimization of
the EPL in BDDs is derived from this framework.

Expected Path Length. First, the objective function ε is considered. By The-
orem 1 the following result can be deduced straightforwardly.

Lemma 1. Let F be a BDD representing f , I ⊆ Xn, k = |I|, and xi ∈ I. Then
there exists a constant c such that

∑
v∈nodes(πF,xi)

ωε(v) = c for each π ∈ Π(I)
with π(k) = xi.

Consequently, (2) is respected and (1) holds. Let F be a BDD. Analogously to
(3) we can derive the recurrence

min costI′ = min
xi∈I′

⎡
⎣min costI′\{xi} +

∑
v∈nodes(πiF,xi)

ωε(v)

⎤
⎦ (5)

where πi is a variable ordering contained in Π(I ′ \{xi}) such that πi(|I ′|) = xi.
The starting value again is min cost∅ = 0. By (4), min costXn = minπ∈Π ε(πF ).
Using (5), for increasing k’s, a DP-approach can compute min costI for each
k-element subset I of Xn, until k = n. This yields a BDD of minimal ε-value.
In Section 7, pseudo-code for the derived DP-approach will be given and it will
be discussed in more detail.

Other Path-Related Objective Functions. Next, the use of the framework of
Bellmann/Held/Karp is discussed for the other path-related objective functions.
It is clarified that the sufficient condition (2) is not respected by the objective
functions κ ∈ {α, μ}, regardless of which of the cost functions for κ known
today are used.

Let F be a BDD with an underlying DAG G = (V, E). Cost functions are
based on equations describing the contribution of a single node v to α(F ) or
μ(F ). We give the following equations describing this interrelation: let 0 ≤ k ≤
n. For α, it is

α(F ) =
∑

v∈c(F,k)

α(v) · ωα(v), (6)

α(F ) =
∑

v∈c(F,n)

ωα(v). (7)

For μ, it is



μ(F ) = max
v∈V

μ via(v), or, more specific, (8)

μ(F ) = max
v∈c(F,k)

μ via(v), (9)

and

μ(F ) = max
v∈c(F,n)

ωμ(v). (10)

For 1 ≤ k ≤ n every path from an output node to a terminal node must traverse
a node in c(F, k). Hence, e.g. in (6) the number of paths in F can be calculated
by summing up the number of paths via a node for nodes in c(F, k). For every
such node v, this number is the product of ingoing paths multiplied with the
number of outgoing paths. Altogether we have cost(v) = C(v) = α(v) · ωα(v)
for v ∈ c(F, k) and C(v) is zero for v /∈ c(F, k).

By analogous arguments it is straightforward to see that (7)-(10) hold. The
more general equations are (9) and (6). At present, no other equations describing
node contributions for the considered objective functions are known.

Theorem 3. The sufficient condition of the DP-approach of Bellmann, Held,
and Karp does not hold for any of the known cost functions for α (number of
paths in a BDD) and μ (maximal path length in a BDD). Hence, this approach
to exact minimization can not be applied here, regardless of which of the known
cost functions is used.

However, this alone does not give strong evidence that sound DP-approaches
would not exist in general: condition (2) is a sufficient but not a necessary con-
dition for the validity of Bellmann’s principle. Other sufficient conditions might
exist which guarantee that Bellmann’s principle is respected. In the next sec-
tion, a sufficient and necessary, i.e. least restrictive condition and the resulting
generalized framework is introduced.

6 Generalized Dynamic Programming Framework

In this section the following question is addressed: regarding (feasible) ap-
proaches based on DP and Bellmann’s principle, can the two problems of min-
imizing κ ∈ {α, μ} be solved? To ease the analysis, the framework of Bell-
mann/Held/Karp is generalized in this section. The sufficient condition of the
previous framework is replaced by a sufficient and necessary condition for the
validity of Bellmann’s principle. In this sense, the presented approach is least
restrictive. The new condition is operational in that it can be used to check
whether a DP procedure can be easily derived for a given minimization prob-
lem. In the next section, this generalized framework will be used to show that
Bellmann’s principle is violated for the two problems, regardless of which of the
known cost functions for the objectives are used. This means that even with
the new condition no feasible exact algorithm can be derived for α and μ.



Next, a necessary and sufficient condition is formulated which in fact is
equivalent to the principle of Bellmann (1) itself. In the new condition, the
assumptions of (2) that

– the cost of the sequences is accumulated by summation
– cost(ek) be fixed with respect to the ordering of the sub-sequence e1, . . . , ek−1

are dropped and hence the condition is less restrictive. The resulting gener-
alized framework is least restrictive in the sense that it is directly based on
this principle itself. This contrasts to the framework of Bellmann/Held/Karp
which can only be applied if a condition which is more restrictive than Bell-
mann’s principle holds for the considered optimization problem. An advantage
of the following new condition in comparison to (1) is the increased operational-
ity, i.e. it is easier to detect whether a given sequencing problem respects the
condition or not.

Theorem 4.

Let s1, s2 be two sequences (orders) of the elements in
{e1, . . . , ek−1} and let s1 be an optimal sequence. Let cost(s)

denote the cost of a sequence s. Iff both

cost(s1) = cost(s2) ⇒ cost(s1 ◦ ek) = cost(s2 ◦ ek) (11)
cost(s1) < cost(s2) ⇒ cost(s1 ◦ ek) < cost(s2 ◦ ek). (12)

hold, Bellmann’s principle as stated in (1) is respected.

Next, the recursive schema of the generalized framework for the exact BDD
minimization with respect to path-related objective functions is given, together
with sufficient and necessary conditions following (11) and (12). Thereby, we
focus on the problem of BDD optimization, giving the schema for BDDs right
away. However, note that it is straightforward to transfer the idea to (any) other
sequencing problem. For a better understanding of the next theorem notice
that the general flow of the schema is similar to the one already given in (3).
Condition 1) of the following theorem states that the node contributions must
not depend on the order of variables which are situated at levels k > |I ′|. This
is because otherwise the recurrence of the schema would not be well-defined
since it depended on future values. Although it might look a bit over-formal,
Condition 2) is just a straightforward “translation” of (11) and (12) into the
BDD context. When collecting the node contributions, the schema can choose
between two forms of a cut through the BDD as the general function Set is
used. As before, the correctness of the schema follows from Bellmann’s principle.

Theorem 5. Let κ be an objective function for BDDs and let F be a BDD.
Let xi ∈ I ′ ⊆ Xn. Let cost = (acc,�,Set, C) be a cost function for κ, where
Set is a function identifier in {nodes, c}. Further, let π∗

i ∈ ΠI′\{xi} such that
π∗

i (|I ′|) = xi.
Assume that the following conditions are respected:



1)For v ∈ Set(π∗
i F, |I ′|), C(v) does not depend on the last n− |I ′| positions in

π∗
i .

2)Let I1, I2 ⊆ Xn, xj /∈ I1, I2 = I1 ∪ {xj}, π1, π2 ∈ Π(I1) where π1(|I2|) =
π2(|I2|) = xj, and let π1 be κ-minimal for |I1|.
For shorter notation,

coll1(π1F, |I2|) :=
⊙

v∈Set(π1F,|I2|)
C(v) and

coll2(π2F, |I2|) :=
⊙

v∈Set(π2F,|I2|)
C(v).

It must be

cost(π1F, I1) = cost(π2F, I1)
⇒ acc(cost(π1F, I1), coll1(π1F, |I2|)) = acc(cost(π2F, I1), coll2(π2F, |I2|)),

cost(π1F, I1) < cost(π2F, I1)
⇒ acc(cost(π1F, I1), coll1(π1F, |I2|)) < acc(cost(π2F, I1), coll2(π2F, |I2|)).

Further, let min cost∅ = cost(F, ∅). Then the following recurrent equation for
min cost

min costI′ = min
xi∈I′

⎡
⎢⎣acc(min costI′\{xi},

⊙

v∈Set(π∗
i
F,|I′|)

C(v))

⎤
⎥⎦

holds and we have

min costXn = min
π∈Π

κ(πF ).

Further, a DP-method to compute min costXn exists. It is operating on the state
space 2Xn .

7 Hard and Feasible Instances of Path-Related
Optimization

In the following, the DP schema derived in the previous section is applied to
various problems of exact BDD minimization. First the two objective functions
α and μ are considered and it is shown that, even with the least restrictive
schema, no feasible exact algorithm can be derived for minimization of the
number of paths and of MPL. This limits the hope to find a smarter encoding
of the original (naive) search space of size O(n!). However, such encodings are
strongly desired since they break down the state space to one of a size of O(2n).



In the past state spaces of this size have been successfully handled for problem
instances of moderate size by a number of intelligent pruning techniques, based
on paradigms like DP, B&B, and A∗ [9, 11, 13].

Then it is shown that feasible DP-based approaches can be derived from
the framework for the remaining two problems, exact node minimization and
minimization of the EPL in BDDs. Moreover, the DP-based schemas are ex-
tended to B&B approaches. This is the first time that a feasible exact method
for minimization of the EPL in BDDs is presented.

Theorem 6. The conditions of Theorem 5 do not hold for any of the known
cost functions for α (number of paths in a BDD) and μ (maximal path length in
a BDD). Hence, Bellmann’s principle is violated and the approach of Theorem
5 can not be applied here, regardless of which of the known cost functions is
used.

Proof. See the Appendix.

As we concentrate on practical algorithms based on a DP formulation,
e.g. B&B or A∗, this result does not strictly imply the inexistence of expo-
nential time algorithms for Alpha and Mu. In the remainder of the section it is
shown that the schema can be applied successfully to the objective functions ν
and ε.

Theorem 7. DP-methods to minimize the objective functions ν (number of
nodes in a BDD) and ε (expected path length in a BDD) exist. They operate on
the state space 2Xn which can be further pruned by B&B.

Proof. See the Appendix.

8 Experimental Results

In this section, experimental results are presented. All algorithms have been ap-
plied to circuits of the LGSynth93 benchmark set [8]. The tested methods target
the two objective functions that allow a DP-based B&B-approach following the
framework presented in this paper. This includes the exact B&B method for
EPL minimization outlined in Section 7 after Theorem 73 (called εXact) as
well as the approach to EPL-sifting described in [12]. For a comparison in run
time and since we were also interested in the EPL of BDDs which have been
minimized with respect to the number of nodes, also the best B&B method for
exact node minimization called JANUS [11] has been applied.

To put up a testing environment, all algorithms have been integrated into
the CUDD package [24]. By this it is guaranteed that they run in the same
3 Instead of (15) only min costI has been used as a lower bound since otherwise the

extra effort of computing the lower bound exceeded the gain in run time for all but
the smallest benchmark functions.



system environment. A system with an Athlon processor running at 2.2 GHz,
with a main memory of 512 MByte and a run time limit of 36,000 CPU seconds
has been used for the experiments.

In a series of experiments, all methods have been applied to the benchmark
functions given in Table 1. In the first column the name of the function is given.
Column in (out) gives the number of inputs (outputs) of a function. The next
two columns time and space give the run time in CPU seconds and the space
requirement in MByte for the approach JANUS, respectively. The next column
opt. # shows the minimal numbers of nodes for a BDD representing the re-
spective function. Column ε gives the EPL for the respective BDD of minimum
size. In the next two columns the same quantities run time and space require-
ment are given for the method εXact, respectively. The next column opt. ε
gives the optimum ε-value for a BDD representing the respective benchmark
function. The next two columns show the run time and the space requirement
for the approach to EPL-sifting. The last column ε̂ gives the heuristic ε-value
as determined by EPL-sifting, respectively.

The results show that the run times of εXact are generally larger than
that of the exact node minimization method JANUS. There are two reasons for
that: the BDDs created in intermediate steps during operation of εXact can
be significantly larger than those in the size-driven method JANUS. Moreover,
εXact needs to maintain an additional node attribute (the ωε-value) with time-
consuming hash table accesses during variable swap operations.

Since the results of an exact approach to EPL-minimization are given, this
allows for the evaluation of the previous heuristic approach called EPL-sifting
which shows that it performs much faster (up to five orders of magnitude). Most
of the time it achieves almost optimal results. However, it can also be observed
that the results obtained by εXact show an improvement in the ε-value of
9.6% on average. In some cases (see comp, sct, cordic, t481, and vda) the gain
is significant and it can be more than 50% (see comp).

9 Conclusions

The exact optimization of BDDs with respect to path-related objective func-
tions has been investigated. First, formal results have been given which show
that these functions can be very sensitive to a chosen variable ordering. Sec-
ond, a generalization of the framework of Bellmann/Held/Karp yielded deeper
understanding of the reasons why it is hard to minimize BDDs with respect to
the number of paths or to the maximum path length.

On the other hand we successfully derived a new exact algorithm for the
expected path length in BDDs. It is a DP-based B&B method that can be
obtained by the general framework.

Experimental results showed the feasibility of the exact approach. For the
first time it became possible to evaluate a heuristic approach to EPL minimiza-
tion.



Table 1. Results for expected path length

name in out JANUS εXact EPL-sifting
time space opt. # ε time space opt. ε time space ε̂

cc 21 20 81s 36M 46 2.08 939s 50M 1.78 0.03s <1M 1.78
cm150a 21 1 277s 37M 33 3.50 785s 23M 3.50 0.03s <1M 3.50
cm163a 16 5 0.9s <1M 26 2.34 4.5s <1M 2.34 0.03s <1M 2.34
cmb 16 4 0.3s <1M 28 2.00 0.2s <1M 2.00 0.03s <1M 2.00
comp 32 3 3287s 130M 95 17.33 9419s 108M 4.00 0.13s <1M 9.28
cordic 23 2 1.9s <1M 42 8.92 50s 2M 4.73 0.03s <1M 6.28
cps 24 102 2359s 61M 971 2.84 26335s 96M 2.31 0.10s <1M 2.31
i1 25 16 20s 10M 36 1.76 232s 23M 1.72 0.03s <1M 1.72
lal 26 19 450s 79M 67 2.73 10023s 310M 2.06 0.03s <1M 2.08
mux 21 1 278s 36M 33 3.50 786s 22M 3.50 0.03s <1M 3.50
pcle 19 9 5.2s 3M 42 3.00 169s 10M 2.50 0.03s <1M 2.50
pm1 16 13 0.6s <1M 40 2.16 1.6s <1M 1.74 0.03s <1M 1.75
s208.1 18 9 5.3s 2M 41 3.29 177s 10M 2.69 0.03s <1M 2.69
s298 17 20 8.7s 3M 74 2.14 59s 5M 2.10 0.03s <1M 2.10
s344 24 26 847s 111M 104 2.24 24872s 347M 2.22 0.03s <1M 2.22
s349 24 26 851s 111M 104 2.24 24932s 347M 2.22 0.03s <1M 2.22
s382 24 27 416s 75M 119 3.02 14831s 347M 2.15 0.04s <1M 2.16
s400 24 27 413s 75M 119 3.02 14793s 347M 2.15 0.03s <1M 2.16
s444 24 27 462s 82M 119 3.02 14637s 347M 2.15 0.04s <1M 2.19
s526 24 27 833s 111M 113 2.41 16755s 347M 2.21 0.04s <1M 2.21
s820 23 24 1080s 59M 220 2.60 9374s 93M 2.54 0.04s <1M 2.54
s832 23 24 1127s 59M 220 2.60 9660s 93M 2.54 0.04s <1M 2.55
sct 19 15 6s 3M 48 2.94 191s 10M 2.25 0.03s <1M 2.36
t481 16 1 0.4s <1M 21 9.00 4.5s <1M 8.25 0.03s <1M 9.00
tcon 17 16 0.6s <1M 25 1.50 25s 5M 1.50 0.03s <1M 1.50
ttt2 24 21 521s 82M 107 2.83 16189s 347M 2.55 0.03s <1M 2.55
vda 17 39 30s 3M 478 4.51 512s 6M 4.39 0.05s <1M 4.43

Appendix

Proof of Theorem 6.
Minimization of Number of Paths: The node contribution must be based on

the cost function in (7), as all other equations define node contributions which
depend on the lower part of the BDD (and thus this would violate Condition
1)). Consequently, the only choice for the cost function that respects Condition
1) is

cost = (last,
∑

, c, ωα)

First, clearly ωα(v) does not depend on the part of the ordering after the posi-
tion of var(v), thus Condition 1) is respected. Second, for a BDD πF , it is

cost(πF, Xn) = last(. . . ,
∑

v∈c(πF,n)

ωα(v))



= α(πF ).

because of (7). We can choose an arbitrary value as the starting value of the
recursion because the accumulation function is the function last. This yields
the recurrence:

min costI′ = min
xi∈I′

⎡
⎣ ∑

v∈c(π∗
i
F,|I′|)

ωα(v)

⎤
⎦ (13)

where π∗
i ∈ ΠI′\{xi} such that π∗

i (|I ′|) = xi is derived. Note that the equa-
tion is recurrent although no terms min costI′\{xi} do occur since π∗

i results
from previous steps. In particular notice that the first condition of the general
recursion schema already forces these choices.

Next the validity of the second condition is disproven by giving a counter-
example (see Fig. 1). It shows that Condition 2) may be violated.

In Fig. 1(a), the horizontal lines cut through the edges after the third and
the fourth level. The nodes of the set c(F, 3) are exactly the nodes with cut
edges pointing to them. The depicted ordering π1 = x1, x2, x3, x4 for a BDD
π1F is α-minimal for I = {x1, x2, x3}. This can be seen by inspecting all 3! = 6
possible permutations of I. We have costα(π1F, I) = 8. In Fig. 1(b), the ordering
π2 = x2, x1, x3, x4 for a BDD π2F representing the same function causes a cost
of 9 for I. Now let I ′ = {x1, x2, x3, x4}. It is costα(π1F, I ′) = costα(π2F, I ′) =
10, i.e. a suboptimal sub-ordering does not lead to higher “future” costs. This
violates the second implication of Condition 2).

Minimization of Maximal Path Length: The consideration is analogous to
that for the number of paths, essentially just

∑
is replaced by max and ωα is

replaced by ωμ.
Again a counter-example shows that Condition 2) may be violated (the other

condition again holds), see Fig. 2. In Fig. 2(a) the ordering π1 = x1, x2, x3 for a
BDD π1F is μ-minimal for I = {x1, x2}: since the function essentially depends
on x1, x2, at least one path going through two nodes, one labeled x1, the other
x2, must exist. This path is of minimal length 2. The ordering x2, x1, x3 in
Fig. 2(b) for a BDD π2F representing the same function also causes a cost for
I of 2. However, the cost for I = {x1, x2, x3} is 3, whereas it is only 2 in the
BDD π1F . This violates the first implication of Condition 2). �
Proof of Theorem 7.

The cost function for the number of nodes is cost = (
∑

,
∑

, nodes, 1) (see
Section 4), for the expected path length it is cost = (

∑
,
∑

, nodes, ωε). In both
cases the term min cost∅ = 0 is the starting value of the recursion and it is
trivial to show that Conditions 1) and 2) are respected. Hence e.g. min costXn =
minπ∈Π |πF |.

By that, essentially the same schemas as in (3) and (5) are obtained (with
the minor specialization that πi is chosen as π∗

i ). Both DP-approaches can be
turned into B&B methods by the use of lower bounds. In [9], the lower bound
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Fig. 2. Two BDDs for f = x1 · x2 + x1 · x3.

l b = min costI + max{|k(F, |I|)| , n − |I|} + 1 (14)

has been proposed. The idea of (14) also directly transfers to EPL-minimization.
Here, it is possible to use the lower bound

l b = min costI +
∑

v∈k(F,|I|)
ωε(v). (15)

At the end of a step of the outlined DP-approach, all data for a state I for which
the lower bound exceeds or equals the current upper bound (which is updated
to the minimal BDD size seen so far with every intermediate BDD constructed),
can safely be excluded from further consideration. This is because any ordering
in Π(I) must yield BDD sizes (or sums of ωε-values) larger than the smallest
BDD (the smallest sum) encountered. �
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