
Weighted Hashing for Fast Large Scale Similarity Search

Qifan Wang
Computer Science

Department
Purdue University

West Lafayette, IN 47907, US
wang868@purdue.edu

Dan Zhang
Facebook Incorporation

Menlo Park, CA 94025, US
danzhang@fb.com

Luo Si
Computer Science

Department
Purdue University

West Lafayette, IN 47907, US
lsi@purdue.edu

ABSTRACT
Similarity search, or finding approximate nearest neighbors,
is an important technique for many applications. Many
recent research demonstrate that hashing methods can
achieve promising results for large scale similarity search
due to its computational and memory efficiency. However,
most existing hashing methods treat all hashing bits equally
and the distance between data examples is calculated
as the Hamming distance between their hashing codes,
while different hashing bits may carry different amount
of information. This paper proposes a novel method,
named Weighted Hashing (WeiHash), to assign different
weights to different hashing bits. The hashing codes and
their corresponding weights are jointly learned in a unified
framework by simultaneously preserving the similarity
between data examples and balancing the variance of each
hashing bit. An iterative coordinate descent optimization
algorithm is designed to derive desired hashing codes and
weights. Extensive experiments on two large scale datasets
demonstrate the superior performance of the proposed
research over several state-of-the-art hashing methods.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval

Keywords
Hashing, Similarity Search

1. INTRODUCTION
Similarity search, also known as approximate nearest

neighbor search, has many applications such as content-
based image retrieval, similar document detection and
collaborative filtering. Many real world applications of
similarity research need to process a huge amount of data
within a high-dimensional space to answer a query. Simple
similarity search methods in the original high-dimensional

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CIKM’13, Oct. 27–Nov. 1, 2013, San Francisco, CA, USA.
Copyright 2013 ACM 978-1-4503-2263-8/13/10 ...$15.00.
http://dx.doi.org/10.1145/2505515.2507851.

space do not scale up due to the excessive cost in storage
and processing when the data size grows. Recently,
hashing methods [5, 10] have been successfully used for
approximating nearest neighbor search due to its fast query
speed and low storage cost. The basic idea of hashing is to
design compact binary codes in a low-dimensional space for
data points and preserve their similarities. More specifically,
each data point will be hashed/mapped into a compact
binary code, and similar points in the original feature space
should be hashed into close points in the binary hashing
code space. Hashing methods have become a promising and
popular choice for efficient similarity search due to its two
main advantages, reduced storage cost and fast query time.

Locality-Sensitive Hashing (LSH) [1] is one of the most
commonly used data-independent hashing methods. It
utilizes random linear projections, which are independent
of training data, to map data points from a high-
dimensional feature space to a low-dimensional binary
space. Another class of hashing methods are called data-
dependent methods, whose projection functions are learned
from training data. These data-dependent methods include
spectral hashing (SH) [10], principal component analysis
based hashing (PCAH) [4], self-taught hashing (STH) [12]
and iterative quantization (ITQ) [2]. SH learns the hashing
codes based on spectral graph partitioning and forcing
the balanced and uncorrelated constraints into the learned
codes. PCAH utilizes principal component analysis (PCA)
to learn the projection functions. STH combines an
unsupervised learning step with a supervised learning step
to learn effective hashing codes. ITQ learns an orthogonal
rotation matrix to refine the initial projection matrix learned
by PCA so that the quantization error of mapping the
data to binary codes is minimized. Compared with the
data-independent methods, these data-dependent methods
generally provide more effective hashing codes.

Hashing methods generate promising results by success-
fully addressing the storage and search efficiency challenges.
However, most existing hashing methods treat all hashing
bits equally and the similarity between data examples
is represented by the Hamming distance between their
hashing codes. But different hashing bits carry different
amount of information (e.g., [3]), where the hashing bit with
larger variance contains more information. Therefore, it is
unreasonable to use a same weight for different hashing bits.

This paper proposes a novel hashing method, named
Weighted Hashing (WeiHash), to assign different weights
on different hashing bits to capture their importance. The
hashing codes and their corresponding weights are jointly

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357541088?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

learned in a unified framework by simultaneously preserving
the similarities between data examples and balancing the
variance of each hashing bits. An iterative coordinate
descent algorithm is designed as the optimization procedure.

2. WEIGHTED HASHING
This section first states the problem setting of WeiHash.

Assume there are total n training data examples, denoted
as: XXX = {x1, x2, . . . , xn} ∈ RRRn×m, where m is the
dimensionality of the feature. The main purpose of weighted
hashing is to map these training examples to the optimal
binary hashing codes YYY = {y1, y2, . . . , yn} ∈ {−1, 1}n×k

through a hashing function f : RRRm → {−1, 1}k, such that
the similarities among data examples in original feature
space are preserved in the hashing codes with appropriate
weights assigned to hashing bits. Here k is the number of
hashing bits and yj = f(xj).

2.1 Objective Function

2.1.1 Similarity Preservation
One of the key problems in hashing methods is similarity

preserving, which indicates that similar data examples
should be mapped to similar hashing codes. Most existing
hashing methods [3, 10, 12] define the similarity between
two hashing codes accordingly to their Hamming distance.
The Hamming distance between two binary codes yi and yj
is given by the number of different bits between them, which
can be calculated as 1

4
‖yi − yj‖2. However, the Hamming

distance may not accurately represent the similarity between
two hashing codes since different hashing bits carry different
amount of information. Therefore, we propose to use the
weighted Hamming distance to capture the code similarity
as 1

4
‖w···(yi−yj)‖2, where w is a k×1 weight vector indicating

the importance of different bits and ··· is the element-wise
vector multiplication.

To measure how well the similarity between data examples
is represented by the binary hashing codes, one natural way
is to minimize the weighted Hamming distance as follow:

n∑
i,j=1

SSSij‖w ··· (yi − yj)‖2 (1)

Here, SSS is the similarity matrix which is calculated based
on the original features. To meet the similarity preservation
criterion, we seek to minimize this quantity, because it incurs
a heavy penalty if two similar examples are mapped far away.
There are many different ways to define the similarity matrix
SSS. In this paper, we adopt the local similarity due to its
nice property in many machine learning applications [9, 12].
In particular, the corresponding similarities are computed

by Gaussian functions, i.e., SSSij = e
−
‖xi−xj‖

2

σ2
ij , where σij is

determined automatically by local scaling [11].
By introducing a diagonal n× n matrix DDD, whose entries

are given by DDDii =
∑n

j=1SSSij and a diagonal k × k matrix
WWW with diagonal elements to be the weight vector w, Eqn.1
can be rewritten as:

tr
(
WWWYYY T (DDD −SSS)YYY

)
= tr

(
WWWYYY TLLLYYY

)
(2)

where LLL is the graph Laplacian and tr() is the matrix trace.
By minimizing this term, the similarity between different
data examples can be preserved in the learned hashing codes.

2.1.2 Variance-Weight Proportion Constraint
Different weights are assigned to different hashing bits in

this work to better measure the similarity between hashing
codes. This is also observed in previous research work that
different hashing bits carry different amount of information
and the hashing bit with larger variance should contain more
information. Therefore, more weight should be assigned to
the hashing bit with larger variance and we propose to follow
the proportion principle that the weight of a hashing bit
should be proportional to its variance denoted as:

wp

var(yp)
=

wq

var(yq)
∀ p, q (3)

where wp and var(yp)1 are the weight and variance of the
p-th hashing bit.

2.1.3 Orthogonality Constraint
In order to maximize the performance of the hashing

codes, many existing hashing methods [9, 10, 12] enforce
hard orthogonality constraint among hashing bits, e.g.,
1
n
YYY TYYY = III. The hard orthogonality constraint forces the

hashing bits to be uncorrelated with each other. However,
these constraints may sometimes be problematic, since most
of the variance is contained in a few top projections for
many real-world datasets. But the orthogonality constraints
often force hashing methods to choose some directions with
low variance progressively, which may substantially reduce
the effectiveness of hashing codes. Therefore, instead of
imposing hard orthogonality constraint on hashing bits, we
impose a soft orthogonality term as follows:

‖ 1

n
YYY TYYY − III‖2F (4)

where ‖‖F is the matrix Frobenius norm. The above
soft orthogonality constraint has certain tolerance to non-
orthogonality, which allows the learning approach to choose
appropriate projection directions.

2.2 Optimization Algorithm
The proposed unified framework combines the above three

components as follows:

min
Y,WY,WY,W

tr
(
WWWYYY TLLLYYY

)
+ α‖ 1

n
YYY TYYY − III‖2F

s.t. YYY ∈ {−1, 1}n×k, Y 1Y 1Y 1 = 0
∑
p

wp = 1

wp

var(yp)
=

wq

var(yq)
∀ p, q

(5)

The bit balance constraint Y 1Y 1Y 1 = 0 requires each bit to have
equal chance to be 1 or -1 and

∑
p w

p = 1 is the weight
normalization constraint.

2.2.1 Relaxation
Directly minimizing the objective function in Eqn.5 is

intractable because of the discrete constraint. Therefore,
we propose to relax this constraint and drop the bit balance
constraint Y 1Y 1Y 1 = 0 first (we will discuss the constraint later).
However, even after the relaxation, the objective function is
still difficult to optimize since YYY andWWW are coupled together
and it is non-convex with respect to YYY and WWW jointly.

1var(yp) = 1
n

∑n
j=1(ypj −mean(yp))2

We propose to use a coordinate descent algorithm [7]
for solving this relaxed optimization problem by iteratively
optimizing the objective with respect to YYY and WWW . In
particular, after initializing WWW , the relaxed problem can be
solved by doing the following two steps iteratively similar as
[8], until convergence.

Step 1: Fix WWW , optimize w.r.t. YYY :

min
YYY

tr
(
WWWYYY TLLLYYY

)
+ α‖ 1

n
YYY TYYY − III‖2F (6)

The above problem is still non-convex. However, the
objective function is differentiable with respect to YYY and
the gradient of Eqn.6 can be calculated as follows:

∂
Eqn(7)

YYY
= 2SYWSYWSYW +

4α

n
YYY (

1

n
YYY TYYY − III) (7)

With this obtained gradient, L-BFGS Quasi-Newton
method is applied to solve this optimization problem.

Step 2: Fix YYY , solve for WWW :
We can obtain the close form solution of WWW as:

wp =
var(yp)∑k
t=1 var(y

t)
(8)

where var(yp) can be directly computed from the hashing
codes YYY . By solving Eqns.6 and 8 iteratively, the optimal
values of YYY and WWW can be obtained.

2.2.2 Binarization
After obtaining the optimal solution for the relaxed

problem, we need to binarize them to obtain binary hashing
codes that satisfy the relaxed constraints. The binary
hashing codes for the training set can be obtained by
thresholding YYY . It was pointed out in [4] and [9] that
desired hashing codes should also maximize the entropy to
ensure efficiency. Following the maximum entropy principle,
a binary bit that gives balanced partitioning of the whole
dataset should provides maximum information. Therefore,
we set the threshold for binarizing the p-th bit to be the
median of yp. In particular, if p-th bit of yj is larger than
median value, ypj is set to +1, otherwise ypj is set to -1. In
this way, the binary code achieves the best balance and the
bit balance constraint Y 1Y 1Y 1 = 0 in Eqn.5 can also be satisfied.

2.2.3 Hashing Function
A linear hashing function is utilized to map data examples

to the binary hashing codes as:

yj = f(xj) = HHHxj (9)

where HHH is a k × m parameter matrix representing the
hashing function. Then the optimal hashing function can
be obtained by minimizing ‖YYY −HXHXHX‖2.

3. EXPERIMENTS

3.1 Datasets and Implementation
NUS-WIDE dataset is created by NUS lab as a benchmark

for evaluating image similarity search techniques. It contains
total 269, 648 images. 500-dimensional visual features are
extracted using a bag-of-visual-word model with local SIFT
descriptor. We randomly partition this dataset into two
parts, 268K as training data examples and around 1K
for query test. MIRFLICKR-1M dataset is collected from
Flicker images for image retrieval and similar visual concept

detection tasks. This dataset contains 1 million image
examples. 512-dimensional GIST descriptors are extracted
from these images and are used as image features for learning
the binary hashing codes. We randomly choose 990K
image examples as the training set and 10K for testing.
The parameters α and γ are tuned by cross validation
on the training set. The number of nearest neighbors is
fixed to be 7 when constructing the graph Laplacian for
all experiments. For LSH, we randomly select projections
from a Gaussian distribution with zero-mean and identity
covariance to construct the hash tables.

3.2 Evaluation Method
The search results are evaluated based on the labeled

semantic tags. If an example shares same semantic tag with
a query, it is a relevant example, otherwise it is irrelevant.
We use several metrics to measure the performance of
different methods. For evaluation with Hamming Ranking,
we calculate the precision at top k that is the percentage
of relevant neighbors among the top k returned examples,
where we set k to be 200 in the experiments. We also
utilize the precision-recall value [9] for evaluation, which is
a widely used metric in information retrieval applications.
For evaluation with Hash Lookup, all the examples within
a fixed weighted Hamming distance, r, of the query are
evaluated. In particular, following [6] and [10], a weighted
Hamming distance r = 2 is used to retrieve the neighbors in
the case of Hash Lookup. The precision of the returned
examples falling within weighted Hamming distance 2 is
reported. Note that if a query returns no points inside
the Hamming ball with weighted Hamming distance 2, it
is treated as zero precision.

3.3 Results and Discussion
The proposed WeiHash approach is compared with five

different methods, i.e., Spectral Hashing (SH) [10], PCA
Hashing (PCAH) [4], Latent Semantic Hashing (LSH) [1],
Self Taught Hashing (STH) [12] and Isotropic Hashing
(IsoHash) [3]. IsoHash is compared here due to its superior
performance over many other hashing methods such as
ITQ and KLSH. We evaluate the performance of different
methods by varying the number of hashing bits in the range
of {8, 16, 32, 64, 128}.

Two sets of experiments are conducted on each dataset
to evaluate the performance of WeiHash. In the first set
of experiments, we report the precision values for the top
200 retrieved examples in Fig.1(a)-(b). The precision values
for retrieved examples with weighted Hamming distance 2
are reported in Fig.1(c)-(d). From these comparison results,
we can see that WeiHash gives the best performance among
all hashing methods on both datasets. In Fig.1(c)-(d), the
precision values of Hash Lookup decrease significantly with
the increasing number of hashing bits. This is because
when using longer hashing bits, the Hamming space becomes
increasingly sparse and very few data points fall within the
Hamming ball with radius 2, resulting in many 0 precision
queries. However, the precision values of WeiHash are still
consistently higher than other methods.

In the second set of experiments, the precision-recall
curves with 16 and 32 hashing bits on both datasets are
reported in Fig.2. It is clear that among all of these
comparison methods, WeiHash shows the best performance.
From the reported figures, we can see that LSH does not

Figure 1: Precision results on two datasets with
different hashing bits. (a)-(b): Precision of the top
200 retrieved examples using Hamming Ranking. (c)-
(d): Precision within Hamming radius 2 using Hash
Lookup.

perform well in most cases. This is because the LSH method
is data-independent and may lead to inefficient codes in
practice. For SH and STH, although these methods try
to preserve the similarity between data examples in their
learned hashing codes, they treat each bit equally and
preserve the example similarity represented by standard
Hamming distance while our WeiHash approach assigns
different weights to different hashing bits based on their
variance to capture the importance of each bit and
the weighted Hamming distance is utilized for similarity
preservation. IsoHash achieves better performance than SH
and STH since it somehow tries to balance the variance
along different projection dimensions. However, hashing bits
are still treated equally whereas in WeiHash, the optimal
hashing codes and weights are jointly learned to achieve
better hashing performance.

4. CONCLUSION
This paper proposes a novel Weighted Hashing method

to assign different weights to different hashing bits. The
hashing codes and their corresponding weights are jointly
learned in a unified framework by simultaneously preserving
the similarities between data examples and balancing the
variance of each hashing bit. Two large scale image
datasets have been used to demonstrate the advantage of
the proposed research over several state-of-the-art hashing
methods.

5. ACKNOWLEDGMENTS
This work is partially supported by NSF research grants

IIS-0746830, CNS-1012208 and IIS-1017837. This work
is also partially supported by the Center for Science of
Information (CSoI), an NSF Science and Technology Center,
under grant agreement CCF-0939370.

Figure 2: Precision-Recall behavior on two datasets.
(a)-(b): Precision-Recall curve with 16 hashing bits.
(c)-(d): Precision-Recall curve with 32 hashing bits.

6. REFERENCES
[1] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni.

Locality-sensitive hashing scheme based on p-stable
distributions. In Symposium on Computational
Geometry, pages 253–262, 2004.

[2] Y. Gong and S. Lazebnik. Iterative quantization: A
procrustean approach to learning binary codes. In
CVPR, pages 817–824, 2011.

[3] W. Kong and W.-J. Li. Isotropic hashing. In NIPS,
pages 1655–1663. 2012.

[4] R.-S. Lin, D. A. Ross, and J. Yagnik. Spec hashing:
Similarity preserving algorithm for entropy-based
coding. In CVPR, pages 848–854, 2010.

[5] R. Salakhutdinov and G. E. Hinton. Semantic hashing.
Int. J. Approx. Reasoning, 50(7):969–978, 2009.

[6] J. Wang, S. Kumar, and S.-F. Chang. Semi-supervised
hashing for large-scale search. IEEE Trans. Pattern
Anal. Mach. Intell., 34(12):2393–2406, 2012.

[7] Q. Wang, L. Si, and D. Zhang. A discriminative
data-dependent mixture-model approach for multiple
instance learning in image classification. In ECCV (4),
pages 660–673, 2012.

[8] Q. Wang, L. Tao, and H. Di. A globally optimal
approach for 3d elastic motion estimation from stereo
sequences. In ECCV (4), pages 525–538, 2010.

[9] Q. Wang, D. Zhang, and L. Si. Semantic hashing using
tags and topic modeling. In SIGIR, pages 213–222,
2013.

[10] Y. Weiss, A. Torralba, and R. Fergus. Spectral
hashing. In NIPS, pages 1753–1760, 2008.

[11] L. Zelnik-Manor and P. Perona. Self-tuning spectral
clustering. In NIPS, 2004.

[12] D. Zhang, J. Wang, D. Cai, and J. Lu. Self-taught
hashing for fast similarity search. In SIGIR, pages
18–25, 2010.

