
Abstract

Clustered VLIW organizations are nowadays a common
trend in the design of embedded/DSP processors. In this
work we propose a novel modulo scheduling approach for
such architectures. The proposed technique performs the
cluster assignment and the instruction scheduling in a sin-
gle pass, which is more effective than doing first the assign-
ment and latter the scheduling. We also show that loop
unrolling significantly enhances the performance of the
proposed scheduler, especially when the communication
channel among clusters is the main performance bottle-
neck. By selectively unrolling some loops, we can obtain
the best performance with the minimum increase in code
size. Performance evaluation for the SPECfp95 shows that
the clustered architecture achieves about the same IPC
(Instructions Per Cycle) as a unified architecture with the
same resources. Moreover, when the cycle time is taken into
account, a 4-cluster configuration is 3.6 times faster than
the unified architecture.

1. Introduction

Semiconductor technology has experienced a continuous
improvement in the past and current projections anticipate
that this trend will continue in the forthcoming years [15].
By reducing the minimum feature size, new technologies
will pack more logic in a single chip but new problems may
arise. In particular, the delay of signals or data movement
from one part to another of the chip is becoming an impor-
tant factor. Current approaches to deal with this problem
are based on exploiting communication locality. The basic
idea is to divide the system into several “units” that can
work almost independently and at a very high frequency.
Then, some communication channels are needed in order to
exchange signals/data among “units”. This partition of the
processor in quasi-independent units is nowadays called
clustering.

An approach to enhance the processor performance is
to exploit more instruction-level parallelism (ILP). How-
ever, this requires more functional units, registers and more
resources in general. This increment in resources can affect
the cycle time of the processor. For instance, Palacharla et
al. [11] showed that the bypass delay and the the register

file access time are some of the critical delays of current
microprocessors.

The degradation caused by increasing the number of
resources can be overcome by a clustered design. Current
trends in clustering focus on the partition of the register file.
Functional units are grouped and assigned to a register file
partition so they can only read their operands from their
local register file. Values generated by one cluster and
needed by another must be communicated. In this way,
both bypasses among functional units and ports of the reg-
ister file are reduced as well as the number of registers of
each local register file. Clustered designs can be found in
current embedded DSP processors such as the TI C6000
[16], Equator’s MAP1000 [5] and ADI TigerSharc [17].

In this paper we focus on clustered VLIW architec-
tures. Software pipelining is a very effective technique to
statically schedule loops. The most popular scheme to per-
form software pipelining is called modulo scheduling
[13][7]. In this paper we propose a cluster-oriented modulo
scheduling algorithm. By performing the cluster assign-
ment and the instruction scheduling at the same time and by
using loop unrolling, the proposed technique can hide prac-
tically all the communication latency, resulting in an IPC
very similar to that of a unified architecture with the same
resources, for different communication delays and band-
widths. When the cycle time is factored in, the cluster
architecture achieves an average speed-up of 3.6 for the
SPECfp95 on a 4-cluster configuration.

Some other works can be found in the literature regard-
ing instruction scheduling for these architectures
[3][2][6][12]. These works differ from the approach pre-
sented here in that they focus on scheduling instructions in
acyclic codes. There are also a couple of works related to
cluster assignment for modulo scheduling. Nystrom and
Eichenberger [10] follow a strategy where the cluster
assignment and node scheduling correspond to different
phases. The main drawback of their algorithm is that
although they obtain good results for the loops evaluated,
their architecture considers a high-bandwidth/low-latency
inter-cluster interconnect, and thereby the effect of commu-
nication is very low. However, when the number of chan-
nels (buses in our case) decreases or the communication
latency increases, the performance of this algorithm is sig-
nificantly degraded. Fernandes et al. [4] proposed an
approach to perform both scheduling and partitioning in a
single step for software pipelined loops. However, they
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assume an architecture with an unusual register file organi-
zation based on a set of local queues for each cluster and a
queue file for each communication channel.

The rest of the paper is organized as follows. The clus-
tered VLIW architecture is described in Section 2. The pro-
posed scheduling techniques are presented in Section 3 and
evaluated in Section 4. Finally, Section 5 summarizes the
main conclusions of this work.

2. Clustered VLIW Architecture

The clustered VLIW architecture that we assume in this
work is shown in Figure 1. It is composed of different clus-
ters, each one made up of different functional units and a
local register file. Values generated by one cluster and con-
sumed by another are communicated through a bus shared
by all the clusters. The architecture may have of one or sev-
eral buses in order to communicate values among the dif-
ferent clusters. When a value is communicated, the
employed bus is busy during the latency of the communi-
cation. All communication necessities are codified in the
VLIW instruction, as described below. All the clusters also
share the memory hierarchy, starting from the L1 cache. In
this work we have considered that all clusters are homoge-
neous (i.e., same number of registers and type/number of
functional units) although the proposed scheduling tech-
niques can be easily generalized for non-homogeneous
configurations.

The detailed architecture of a single cluster is shown in
Figure 2. The inputs of each functional unit are multiplexed
among a value read from the local register file, values
obtained through bypasses from other functional units of
the same cluster, and finally the value that comes from a
bus. This last value is stored in a special register called
incoming value register (IRV), and can feed a functional
unit and/or be stored in the local register file (in the case
that another instruction scheduled in this cluster needs the
value later). On the other hand, the data that is placed on the
bus can be either obtained from the output of a functional
unit or from the local register file.

The VLIW instruction format is shown in Figure 3.
One of these instructions is read from memory every cycle,
and the different instructions (CLUSTERi) are distributed to
the appropriate clusters. A stall in one cluster affects all the
others, so that all the clusters work on the same VLIW

instruction. Each instruction for a particular cluster consists
of the following fields. An operation for each functional
unit in that particular cluster (FUj) and the source (IN BUS)
and target (OUT BUS) of the bus. The IN BUS field indicates,
if necessary, the register in the local register file in which
the value in IRV has to be stored. The OUT BUS field indi-
cates from which register a value has to be issued to the bus,
if any. As a bus is a resource shared by all the clusters, when
one particular cluster places a data on the bus (OUT BUS),
this bus will be busy during the entirety of the communica-
tion latency. Therefore no other instruction can use this bus
(a bus is considered by the scheduling algorithm as another
functional unit in the reservation table).

3. Instruction Scheduling

In this section we present the proposed modulo scheduling
algorithm for clustered VLIW architectures. We first
present a basic scheduling algorithm, which tries to reduce
the penalties of inter-cluster communications as its main
goal However, this kind of algorithms are not sufficient for
many loops (many communications cannot be hidden).
Therefore, we also present an algorithm for unrolling some
loops in order to further reduce the impact of communica-
tions on the final scheduling.

3.1. Basic Scheduling Algorithm

The main objective of the basic scheduling algorithm is to
reduce the number of communications or, in other words,
obtain the same II as the unified architecture. Our algorithm
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employs a unified assign-and-schedule approach, as pro-
posed by Özer et al. [12] for non-cyclic scheduling, but
here the cluster selection heuristics prioritize those clusters
that minimize the number of communications.

The scheduling algorithm is shown in Figure 4. In the
first step of the algorithm (1) a list with all the nodes of the
graph is built (which represent instructions). In this list, all
nodes are sorted in order to reflect the sequence to follow
during the scheduling phase. We have chosen the ordering
performed by the SMS [9]. This ordering gives priority to
the nodes in recurrences with the highest RecMII (that is,
according to their criticallity). RecMII stands for the mini-
mum initiation interval constrained by recurrences.
Besides, the resulting order ensures that a node in a partic-
ular position of the list only has predecessors or successors
before it (except in the case of sorting a new subgraph).
Moreover, nodes that are neighbors in the graph are placed
close together in the ordering.

Once the nodes have been sorted, and following this
ordering, each one is scheduled in the appropriate cycle and
cluster. If the current node has not a predecessor nor a suc-
cessor, the default cluster (defcluster variable) is set to
the next one according to a predetermined order (2). Other
possibilities for selecting the default cluster are feasible,
such as choosing the least loaded one.

The core of the algorithm is in part (3). In this loop we
attempt to schedule the current node in each possible clus-
ter (i.e. those clusters with an empty slot for the corre-
sponding functional unit). Since no spill code algorithm is
used, those clusters for which the insertion of this node
would increase the register requirements above the number
of available registers are discarded. The variable tmpout-
edges represents the number of edges from the nodes

scheduled in the candidate cluster (including the current
node) to nodes in other clusters or not scheduled yet. This
measure represents the number of communications needed
in this cluster if the schedule would finish here. The idea of
our algorithm is to schedule a node in the cluster that results
in the best use of outedges. For this reason the profit in a
cluster (profit[c]) is defined as the difference between
the outgoing edges before and after scheduling the current
node in this cluster. Then, a list with the clusters with the
highest profit is built (4). If no cluster is in the list (all the
slots of the functional units are full, or none of the registers
nor buses are available), then the initiation interval is
increased and the whole process is reinitialized (5). Other-
wise, one cluster is chosen according to the next prioritized
criteria: the only one (6), the cluster with any predecessor
or successor (if any) of the current node (7), the defclus-
ter (8), or the one that minimizes the register requirements
(9). Once the cluster is chosen, the node is scheduled in the
appropriate cycle and both functional unit and bus (if
needed) are marked as occupied in the reservation table
(10).

Note in particular the following cases:
a) The first node of a new subgraph is being scheduled:

as it has no successor nor predecessor already sched-
uled, the benefit in outedges is the same for all the
clusters. Therefore, the chosen cluster is the default
one (in our case, the following one).

b) If the loop has been unrolled and a node of a particular
iteration is being scheduled and the node does not
have any dependence with nodes in other iterations,
the benefit will be maximized if it is scheduled in the
same cluster as the other nodes of the same iteration.

Therefore, this algorithm tries to schedule subgraphs
that are disconnected in different clusters, and in particular,
iterations of an unrolled loop follow this trend.

We have compared this algorithm to the one proposed
by Nystrom and Eichenberger [10], which performs both
partition and scheduling as different steps. We do not show
detailed comparison results here due to space constraints,
but we have evaluated that our basic scheduling algorithm
produces schedules that have an IPC about 7% higher for a
high-bandwidth interconnect. Moreover, when the number
of buses decreases or the latency increases, the perfor-
mance of both algorithm significantly decreases and the
relative advantage of our scheduler increases.

3.2. Applying Loop Unrolling

The communication buses may be the main performance
bottleneck, even when the scheduling algorithm tries to
reduce the number of communications among clusters. The
alternative we propose to reduce the pressure on the buses
is to apply the previous scheduling algorithm to an unrolled
graph. Loop unrolling is a well-known technique. Using
both loop unrolling and modulo scheduling was proposed
by Lavery and Hwu [8] in order to reduce resource require-

(1) NLIST = OrderNodes(G);
foreach (n in NLIST) do {

// Check if it is a new subgraph
(2) if (!SchedPred(n, G) && !SchedSucc(n, G))

defcluster = NextCluster(defcluster);
// Compute the profit contributed in outedges

(3) foreach (c in CLIST) do {
tmpoutedges = TryNodeOnCluster(n, c, G);
profit[c] = OutEdgesOnCluster(c) - tmpoutedges;

}
// Build a list with the best ones

(4) candlist = ChooseBestProfit(profit);
// Choose the most appropriate

(5) if (ListLenght(candlist) == 0) {
II++;
ReInitialize();

}
if (ListLenght(candlist == 1)

(6) chosen = ChooseCluster(candlist);
else {

(7) if (n = ExistPredOrSuccInCand(candlist))
chosen = n;

else {
(8) if (candlist[defcluster] == Ok)

chosen = defcluster;
else

(9) chosen = MinimizeRegisterReqs(candlist);
}

}
(10) ScheduleNode(n, chosen);

}

Figure 4. Basic scheduling algorithm



ments and the length of critical paths. Their observation
was that using loop unrolling the actual mII (minimum ini-
tiation interval) for the unrolled loop is closer to the real
mII when the value is rounded. In our case, the reason for
applying loop unrolling is that many times loop graphs
present very few dependences among iterations (loop-car-
ried dependences). Therefore, scheduling different itera-
tions on different clusters require few communication and
in addition, the workload is balanced since all iterations
perform the same amount of work.

However, a drawback of loop unrolling is code expan-
sion, which may be a critical issue in some systems such as
embedded processors. Thus, it should be used only for
those cases in which it provides a clear net benefit. For
instance, if the performance of the non-unrolled loop is not
limited by communications, unrolling may not provide any
additional benefit. For this reason we propose an algorithm
to perform loop unrolling only when it increases perfor-
mance.

The selective unrolling algorithm is shown in Figure 5.
First of all, the schedule of the graph without unrolling is
computed. If the resulting schedule is limited by communi-
cations (i.e., the initiation interval was increased because
the buses become saturated) then a schedule with the
unrolled loop is tried. Our schedule algorithm presented in
previous section tends to schedule different iterations into
different clusters. Therefore, the unroll factor is set to the
number of clusters. Scheduling one iteration in each cluster
results in a number of communications (comneeded) equal
to the number of dependences at distance greater than zero
(and not multiple of the unrolling factor) multiplied by the
unrolling factor itself. Thus, the cycles needed to commu-
nicate the values (cycneeded) can be computed by divid-
ing the total number of cycles needed for communications
(comneeded * latbus) by the number of buses (nbuses).
If this value does not increase the initiation interval of the
unrolled loop (which can be determined without perform-
ing the scheduling), then the loop is finally unrolled and the
scheduling of the new graph is performed.

4. Results

In this section we first show the different clustered VLIW
configurations evaluated and list the set of benchmarks

used to evaluate the performance of the scheduling algo-
rithm. Then, some performance figures comparing unified
and clustered architectures are shown including timing
considerations. Finally, some results about the impact on
code size of the unrolling technique is shown.

4.1. Benchmarks and Configurations Evaluated

The scheduling algorithm has been evaluated for three dif-
ferent configurations of the VLIW architecture. This con-
figurations are shown in Table 1.

The first configuration is called unified and it is composed
of a single cluster with four functional units of each type
(integer, floating point and memory) and a unique register
file of 64 general-purpose registers. This configuration rep-
resents our baseline. Both the 2-cluster and 4-cluster con-
figurations have the register file partitioned (into two and
four partitions respectively). The former has 2 functional
units of each type and 32 register per cluster and the latter
corresponds to 1 functional unit of each type and a register
file of 16 registers per cluster (note that both, in total, are
12-way issue). For the clustered configurations we will
show results for different number of buses (1 or 2) and with
different latencies (1, 2, or 4 cycles).

For all configurations the memory hierarchy is shared
by all the clusters and considered perfect. In the case of
considering a real memory, techniques to reduce the impact
of cache misses when modulo scheduling is applied should
be used [14].

The modulo scheduling algorithm has been imple-
mented in the ICTINEO compiler [1] and all the SPECfp95
benchmarks have been evaluated. The programs were run
until completion using the test input data set. The perfor-
mance figures shown in this section refer to the modulo
scheduling of innermost loops with a number of iterations
greater that four. We have measured that code inside such
innermost loops represent about 95% of all the executed
instructions, and then the statistics for innermost loops are
quite representative of the whole program.

4.2. IPC Performance Figures

The results shown in this section refer to the IPC (Instruc-
tions committed Per Cycle) obtained for the unified and
clustered configurations for different values of the number
of buses and latency. The IPC has been obtained taking into

// Compute scheduling for the original graph
(1) sched = ScheduleGrah(G);

// Check if unroll is beneficious
(2) if (LimitedByBus(sched)) {
(3) ufactor = ncluster;
(4) comneeded = NDepsNotMult(G) * ufactor;
(5) cycneeded = (comneeded/nbuses) * latbus;
(6) if (cycneeded < II(sched)) {
(7) G’ = UnrollLoop(G, ufactor);

return (ScheduleGraph(G’));
}

}
return (sched);

Figure 5. Selective unrolling algorithm

Resources Unified 2-cluster 4-cluster Latencies INT FP

INT / cluster 4 2 1 MEM 2 2

FP / cluster 4 2 1 ARITH 1 3

MEM / cluster 4 2 1 MUL/ABS 2 6

REGS / cluster 64 32 16 DIV/SQR/
TRG

6 18

Table 1. Clustered configurations and latencies



account the prologue, the kernel and the epilogue as well as
the number of iterations and the times each loop is exe-
cuted. Both non-unrolled and unrolled versions of the loops
are evaluated.

The IPC results averaged for all the SPECfp95 pro-
grams are shown in Figure 6. Graph on the top compare the
unified configuration with the 2-cluster, whereas graph on
the bottom compare the unified with the 4-cluster configu-
ration. Each graph is divided into three sets of bars:

• No unrolling: results when the loops are not unrolled.
• Unrolling: results when all the loops of the program

have been unrolled. In the case of the 2-cluster config-
uration, the unroll factor is 2. In the case of the 4-clus-
ter configuration this factor is 4.

• Selective unrolling: results using the selective unroll-
ing algorithm presented in Section 3.2.

Each one of these sets if composed of different bars.
White bars show the IPC obtained by the unified configura-
tion. Grey bars show the IPC obtained with the clustered
configuration with just 1 bus. Finally, black bars are the IPC
achieved with clustered configurations and 2 buses. For
clustered configurations, different latencies for the buses
have been considered (L = 1, 2 or 4 cycles).

When we look at the first set of bars (No unrolling), we
can see that the IPC achieved by clustered architectures
compared with the unified architecture decreases when the
number of buses decreases or the bus latency increases. We
can see that this problem is overcome when loop unrolling
is applied to all loops (Unrolling). The performance
obtained for clustered architectures is the same (or even
better) for most of the programs and configurations (except

for tomcatv in the 4-cluster configuration). Note that
when all loops are unrolled our scheduling algorithm is less
sensitive to the number of buses and their latency. The rea-
son why clustered architectures perform better than unified
architectures for some programs and configurations when
all loops are unrolled is due to our scheduling algorithm.
When loop unrolling is applied, the different iterations of
the loop are scheduled in different clusters, using their
resources equally. However, in the unified architecture, all
the resources are available when scheduling the first sub-
graph of the unrolled loop. As the scheduling phase tries to
schedule operations as close as possible to their predeces-
sors and successors in order to minimize register pressure,
a very good scheduling is obtained for the subgraph of the
first iteration at the expense sometimes of the other itera-
tions.

The results for the selective unrolling presented in Sec-
tion 3.2 are shown in the third set of bars (Selective unroll-
ing). We can see that using this selective unrolling
algorithm the performance obtained is very similar to the
one obtained when all loops are unrolled.

4.3. Timing Considerations

We have shown that the proposed scheduling algorithm
applied to clustered architectures achieves about the same
IPC as the unified configuration. However, the real benefit
of clustered architectures comes when the cycle time is
considered in the total performance.Using the delay models
proposed by Palacharla [11], we show in Table 2 the cycle
time (in picoseconds) obtained for the different configura-
tions of the VLIW machine (for a 0.18µm technology).

In each case, we have assumed that the cycle time is deter-
mined by the maximum between the bypass delay and the
access time to the register file. The former depends on the
number of functional units per cluster, whereas the later
depends on both the number of ports (2RD/1WR per func-
tional units plus 1RD/1WR per bus) and the number of reg-
isters per cluster. Using the numbers of this table, Figure 7
shows the actual speed-up achieved by some clustered con-
figurations with respect to the unified one. In this figure,
NU stands for No Unrolling, whereas SU means Selective
Unrolling. For both cases, there are results for one (B=1)
and two (B=2) buses.

The main conclusion we can draw from this figure is
that all configurations significantly outperform the unified
configuration and the best performance is always obtained
for the 4-cluster configuration with 1 bus when the selec-
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Figure 6. IPC results averaged for all the SPECfp95

Unified
2-cluster 4-cluster

1 bus 2 buses 1 bus 2 buses

1030.08 394.12 420.52 293.69 311.24

Table 2. Cycle times according to Palacharla model



tive unrolling algorithm is used, achieving an speed-up of
3.6 on average for the SPECfp95.

5. Conclusions

We have presented an effective approach to perform mod-
ulo scheduling for a clustered VLIW architecture. The pro-
posed technique uses a single step to perform cluster
assignment and instruction scheduling, and makes use of a
selective loop unrolling. We have shown that the resulting
algorithm is very effective for a variety of configurations
with different communication latency and bandwidth.
Besides, the selective unrolling policy reduces the impact
of unrolling on the code size.

Performance evaluation for the SPECfp95 shows that
the IPC of the clustered architecture is not degraded in
comparison with a unified architecture with the same
resources. Moreover, when the cycle time of each architec-
ture is considered, we have shown that a 4-cluster architec-
ture is on average 3.6 times faster than a unified
configuration.
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