View metadata, citation and similar papers at core.ac.uk

brought to you by .{ CORE

provided by CiteSeerX

Discrete-time dynamic modeling for software and services composition
as an extension of the Markov chain approach

Antonio Filieri, Carlo Ghezzi, Alberto Leva and Martina Maggio

Abstract— Discrete Time Markov Chains (DTMCs) and Con-
tinuous Time Markov Chains (CTMCs) are often used to
model various types of phenomena, such as, for example, the
behavior of software products. In that case, Markov chains
are widely used to describe possible time-varying behavior of
“self-adaptive” software systems, where the transition from one
state to another represents alternative choices at the software
code level, taken according to a certain probability distribution.
From a control-theoretical standpoint, some of these probabil-
ities can be interpreted as control signals and others can just
be observed. However, the translation between a DTMC or
CTMC model and a corresponding first principle model, that
can be used to design a control system is not immediate. This
paper investigates a possible solution for translating a CTMC
model into a dynamic system, with focus on the control of
computing systems components. Notice that DTMC models can
be translated as well, providing additional information.

I. INTRODUCTION

Markov chains are widely used to model random memo-
ryless processes, where the next state depends only on the
current state and not on the sequence of events that pre-
ceded it, the book [1] discusses theoretical background and
some applications of the mentioned modelling formalism,
spanning from biology and chemistry to finance; Markov
chains are often used also to model computing systems
or their components. In the meanwhile, feedback control
of computing systems recently is becoming a very popular
research topic [2] and the recognized need for adaptation
is generally resulting in the introduction of feedback loops,
aimed at online adjusting the behavior of the system so as to
match some target values and fulfill the given requirements.

Starting from the possibility of controlling a target com-
puting systems that could be modelled as a Discrete Time
Markov Chain (DTMC) [3] or Continuous Time Markov
Chain (CTMC) [4] we investigated the general problem of
translating the given model into a set of equations that could
be used in general to provide specific control solutions.

With respect to the mainstream literature on C/DTMCs,
see e.g. again [4], the novelty of the proposed approach stems

This research has been partially funded by the European Commission,
Programme IDEAS-ERC, Project 227977- SMScom.

A. Filieri, C. Ghezzi and A. Leva are with the Dipartimento of
Elettronica e Informazione, Politecnico di Milano, Piazza Leonardo

da Vinci 32, 20133 Milano, Italy {filieri, ghezzi,
leval@elet.polimi.it

M. Maggio is with the Department of Automatic Control,
Lund University, Ole Romers vidg 1, 223 63, Lund, Sweden

martina.maggio@control.lth.se

from the highly application-independent problem reformula-
tion in the dynamic system domain, which opens the way to
the use of powerful techniques. With respect to the authors’
previous research, this paper shows the applicability of the
idea to both DTMCS and CTMCS and provides the general
framework just envisaged, building on the particular problem
of reliability addressed in [3, Section III].

Coming back to the subject of this paper, in general, the
goal of the control solution to be devised is to preserve one
or more properties of the overall system. For example, again
in computing systems, DTMCs and CTMCs are known as
a useful formalism to describe systems from the reliability
viewpoint and to support reasoning about it. In this case,
the chain can easily model web service invocations that may
fail using two transitions exiting a certain state and reaching
two others, respectively representing success and failure. In
this paper we discuss how it is possible to translate a Markov
model into a corresponding set of equations, also introducing
into the model useful control-related quantities. We will
use examples from computing systems control, where the
distribution of the incoming entities could for example mean
the number of request entering a system and being dispatched
through different states. However, the concepts behind the
translation are completely general and could in principle be
applied to any other domain.

It is worth noticing that most of the approaches adopted
in literature for the control of Markov processes cover only
special cases. A general control approach for CTMCs has
been proposed by Brockett [S]. In this case, the goal of the
controller is to set the value of control transition rates in
order to obtain a prescribed performance measure, through
optimal control. Rates are considered also in this work, as
well as transition probabilities that could be influenced by
a controller decision. However, our focus is more on the
modelling side, discussing the translation of the Markov
model into a nonlinear equation system. Also, we explicitly
model the queues, which were not taken into account in
previous analysis.

The remaining of this paper is organized as follows:
Section II describes the generic DTMC and CTMC models
and an example of computing systems’ entities that are
modelled through the formalism. Section III discusses the
generic proposed translation, while an example is shown in
Section IV. Finally, conclusions are drawn in Section V.

https://core.ac.uk/display/357541035?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

II. DISCRETE AND CONTINUOUS TIME MARKOV CHAINS

In this paper we mostly focus on software systems for
which the behaviour can be modelled through a Markov
chain. Markov chains proved to be a valuable mean to link
together a system’s structure and its behaviour, by allowing
randomness to account for unpredictable factors, such as
users’ behaviour.

The rational for software behaviour modelling lies in
abstracting the execution in finite set of significant states. A
state may represent either the execution of a certain task of
the software control flow or an observable condition, such as
the completion of the execution or the occurrence of a failure
[6]. The transition form a state to another is structurally
allowed by the control flow, but its likelihood depends on
user inputs and environmental condition. For example, de-
pending on her (changeable) needs, a user may select specific
functionalities, or an external service may fail when invoked.
Environmental variability affect the actual behaviour of the
system and is captured by transition probabilities and the
random residence time in each state.

The two Markov models we consider here are Dis-
crete Time Markov Chains (DTMCs) and Continuous Time
Markov Chains (CTMCs). DTMCs can describe the probabil-
ities of moving from a state to another, while CTMCs extends
DTMCs by adding a random processing rate to each state,
definable thorough an exponential probability distribution.
DTMCs have been widely used to reason about usage profile
and reliability [7], [8], while CTMCs are suitable to deal
with performance, thanks to their ability to represent system’s
throughput by its processing rate [9].

In adaptive software, the probability value of certain
transitions, as well as the processing rate of certain states
can be controlled. For example, transitions outgoing from a
certain state may correspond to the selection of different im-
plementation alternatives, or the deployment of a component
can change its actual processing rate.

Convenient control strategy can thus be applied to make
the system satisfy its non-functional requirements, such as
to provide the desired reliability or to offer a convenient
processing rate [3].

In this section we provide a formal definition of DTMCs
and CTMC:s. In Section III we will then show how Markov
models can be conveniently translated into corresponding
dynamic systems and enhanced to deal with queues of
requests hold in each computation step.

A. Discrete Time

A Markov chain is a discrete-time random process with
the Markov property, i.e., memoryless [10]. A discrete-time
random process involves a system which is in a certain state
at each step, with the state changing randomly between steps.
The steps are often thought of as moments in time, but
they can equally well refer to physical distance or any other
discrete measurement.

Formally, a finite and labelled DTMC is
(S, so, P, L) where [11]:

a tuple

e S is a finite set of states,

e Sg is the initial state,

e P : S x8—]0,1] is a stochastic matrix (i.e. Vs; € S

Esjes P(Siv Sj) =1),

e L : S — 247 is a labeling function that marks every
state s; with the Atomic Propositions (AP) that are true
in s;.

We will interchangeably use both the notation P(s;,s;)
and p;; to refer to the entry (7,j) of the matrix P, corre-
sponding to the probability of moving from state s; to state
s;. A path through a DTMC is a (possibly infinite) sequence
of states m = SpS152..., where s;41 is reachable from s;
through a transition. The probability matrix P induces a
probability space on the set of all possible paths [12]. The
probability of a path 7 with length n can be defined as:

Pr(m) = 0
if n=01ie. m=sg
Pr(r) = P(s . . M
0, 81) P(Sl, 82)
'P(Sn,—Za 371,—1)
if n>0

For the purposes of this analysis, the model that we
want to exploit (for example the execution of a software
application or a chemical reaction) is completely described
by its trace, that is, the corresponding path through the
DTMC. We assume, without lack of generality, that there is
a single initial state so. Also, the notion of absorbing states
should be introduced. A state s; is said to be absorbing iff
P(Si, Si) = 1].

The properties we are interested to control on a DTMC are
the reachability probabilities, that is the probability that the
execution, started in a transient state s; (usually sg), reaches
a target state s; representing the successful completion in
any number of time steps.

In the software application case, one could use these
properties to represent software reliability, i.e. the probability
of successfully execute the global control flow, based on the
observer failure probabilities of each task (that may change
during time).

B. Continuous Time

DTMCs can model discrete time only, that is the transition
from a state to another occurs only at discrete time steps.
In many applications it would be useful to relax such
constraint and to allow transitions to happen at any point of
a real-valued time. CTMC provides such relaxation by still
providing useful mathematical procedures to verify relevant
properties of the system, such as the global processing rate
of a complex control flow.

Notice that for the sake of our analysis, the other popular definition of
absorbing state as a state to which the system will always eventually return
with probability 1, can be reduced to the one in this paper. Essentially, a
recurrent state must be alone or part of an absorbing components cluster in
the DTMC graph, that can be reduced to a single representative state, that
is absorbing as for our definition.

CTMCs extend DTMCs by assigning to each state a rate
r; € R>p, representing the processing rate of that node.
This value has to be minded as the rate parameter of an
exponential distribution describing the residence time of the
execution in the state [10].

Formally, a finite and labelled CTMC is a tuple
(S, s0, P, L, R) where [11]:

e S, 59, P, and L are defined as for DTMCs,

e R : 8§ — Ry is the rate vector, assigning each state

to its rate

Every time the execution reaches a state s;, it will reside
there for a random time from e(r;), where £(r;) represents
the exponential distribution with rate parameter r; [13].
When the residence time expires, the execution makes a
random move toward the next state according to the transition
matrix P.

A path through a CTMC is a (possibly infinite) sequence
s9t9s1¢1s2 .. where t' represents the residence time in state
s'. A formal definition of it probability can be found in [12].
Informally, in can be computed as the joint probability of the
sequence s’s's2, as for DTMCs, and the probabilities that
the exponentially distributed residence time in each state s’
is t°.

A different standpoint toward CTMC combine the infor-
mation of P and R in a rate matrix R : § x .S — R>¢. An
entry R(s;, s;) corresponds to the value r;-p;;, and represents
the rate of requests leaving reaching s; and delivered by s;.
Though the two definitions are equivalent, in the following
we will consider separately P and R to easy the exposition
in Section IIL

The properties of CTMCs we are looking to control
concern its transient behaviour [12], that is we are interested
in the probability that the process, having started in a state s;
(usually sq), reaches a state s; (representing the completion
of the execution) within the time ¢ imposed by software
requirements. In a CTMC setting, this corresponds to ensure
a processing rate of (at least) 1/¢.

In the software application case, one could use these prop-
erties to represent both software reliability and performance,
i.e. the global execution time (or, correspondingly, processing
rate) of the control flow, given the observed processing rates
of and failure probabilities of its tasks (both task’s processing
rate and failure probability may change during time).

III. FROM A CHAIN TO A DYNAMIC SYSTEM

The generic node of a chain is shown in Figure 1. In this
case, two arcs are entering the node s; and four arcs are
leaving it. If the reference model is a DTMC, the outgoing
arcs from s; represents a probabilistic distribution, hence the
probability values on its labels have to sum up to 1. This
constraint does not apply in case labels represent rates of a
CTMC.

The translation of the Markov chain to a set of equations
is almost direct by considering the balance of request flows
at each node. Nonetheless, the introduction of additional

Fig. 1. Representation of a single node.

information is valuable to perform more informative analyses
and to allow for more complex analysis and control synthesis.
Specifically we want to add to each state a value correspond-
ing to the number of requests waiting to be processed. Such
value provides an explicit notion of load and leads the path
to enclose convenient queue management strategies for finer
grain control of a system’s quality of service.

Though we require designers and monitoring systems to
fill-in more information than for basic Markov chains, it is
usually the case for software systems, especially service-
oriented ones, that service rates, distribution probabilities,
and queues length could be gathered from the running
instances with little effort [14].

Our aim is writing first principle equations involving flows
entering and exiting the node, therefore we use the concept
of rates. Whenever rates are not available, they can be easily
set to one, therefore allowing a DTMC to be modeled as
well, also when no additional information is provided. As
can be seen in Figure 2, each node has incoming rates of
requests and an outcoming rate, that depends on the number
of requests that the node has in its own queue, that will be in
the following denoted with n and on a control signal u, that
could for example account for the ability to hold some of the
requests to obtain a certain throughput. In this respect, we
introduce explicit modeling of the internal queues of each
node, which is not available with any Markov formulation.

fji

Fig. 2. Representation of a single node within the translation.

The node has an outgoing rate that is indicated with
r¢(n,u) in the Figure and is distributed to the connected
nodes according to the probability distribution specified by
the original Markov chain model. Our state variable is n,
i.e., the number of requests that are in the node queue. For
a generic node one could write the equation

n(k) = nlk—1)+Ts > rj(k—1)
~Ts 3, rin(k — 1,n(k — 1), u)
where T represents the sampling time and the equation is
saying that the number of requests that the node has at time &
is the previous amount plus the number of incoming request
minus the number of processed ones. The equations needs
to be coupled with the constraint that

@

Tih
Din =
Zh Tih

3

to ensure that the probabilities of the original chain are
preserved in the case of a DTMC. In the case of a CTMC,
probabilities and rates just need setting up such that the
original relationship is preserved and the constraint should
be ensured to hold.

One may therefore write, for a single node, that

n(k‘) = n(k; — 1) + TS Z] ’I“ji(k‘ — 1)
_Ts Ehpihf(n’u)

where the outgoing rate was substituted with a function of
the system state, the n term, and of some control action u.
At the same time, there are cases in which the probability
pin can be itself a control signal. For example, in the case of
computing system modeling, it can represent the choice of a
service A over a service B to perform the same operation on
some data, where the chain should be representing software
service composition and invocation rates and probabilities
are included in the system model.

If the introduced function f does not depend on n, the
problem is easily to be solved. In general, however, f
describes how each node, autonomously or responding to
an external input, choose the outgoing rate, therefore it is
not possible to assume it does not depend on the number
of incoming requests. The relationship between the queued
request and the incoming ones make it dynamically depend
also on the incoming rate.

Denoting with N (k) the column vector representing the
system’s state and with F'(N(k),U(k)) the column vector
where each element is the function f;(n;,u;) of the i-th node
at time k, the state equation of the overall model can be
rewritten as

N(k) =

“4)

N(k—1) + T Ri(k — 1)
+TsP(k - 1)F(N(k - 1)a U(k -]‘)) 5
_TLR(N(k—1),U(k — 1))

where R; is the vector of external input rates and P is
the probability matrix of the chain. The sum of the two
terms TsR;(k — 1) and TsP(k — 1)F(N(k —1),U(k — 1))
represents the vector of input rates for each node while the
term TsF'(N(k —1),U(k — 1)) stands for the vector of the
total output rates.

Also, one could write as output equation

Y (k) = g(F(N(k),U(K)) (6)

saying that the output of the system is some kind of combi-
nation of the vector of output rates.

[Ap(k)]ru(k) =v1
ru(k
[p+Ap(K)]ru(n,u) [plru(k)
ri(k) ri(k)
— —
o*—>
[1-(p+Ap(k))]ru(n,u) [1 'p]ru(k)
[-Ap(K)]ru(k) = va
Fig. 3. Managing a variant transition probabilities P matrix via the

introduction of fictitious nodes.

Let’s start with a couple of simple cases, where the
components of (5) have some nice properties. First, if the
probability matrix P is constant and f(n,u) = f(n)+ f(u)
one could write

N(k) = N(k—1)+T,Ri(k — 1)
+TS(P_I)F7L(N) (7)

+T,(P — I)F, (V).

Moreover, if one assumes f,(n) = kn, the state equation
becomes

N(k) = N(k—1)+TsRi(k—1)
+T,(P - I)KN(k —1)
+T(P - 1)F,(U) 8)
= [+Ts(P—-I)K|N(k—1)
+TsR;(k) + Ts(P — I)F,(U)

and taking F,(U) = U this becomes a LTI system. Also,
being the values of P in the interval between zero and one,
as K, it surely exist a range of sampling times 7 such that
the system is asymptotically stable.

In addition, it is possible to bring back the case of a
non-constant P matrix, for example due to the presence of
probabilities treated as control signals, introducing fictitious
input/output nodes.

To briefly discuss this, refer to Figure 3. On the left a node
is shown — with just two outputs for simplicity and without
loss of generality — where the probability p of routing to one
output is expressed as a nominal value p (whatever is meant
for “nominal”) plus an additive variation Ap, representing in
the addressed context a correction to p coming from some
controller. There are thus two control inputs (v and Ap) to
alter respectively the overall throughput and its distribution.
On the right, the same effect is obtained by adopting as
control variables the quantities denoted by v; and wvs.

In fact, translating the system on the left of Figure 3 into
that on the right, a LTI one can be obtained under the sole
hypothesis that the output rate comes from

f(n,u) = Kn+u 9)

which is quite reasonable, at least in the vicinity of the
nominal operating point of choice. To show that, write

nk) = nk—-1)+Ts[ri(k—-1)
ok~ Dou(k 1)) 10
thus
rll(k) = (Tj+ Ap(k)) f(n(k)?u(k)) (11)
rp(k) = (1—p—Ap(k)) f(n(k),u(k))
and bringing (9) in, with trivial computations,
0 O (e uli)
+Ap(k +u
mk) = (1-p) (En(k)+uk) P
—Ap(k) (Kn(k) + u(k))

which has w and Ap as controls, but is apparently nonlinear.
Adopting the translation shown on the right of Figure 3, on
the other hand, one would write

n(k) = nlk—1)+Teri(k—1)
=T [ﬁrz(k — 1) + 'Ul(k - 1)} (13)
~T, (1= P)ra(k — 1) + vk — 1))
= nk—1)—Ts[vi(k = 1)+ va(k — 1))
leading for the rates to the LTI expressions
ro(k) = Dri(k) 4+ vi(k)
k) = (1= D)rik) + valk) (1

having v; and vy as control inputs. Note that (12) and (14) are
related, since by setting Ar = Deltap (Kn + u), Equation
(12) becomes

rq (k) D (Kn(k) +u(k)) + Ar(k)
r(k) = (1—-p)(Kn(k)+u(k)) — Ar(k)

thus comes to exhibit — with v and Ar as contro inputs —
the same structure as Equation (14).

To summarize, the proposed model extends the formalism
of Markov Chains, which is a widely used modeling frame-
work in different contexts, although our extension addressed
more closely computing systems, that originated our initial
case study. Our extension includes queues (and service rates,
if one starts from a Discrete Time Markov Chain) and we
explicitly write the balance equation for each node. The
resulting model is not particularly complex, even though
being nonlinear. It can however be reduced to a LTI model
in particular cases.

5)

IV. EXAMPLE

In this section we will show a (small) example, adapted
from [6], of how a software can be modelled with a Markov
chain and subsequently how its equations can be derived.
Other Markov chain models of software applications can be
found in [6], [11], [3], [7], [8], [9] where the focus is on the
translation from design models or code to Markov chains.

CheckOut

[Buy more]

Fig. 4. Activity diagram of the example.

The target application is an e-commerce website that
relies to external services for the buying operation. It is
for example the case of a bundle for purchasing products
offered by different external providers. Once entering the

web application the user can decide to buy a product and
checkout or repeat the purchase operation to add more items
before checking out. The activity diagram of the proposed
example can be found in Figure 4. Notice that each external
service has a different success probability, in fact the third
party service could be unavailable or the invocation could
fail. We assume success probabilities to be independent
one another. Suppose, for clarity, that only two third party
services are available for the buy operation. The control
objective in this case is to choose between the two services
based on their service rates and failure probabilities. Such
values may be subject to changes because of external factors,
out from our control. The goal is to distribute the incoming
traffic between the two external services.

The Markov chain that models the software can be found
in Figure 5, where the login state is subsequently followed
by a search state and some products will be bought, with
probability p from the first service and with probability
1 — p from the second one. We assume that all the products
are available from both the external services, so that their
selection will only be based on the provided quality of
service. p can be seen as a control signal, since the software
itself could decide whichever service to reroute the request
to. Contrarily, the user could subsequently do another search
with probability pR or checkout with probability 1 — pR,
the value of this probability can only be observed (and
possibly predicted based on past data) but cannot be directly
influenced since dependent on users’ behaviour. The figure
depicts only the basic software behaviour, without consider-
ing possible failures of its components. Such a case can be
enclosed by adding a special failure state to be avoided, as
in [6].

Based on the considerations of Section III, the equations
for such a chain are

no(k) = mno(k—1)+Teri(k—1) =T fo(no,uo)
ni(k) = ni(k—1)+T;sfo(no,uo)
+Ts(pR) f2(n2,u2) + Ts(pR) f3(n3, us)
—Tsf1(n1,u1)
na(k) = na(k—1)+Tipfi(ni,ur) — T fo(na, uo)
n3(k) = nz(k—1)+Ts(1 = p)fi(no,uo)
—Ts f3(n3, u3)
714(]11) = n4(k — 1) + Tq(l — pR)fg(’ﬂg,Ug)
+T5(1 — pR) f3(n3, u3) — Ts fa(na, ua)
ns(k) = ns(k—1)+Tsfa(na,us) — Ts f5(ns, us)
ne(k) = mne(k—1)+ Tsfs(ns, us)

(16)
where r; represents the number of incoming users, fy could
be defined as any mechanism for admission control that can
be found in the literature for controlling a web server, see
e.g., [15], [16], [17], f1 can take into account the ability
to hold some requests into the server and process them in
a future time unit, for example as done for mobile phone
platforms in a view to lower power and energy consumption
[18]. Similar considerations hold for the other nodes of
the chain. Notice that, whenever f,(n,,u,) is written, it

l

BuyService1

Searchﬁ

030 =

Logm

pR\@

BuyService2

l

Fig. 5.

should read f,(n,(k — 1),u,(k — 1)) but the formulation
was shortened to the advantage of clarity.

Notice that in this case the only node that has an external
incoming rate is ngy, where the term r; appears, also, some
of the functions f, could be simplified if one assumes there
is no control mechanism for those nodes. For example, the
logout state ns may have no delay and no control, therefore
f5(ns,us) could be just substituted with ns(k — 1). This
formulation would allow to model different control strategies,
e.g., resource control and admission control, within a unified
framework.

V. CONCLUSION AND FUTURE WORKS

In this paper we investigated the translation of DTMCs
and CTMC:s into a set of equations, extending the formalisms
with a simple notion of queue. Markov models are widely
adopted to represents software behaviour, as well as in
many other research fields. The explicit quantification of the
number of waiting requests would allow for more expressive
modeling of the quality of service, as well as the ability
to represent in a unified model scheduling and queues
management strategies.

The equation model obtained through our translation is
in general nonlinear but not particularly complex. In several
cases it can be reduced to a LTI one. Some control related
issues were addressed as well, such as the specification of
control variables in the form of transition probabilities and
processing rates.

We are enhancing our first principle modeling of the
queues to support for the representation of standard queues
features, such as finite queues and ordering. We aim at defin-
ing convenient methodologies to provide a general control
strategy suitable for systems representable via DTMCs or
CTMCs with state queues, addressing the satisfaction of
non-functional requirements for software systems as well as
analogous counter-parts in other fields.

ACKNOWLEDGMENT

This research has been partially funded by the European
Commission, Programme IDEAS-ERC, Project 227977-
SMScom. Also, this work was supported by the Swedish
Research Council through the LCCC Linnaeus Center.

/"@ CheckOu

\/

[1]
[2

—

[3

—

[4]

[5

=

[6

=

[7]
[8]

[9]

[10]
[11]

[12]
[13]
[14]

[15]

[16]

[17]

[18]

End

E o

1 1

Markov chain corresponding to the example.

REFERENCES

J. R. Norris, Markov chains, ser. Cambridge series in statistical and
probabilistic mathematics. Cambridge University Press, 1998.

J. Hellerstein, Y. Diao, S. Parekh, and D. Tilbury, Feedback control of
computing systems. Wiley Online Library, 2004.

A. Filieri, C. Ghezzi, A. Leva, and M. Maggio, “Self-adaptive software
meets control theory: A preliminary approach supporting reliability
requirements,” in ASE, P. Alexander, C. S. Pasareanu, and J. G.
Hosking, Eds. IEEE, 2011, pp. 283-292.

X. Guo and O. Herndndez-Lerma, Continuous-Time Markov Decision
Processes: Theory and Applications, ser. Stochastic modelling and
applied probability. Springer Verlag, 2009.

R. Brockett, “Optimal control of observable continuous time markov
chains,” in Decision and Control, 2008. CDC 2008. 47th IEEE
Conference on. 1EEE, 2008, pp. 4269-4274.

A. Filieri, C. Ghezzi, and G. Tamburrelli, “A formal approach to adap-
tive software: continuous assurance of non-functional requirements,”
Formal Aspects of Computing, pp. 1-24.

R. C. Cheung, “A user-oriented software reliability model,” IEEE
Transaction on Software Engineering, vol. 6, no. 2, pp. 118-125, 1980.
L. Cheung, R. Roshandel, N. Medvidovic, and L. Golubchik, “Early
prediction of software component reliability,” in ICSE, Leipzig, Ger-
many, May 10-18, 2008. ACM, 2008, pp. 111-120.

R. Calinescu, L. Grunske, M. Z. Kwiatkowska, R. Mirandola, and
G. Tamburrelli, “Dynamic qos management and optimization in
service-based systems,” IEEE Transaction on Software Engineering,
vol. 37, no. 3, pp. 387-409, 2011.

S. Ross, Stochastic Processes. Wiley New York, 1996.

M. Kwiatkowska, “Model checking for probability and time: from
theory to practice,” in Logic in Computer Science, 2003. Proceedings.
18th Annual IEEE Symposium on, June 2003, pp. 351 — 360.

C. Baier and J.-P. Katoen, Principles of Model Checking. The MIT
Press, 2008.

W. Pestman, Mathematical statistics: an introduction.
Gruyter Inc, 1998, vol. 1.

I. Epifani, C. Ghezzi, R. Mirandola, and G. Tamburrelli,
evolution by run-time parameter adaptation,” in /CSE, 2009.
M. Kihl, A. Robertsson, A. Andersson, and B. Wittenmark, “Control-
theoretic analysis of admission control mechanisms for web server
systems,” World Wide Web, vol. 11, no. 1, pp. 93-116, 2008.

Q. Sun, G. Dai, and W. Pan, “LPV model and its application
in web server performance control,” in Proceedings of the
2008 International Conference on Computer Science and Software
Engineering - Volume 03, ser. CSSE "08. Washington, DC, USA:
IEEE Computer Society, 2008, pp. 486—489. [Online]. Available:
http://dx.doi.org/10.1109/CSSE.2008.1219

N. Gandhi, D. Tilbury, Y. Diao, J. Hellerstein, and S. Parekh, “Mimo
control of an apache web server: modeling and controller design,” in
American Control Conference, 2002. Proceedings of the 2002, vol. 6,
2002, pp. 4922 — 4927 vol.6.

M.-R. Ra, J. Paek, A. B. Sharma, R. Govindan, M. H. Krieger, and
M. J. Neely, “Energy-delay tradeoffs in smartphone applications,” in
Proceedings of the 8th international conference on Mobile systems,
applications, and services, ser. MobiSys 10, 2010, pp. 255-270.

Walter De

“Model

