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The numerical methods in the current known literature require the stochastic differential equations
(SDEs) driven by Poisson randommeasure satisfying the global Lipschitz condition and the linear
growth condition. In this paper, Euler’s method is introduced for SDEs driven by Poisson random
measure with non-Lipschitz coefficients which cover more classes of such equations than before.
Themain aim is to investigate the convergence of the Euler method in probability to such equations
with non-Lipschitz coefficients. Numerical example is given to demonstrate our results.

1. Introduction

In finance market and other areas, it is meaningful and significant to model the impact
of event-driven uncertainty. Events such as corporate defaults, operational failures, market
crashes, or central bank announcements require the introduction of stochastic differential
equations (SDEs) driven by Poisson random measure (see [1, 2]), since such equations were
initiated in [3].

Actually, we can only obtain the explicit solutions of a small class of SDEs driven by
Poisson random measure and so numerical methods are necessary. In general, numerical
methods can be divided into strong approximations and weak approximations. Strong
approximations focus on pathwise approximations while weak approximations (see [4, 5])
are fit for problems such as derivative pricing.

We give an overview of the results on the strong approximations of stochastic
differential equations (SDEs) driven by Poisson randommeasure in the existing literature. In
[6], a convergence result for strong approximations of any given order γ ∈ {0.5, 1, 1.5, . . .}was
presented. Moreover, N. Bruti-Liberati and E. Platen (see [7]) obtain the jump-adapted order
1.5 scheme, and they also give the derivative-free or implicit jump-adapted schemes with
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desired order of strong convergence. And for the specific case of pure jump SDEs, they (see
[8]) establish the strong convergence of Taylor’s methods under weaker conditions than the
currently known. In [5, 7], the drift-implicit schemes which achieve strong order γ ∈ {0.5, 1}
are given. Recently, Mordecki et al. [9] improved adaptive time stepping algorithms based
on a jump augmented Monte Carlo Euler-Maruyama method, which achieve a prescribed
precision. M. Wei [10] demonstrates the convergence of numerical solutions for variable
delay differential equations driven by Poisson random measure. In [11], the developed
Runge-Kutta methods are presented to improve the accuracy behaviour of problems with
small noise to SDEs with Poisson random measure.

Clearly, the results above require that the SDEs driven by Poisson random measure
satisfy the global Lipschitz condition and the linear growth condition. However, there are
many equations which do not satisfy above conditions, and we can see such equations in
Section 5 in our paper. Ourmain contribution is to present Euler’s method for these equations
with non-Lipschitz coefficients. Here non-Lipschitz coefficients are interpreted in [12], that is
to say, the drift coefficients and the diffusion coefficients satisfy the local Lipschitz conditions,
the jump coefficients satisfy the global Lipschitz conditions, and the one-sided linear growth
condition is considered. Our work is motivated by [12] in which the existence of global
solutions for these equations with non-Lipschitz coefficients is proved, while there is no
numerical method is presented in our known literature. And our aim in this paper is to close
this gap.

Our work is organized as follows. In Section 2, the property of SDEs driven by Poisson
random measure with non-Lipschitz coefficients is given. In Section 3, Euler method is
analyzed for such equations. In Section 4, we present the convergence in probability of the
Euler method. In Section 5, an example is presented.

2. The SDEs Driven by Poisson Random Measure with
Non-Lipschitz Coefficients

Throughout this paper, unless specified, we use the following notations. Let u1 ∨ u2 =
max{u1, u2} and u1 ∧ u2 = min{u1, u2}. Let | · | and 〈·, ·〉 be the Euclidean norm and the inner
product of vectors in Rd, d ∈ N. If A is a vector or matrix, its transpose is denoted by AT .
If A is a matrix, its trace norm is denoted by |A| =

√
trace(ATA). Let L2

F0
(Ω; Rd) denote the

family ofRd-valuedF0-measurable random variables ξwith E|ξ|2 < ∞. [z] denotes the largest
integer which is less than or equal to z in R. IA denotes the indicator function of a set A.

The following d-dimensional SDE driven by Poisson random measure is considered
in our paper:

dx(t) = a(x(t−))dt + b(x(t−))dW(t) +
∫

ε

c(x(t−), v)p̃φ(dv × dt), (2.1)

for t > 0 with initial condition x(0−) = x(0) = x0 ∈ L2
F0
(Ω;Rd), where x(t−) denotes

lims→ t−x(s) and p̃φ(dv × dt) := pφ(dv × dt) − φ(dv)dt.
The drift coefficient a : Rd → Rd, the diffusion coefficient b : Rd → Rd×m, and the

jump coefficient c : Rd × ε → Rd are assumed to be Borel measurable functions.
The randomness of (2.1) is generated by the following (see [9]). An m-dimensional

Wiener process W = {W(t) = (W1(t), . . . ,Wm(t))T} with independent scalar components is
defined on a filtered probability space (ΩW,FW, (FW

t )t≥0,P
W). A Poisson random measure



Journal of Applied Mathematics 3

pφ(ω, dv × dt) is on ΩJ × ε × [0,∞), where ε ⊆ Rr \ {0} with r ∈ N, and its deterministic
compensated measure φ(dv)dt = λf(v)dvdt, that is, E(pφ(dv × dt)) = φ(dv)dt. f(v) is a
probability density, and we require finite intensity λ = φ(ε) < ∞. The Poisson random
measure is defined on a filtered probability space (ΩJ ,FJ , (FJ

t )t≥0,P
J). The Wiener process

and the Poisson randommeasure are mutually independent. The process x(t) is thus defined
on a product space (Ω,F, (Ft)t≥0,P), where Ω = ΩW ×ΩJ , F = FW × FJ , (Ft)t≥0 = (FW

t )t≥0 ×
(FJ

t )t≥0, P = PW × PJ and F0 contains all P-null sets.
Now, the condition of non-Lipschitz coefficients is given by the following assump-

tions.

Assumption 2.1. For each integer k ≥ 1, there exists a positive constant Ck, dependent on k,
such that

∣
∣a(x) − a

(
y
)∣∣2 ∨ ∣∣b(x) − b

(
y
)∣∣2 ≤ Ck

∣
∣x − y

∣
∣2, (2.2)

for x, y ∈ Rd with |x| ∨ |y| ≤ k, k ∈ N. And there exists a positive constant C such that

∫

ε

∣∣c(x, v) − c
(
y, v

)∣∣2φ(dv) ≤ C
∣∣x − y

∣∣2, (2.3)

for x, y ∈ Rd.

Assumption 2.2. There exists a positive constant L such that

2〈x, a(x)〉 + |b(x)|2 +
∫

ε

|c(x, v)|2φ(dv) ≤ L
(
1 + |x|2

)
, (2.4)

for x ∈ Rd.

A unique global solution of (2.1) exists under Assumptions 2.1 and 2.2, see [12].

Assumption 2.3. Consider

|a(0)|2 + |b(0)|2 +
∫

ε

|c(0, v)|2φ(dv) ≤ L̃, L̃ > 0. (2.5)

Actually, Assumptions 2.1 and 2.3 imply the linear growth conditions

|a(x)|2 ∨ |b(x)|2 ≤ C̃k

(
1 + |x|2

)
, (2.6)

for x ∈ Rd with |x| ≤ k and C̃k > 0, and

∫

ε

|c(x, v)|2φ(dv) ≤ C̃
(
1 + |x|2

)
, (2.7)

for x ∈ Rd and C̃ > 0.
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The following result shows that the solution of (2.1) keeps in a compact set with a
large probability.

Lemma 2.4. Under Assumptions 2.1 and 2.2, for any pair of ε ∈ (0, 1) and T > 0, there exists a
sufficiently large integer k∗, dependent on ε and T , such that

P(τk ≤ T) ≤ ε, ∀k ≥ k∗, (2.8)

where τk = inf{t ≥ 0 : |x(t)| ≥ k} for k ≥ 1.

Proof. Using Itô’s formula (see [1]) to |x(t)|2, for t ≥ 0, we have

|x(t)|2 = |x0|2 +
∫ t

0

(
〈2x(s−), a(x(s−))〉 + |b(x(s−))|2

)
ds

+
∫ t

0

∫

ε

(
|x(s−) + c(x(s−), v)|2 − |x(s−)|2 − 〈2x(s−), c(x(s−), v)〉

)
φ(dv)ds

+
∫ t

0
〈2x(s−), b(x(s−))〉dW(s) +

∫ t

0

∫

ε

(
|x(s−) + c(x(s−), v)|2 − |x(s−)|2

)
p̃φ(dv × ds),

(2.9)

which gives

E|x(t ∧ τk)|2 = E|x0|2 + E
∫ t∧τk

0

(
〈2x(s−), a(x(s−))〉 + |b(x(s−))|2

)
ds

+ E
∫ t∧τk

0

∫

ε

|c(x(s−), v)|2φ(dv)ds

= E|x0|2 + E
∫ t∧τk

0

(
〈2x(s−), a(x(s−))〉 + |b(x(s−))|2 +

∫

ε

|c(x(s−), v)|2φ(dv)
)
ds,

(2.10)

for t ∈ [0, T]. By Assumption 2.2, we thus have

E|x(t ∧ τk)|2 ≤ E|x0|2 + E
∫ t∧τk

0
L
(
1 + |x(s−)|2

)
ds

≤ E|x0|2 + LT + L

∫ t

0
E|x(s ∧ τk−)|2ds,

(2.11)
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for t ∈ [0, T]. Consequently by using the Gronwall inequality (see [13]), we obtain

E|x(t ∧ τk)|2 ≤
(
E|x0|2 + LT

)
eLT , (2.12)

for t ∈ [0, T]. We therefore get

(
E|x0|2 + LT

)
eLT ≥ E|x(T ∧ τk)|2 ≥ E

(
|x(τk)|2I{τk≤T}

)
≥ k2P(τk ≤ T), (2.13)

which means

P(τk ≤ T) ≤ eLT

k2

(
E|x0|2 + LT

)
. (2.14)

So for any ε ∈ (0, 1), we can choose

k∗ =

⎡

⎣

√
eLTE|x0|2 + LTeLT

ε

⎤

⎦ + 1, (2.15)

such that

P(τk ≤ T) ≤ ε, ∀k ≥ k∗. (2.16)

Hence, we have the result (2.8).

3. The Euler Method

In this section, we introduce the Euler method to (2.1) under Assumptions 2.1, 2.2, and 2.3.
Subsequently, we give two lemmas to analyze the Euler method over a finite time interval
[0, T], where T is a positive number.

Given a step size Δt ∈ (0, 1), the Euler method applied to (2.1) computes
approximation Xn ≈ x(tn), where tn = nΔt, n = 0, 1, . . ., by setting X0 = x0 and forming

Xn+1 = Xn + a(Xn)Δt + b(Xn)ΔWn +
∫ tn+1

tn

∫

ε

c(Xn, v)p̃φ(dv × dt), (3.1)

where ΔWn = W(tn+1) −W(tn).
The continuous-time Euler method is then defined by

X(t) := X0 +
∫ t

0
a(Z(s))ds +

∫ t

0
b(Z(s))dW(s) +

∫ t

0

∫

ε

c(Z(s), v)p̃φ(dv × ds), (3.2)

where Z(t) = Xn for t ∈ [tn, tn+1), n = 0, 1, . . ..
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Actually, we can see in [8], pφ = {pφ(t) := pφ(ε × [0, t])} is a stochastic process
that counts the number of jumps until some given time. The Poisson random measure
pφ(dv × dt) generates a sequence of pairs {(ιi, ξi), i ∈ {1, 2, . . . , pφ(T)}} for a given finite
positive constant T if λ < ∞. Here {ιi : Ω → R+, i ∈ {1, 2, . . . , pφ(T)}} is a sequence of
increasing nonnegative random variables representing the jump times of a standard Poisson
process with intensity λ, and {ξi : Ω → ε, i ∈ {1, 2, . . . , pφ(T)} is a sequence of independent
identically distributed random variables, where ξi is distributed according to φ(dv)/φ(ε).
Then (3.1) can equivalently be the following form:

Xn+1 = Xn +
(
a(Xn) −

∫

ε

c(Xn, v)φ(dv)
)
Δt + b(Xn)ΔWn +

pφ(tn+1)∑

i=pφ(tn)+1

c(Xn, ξi). (3.3)

The following lemma shows the close relation between the continuous-time Euler
method (3.2) and its step function Z(t).

Lemma 3.1. Under Assumptions 2.1 and 2.3, for any T > 0, there exists a positive constant K1(k),
dependent on k and independent of Δt, such that for all Δt ∈ (0, 1) the continuous-time Euler method
(3.2) satisfies

E
∣∣∣X(t) − Z(t)

∣∣∣
2 ≤ K1(k)Δt, (3.4)

for 0 ≤ t ≤ T ∧ τk ∧ ρk, where ρk = inf{t ≥ 0 : |X(t)| ≥ k} for k ≥ 1 and τk is defined in Lemma 2.4.

Proof. For 0 ≤ t ≤ T ∧ τk ∧ ρk, there is an integer n such that t ∈ [tn, tn+1). So it follows from
(3.2) that

X(t) − Z(t) = Xn +
∫ t

tn

a(Z(s))ds +
∫ t

tn

b(Z(s))dW(s) +
∫ t

tn

∫

ε

c(Z(s), v)p̃φ(dv × ds) −Xn.

(3.5)

Thus, by taking expectations and using the Cauchy-Schwarz inequality and the martingale
properties of dW(t) and p̃φ(dv × dt), we have

E
∣∣∣X(t) − Z(t)

∣∣∣
2 ≤ 3E

∣∣∣∣∣

∫ t

tn

a(Z(s))ds

∣∣∣∣∣

2

+ 3E

∣∣∣∣∣

∫ t

tn

b(Z(s))dW(s)

∣∣∣∣∣

2

+ 3E

∣∣∣∣∣

∫ t

tn

∫

ε

c(Z(s), v)p̃φ(dv × ds)

∣∣∣∣∣

2
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≤ 3E

(∫ t

tn

12ds
∫ t

tn

|a(Z(s))|2ds
)

+ 3E
∫ t

tn

|b(Z(s))|2ds

+ 3E
∫ t

tn

∫

ε

|c(Z(s), v)|2φ(dv)ds

≤ 3ΔtE
∫ t

tn

|a(Z(s))|2ds + 3E
∫ t

tn

|b(Z(s))|2ds + 3E
∫ t

tn

∫

ε

|c(Z(s), v)|2φ(dv)ds,
(3.6)

where the inequality |u1+u2+u3|2 ≤ 3|u1|2+3|u2|2+3|u3|2 for u1, u2, u3 ∈ Rd is used. Therefore,
by applying Assumptions 2.1 and 2.3, we get

E
∫ t

tn

|a(Z(s))|2ds ≤ C̃kE
∫ t

tn

(
1 + |Z(s)|2

)
ds ≤ C̃kΔt + C̃kk

2Δt,

E
∫ t

tn

|b(Z(s))|2ds ≤ C̃kΔt + C̃kk
2Δt,

E
∫ t

tn

∫

ε

|c(Z(s), v)|2φ(dv)ds ≤ C̃Δt + C̃k2Δt,

(3.7)

which lead to

E
∣∣∣X(t) − Z(t)

∣∣∣
2 ≤ Δt

(
3C̃kΔt + 3k2C̃kΔt + 3C̃k + 3k2C̃k + 3C̃ + 3k2C̃

)
, (3.8)

for t ∈ [0, T ∧ τk ∧ ρk]. Therefore, we obtain the result (3.4) by choosing

K1(k) = 6C̃k + 6k2C̃k + 3C̃ + 3k2C̃. (3.9)

In accord with Lemma 2.4, we give the following lemma which demonstrates that
the solution of continuous-time Euler method (3.2) remains in a compact set with a large
probability.

Lemma 3.2. Under Assumptions 2.1, 2.2, and 2.3, for any pair of ε ∈ (0, 1) and T > 0, there exist a
sufficiently large k∗ and a sufficiently small Δt∗1 such that

P
(
ρk∗ ≤ T

) ≤ ε, ∀Δt ≤ Δt∗1, (3.10)

where ρk∗ is defined in Lemma 3.1.
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Proof . Applying generalized Itô’s formula (see [1]) to |X(t)|2, for t ≥ 0, yields

∣
∣
∣X(t)

∣
∣
∣
2
= |X0|2 +

∫ t

0

(〈
2X(s), a(Z(s))

〉
+ |b(Z(s))|2

)
ds

+
∫ t

0

∫

ε

(∣
∣
∣X(s) + c(Z(s), v)

∣
∣
∣
2 −

∣
∣
∣X(s)

∣
∣
∣
2 −

〈
2X(s), c(Z(s), v)

〉)
φ(dv)ds

+
∫ t

0

〈
2X(s), b(Z(s))

〉
dW(s) +

∫ t

0

∫

ε

(∣
∣
∣X(s) + c(Z(s), v)

∣
∣
∣
2 −

∣
∣
∣X(s)

∣
∣
∣
2
)
p̃φ(dv × ds).

(3.11)

By taking expectations, we thus have

E
∣∣∣X
(
t ∧ ρk

)∣∣∣
2
= E|X0|2 + E

∫ t∧ρk

0

(〈
2X(s), a(Z(s))

〉
+ |b(Z(s))|2 +

∫

ε

|c(Z(s), v)|2φ(dv)
)
ds

= E|X0|2 + E
∫ t∧ρk

0

(〈
2X(s), a

(
X(s)

)〉
+
∣∣∣b
(
X(s)

)∣∣∣
2

+
∫

ε

∣∣∣c
(
X(s), v

)∣∣∣
2
φ(dv)

)
ds

+ E
∫ t∧ρk

0

〈
2X(s), a(Z(s)) − a

(
X(s)

)〉
ds

+ E
∫ t∧ρk

0

(
|b(Z(s))|2 −

∣∣∣b
(
X(s)

)∣∣∣
2
)
ds

+ E
∫ t∧ρk

0

∫

ε

(
|c(Z(s), v)|2 −

∣∣∣c
(
X(s), v

)∣∣∣
2
)
φ(dv)ds.

(3.12)

For t ∈ [0, T]. Now, by using the inequalities 〈u1, u2〉 ≤ |u1||u2| for u1, u2 ∈ Rd, (2.2) in
Assumption 2.1, Fubini’s theorem, Cauchy-Schwarz’s inequality, and Lemma 3.1, we get

E
∫ t∧ρk

0

〈
2X(s), a(Z(s)) − a

(
X(s)

)〉
ds ≤ 2E

∫ t∧ρk

0

∣∣∣X(s)
∣∣∣
∣∣∣a(Z(s)) − a

(
X(s)

)∣∣∣ds

≤ 2k
√
Ck

∫ t

0
E
∣∣∣Z
(
s ∧ ρk

) −X
(
s ∧ ρk

)∣∣∣ds

≤ 2k
√
Ck

∫ t

0

(
E
∣∣∣Z
(
s ∧ ρk

) −X
(
s ∧ ρk

)∣∣∣
2
)1/2

ds

≤ 2kT
√
CkK1(k)Δt.

(3.13)
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And, similarly as above, we have

E
∫ t∧ρk

0

(
|b(Z(s))|2 −

∣
∣
∣b
(
X(s)

)∣∣
∣
2
)
ds ≤ E

∫ t∧ρk

0

(
|b(Z(s))| +

∣
∣
∣b
(
X(s)

)∣∣
∣
)

×
(
|b(Z(s))| −

∣
∣
∣b
(
X(s)

)∣∣
∣
)
ds

≤ 2
√
C̃k(1 + k2)E

∫ t∧ρk

0

∣
∣
∣b(Z(s)) − b

(
X(s)

)∣∣
∣ds

≤ 2
√
CkC̃k(1 + k2)

∫ t

0
E
∣
∣
∣Z
(
s ∧ ρk

) −X
(
s ∧ ρk

)∣∣
∣ds

≤ 2T
√
CkC̃kK1(k)(1 + k2)Δt. (3.14)

Moreover, in the same way, we obtain

E
∫ t∧ρk

0

∫

ε

(
|c(Z(s), v)|2 −

∣∣∣c
(
X(s), v

)∣∣∣
2
)
φ(dv)ds

= E
∫ t∧ρk

0

∫

ε

(∣∣∣c(Z(s), v) − c
(
X(s), v

)
+ c

(
X(s), v

)∣∣∣
2 −

∣∣∣c
(
X(s), v

)∣∣∣
2
)
φ(dv)ds

≤ E
∫ t∧ρk

0

∫

ε

(
2
∣∣∣c(Z(s), v) − c

(
X(s), v

)∣∣∣
2
+
∣∣∣c
(
X(s), v

)∣∣∣
2
)
φ(dv)ds

≤ 2CE
∫ t∧ρk

0

∣∣∣Z(s) −X(s)
∣∣∣
2
ds + C̃E

∫ t∧ρk

0

(
1 +

∣∣∣X(s)
∣∣∣
2
)
ds

≤ 2C
∫ t

0
E
∣∣∣Z
(
s ∧ ρk

) −X
(
s ∧ ρk

)∣∣∣
2
ds + C̃E

∫ t∧ρk

0

(
1 +

∣∣∣X(s)
∣∣∣
2
)
ds

≤ 2CTK1(k)Δt + C̃T + C̃E
∫ t∧ρk

0

∣∣∣X(s)
∣∣∣
2
ds,

(3.15)

where the inequality |u1 + u2|2 ≤ 2|u1|2 + 2|u2|2 for u1, u2 ∈ Rd, (2.3) in Assumptions 2.1 and
2.3, Fubini’s theorem, and Lemma 3.1 are used. Subsequently, substituting (3.13), (3.14), and
(3.15) into (3.12) together with Assumption 2.2 leads to

E
∣∣∣X
(
t ∧ ρk

)∣∣∣
2 ≤ E|X0|2 + LE

∫ t∧ρk

0

(
1 +

∣∣∣X(s)
∣∣∣
2
)
ds + C̃E

∫ t∧ρk

0

∣∣∣X(s)
∣∣∣
2
ds

+ 2kT
√
CkK1(k)Δt + 2T

√
CkC̃kK1(k)(1 + k2)Δt + 2CTK1(k)Δt + C̃T
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≤
(
L + C̃

)∫ t

0
E
∣
∣
∣X
(
s ∧ ρk

)∣∣
∣
2
ds + E|X0|2 + LT + C̃T

+
(
2kT

√
CkK1(k) + 2T

√
CkC̃kK1(k)(1 + k2)

)√
Δt + 2CTK1(k)Δt,

(3.16)

for 0 ≤ t ≤ T . Therefore, by the Gronwall inequality (see [13]), for 0 ≤ t ≤ T , we get

E
∣
∣
∣X
(
t ∧ ρk

)∣∣
∣
2 ≤ α1α4 + α4α2(k)

√
Δt + α4α3(k)Δt, (3.17)

where

α1 = E|X0|2 + LT + C̃T,

α2(k) = 2kT
√
CkK1(k) + 2T

√
CkC̃kK1(k)(1 + k2),

α3(k) = 2CTK1(k),

α4 = exp
(
LT + C̃T

)
.

(3.18)

We thus obtain that

k2P
(
ρk ≤ T

) ≤ E
(∣∣∣X

(
ρk
)∣∣∣

2
I{ρk≤T}

)
≤ E

∣∣∣X
(
T ∧ ρk

)∣∣∣
2 ≤ α1α4 + α4α2(k)

√
Δt + α4α3(k)Δt.

(3.19)

So for any ε ∈ (0, 1), we can choose sufficiently large integer k = k∗ such that

α1α4

k∗2
≤ ε

2
, (3.20)

and choose sufficiently small Δt∗1 ∈ (0, 1) such that

α4α2(k∗)
√
Δt∗1 + α4α3(k∗)Δt∗1

k∗2
≤ ε

2
. (3.21)

Hence, we have

P
(
ρk∗ ≤ T

) ≤ ε, ∀Δt ≤ Δt∗1. (3.22)
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4. Convergence in Probability

In this section, we present two convergence theorems of the Euler method to the SDE with
Poisson random measure (2.1) over a finite time interval [0, T].

At the beginning, we give a lemma based on Lemma 3.1.

Lemma 4.1. Under Assumptions 2.1 and 2.3, for any T > 0, there exists a positive constant K2(k),
dependent on k and independent of Δt, such that for all Δt ∈ (0, 1) the solution of (2.1) and the
continuous-time Euler method (3.2) satisfy

E

(

sup
0≤t≤T

∣
∣
∣x
(
t ∧ τk ∧ ρk

) −X
(
t ∧ τk ∧ ρk

)∣∣
∣
2
)

≤ K2(k)Δt, (4.1)

where τk and ρk are defined in Lemmas 2.4 and 3.1, respectively.

Proof. From (2.1) and (3.2), for any 0 ≤ t′ ≤ T , we have

E

(

sup
0≤t≤t′

∣∣∣x
(
t ∧ τk ∧ ρk

) −X
(
t ∧ τk ∧ ρk

)∣∣∣
2
)

≤ 3E

⎛

⎝sup
0≤t≤t′

∣∣∣∣∣

∫ t∧τk∧ρk

0
(a(x(s−)) − a(Z(s)))ds

∣∣∣∣∣

2
⎞

⎠

+ 3E

⎛

⎝sup
0≤t≤t′

∣∣∣∣∣

∫ t∧τk∧ρk

0
(b(x(s−)) − b(Z(s)))dW(s)

∣∣∣∣∣

2
⎞

⎠

+ 3E

⎛

⎝sup
0≤t≤t′

∣∣∣∣∣

∫ t∧τk∧ρk

0

∫

ε

(c(x(s−), v) − c(Z(s), v))p̃φ(dv × ds)

∣∣∣∣∣

2
⎞

⎠,

(4.2)

where the inequality |u1+u2+u3|2 ≤ 3|u1|2+3|u2|2+3|u3|2 for u1, u2, u3 ∈ Rd is used. Therefore,
by using the Cauchy-Schwarz inequality, (2.2) in Assumption 2.1, Lemma 3.1 and Fubini’s
theorem, we obtain

E

⎛

⎝sup
0≤t≤t′

∣∣∣∣∣

∫ t∧τk∧ρk

0
(a(x(s−)) − a(Z(s)))ds

∣∣∣∣∣

2
⎞

⎠

≤ E

(

sup
0≤t≤t′

∫ t∧τk∧ρk

0
12ds

∫ t∧τk∧ρk

0
|a(x(s−)) − a(Z(s))|2ds

)

≤ TE

(∫ t′∧τk∧ρk

0
|a(x(s−)) − a(Z(s))|2ds

)
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≤ 2TCkE

(∫ t′∧τk∧ρk

0

∣
∣
∣X(s) − Z(s)

∣
∣
∣
2
ds

)

+ 2TCkE

(∫ t′∧τk∧ρk

0

∣
∣
∣x(s−) −X(s)

∣
∣
∣
2
ds

)

≤ 2TCk

∫ t′

0
E
∣
∣
∣X
(
s ∧ τk ∧ ρk

) − Z
(
s ∧ τk ∧ ρk

)∣∣
∣
2
ds

+ 2TCk

∫ t′

0
E
∣
∣
∣x
(
s ∧ τk ∧ ρk−

) −X
(
s ∧ τk ∧ ρk

)∣∣
∣
2
ds

≤ 2T2CkK1(k)Δt + 2TCk

∫ t′

0
E

(

sup
0≤u≤s

∣
∣
∣x
(
u ∧ τk ∧ ρk−

) −X
(
u ∧ τk ∧ ρk

)∣∣
∣
2
)

ds. (4.3)

Moreover, by using the martingale properties of dW(t) and p̃φ(dv × dt), Assumption 2.1,
Lemma 3.1, and Fubini’s theorem, we have

E

⎛

⎝sup
0≤t≤t′

∣∣∣∣∣

∫ t∧τk∧ρk

0
(b(x(s−)) − b(Z(s)))dW(s)

∣∣∣∣∣

2
⎞

⎠

≤ 4E
∫ t′∧τk∧ρk

0
|b(x(s−)) − b(Z(s))|2ds

≤ 8CkE
∫ t′∧τk∧ρk

0

∣∣∣X(s) − Z(s)
∣∣∣
2
ds + 8CkE

∫ t′∧τk∧ρk

0

∣∣∣x(s−) −X(s)
∣∣∣
2
ds

≤ 8Ck

∫ t′

0
E
∣∣∣X
(
s ∧ τk ∧ ρk

) − Z
(
s ∧ τk ∧ ρk

)∣∣∣
2
ds

+ 8Ck

∫ t′

0
E
∣∣∣x
(
s ∧ τk ∧ ρk−

) −X
(
s ∧ τk ∧ ρk

)∣∣∣
2
ds

≤ 8TCkK1(k)Δt + 8Ck

∫ t′

0
E

(

sup
0≤u≤s

∣∣∣x
(
u ∧ τk ∧ ρk−

) −X
(
u ∧ τk ∧ ρk

)∣∣∣
2
)

ds,

E

⎛

⎝sup
0≤t≤t′

∣∣∣∣∣

∫ t∧τk∧ρk

0

∫

ε

(c(x(s−), v) − c(Z(s−), v))p̃φ(dv × ds)

∣∣∣∣∣

2
⎞

⎠

≤ 4E

∣∣∣∣∣

∫ t′∧τk∧ρk

0

∫

ε

(c(x(s−), v) − c(Z(s−), v))p̃φ(dv × ds)

∣∣∣∣∣

2

= 4E
∫ t′∧τk∧ρk

0

∫

ε

|c(x(s−), v) − c(Z(s−), v)|2φ(dv)ds

≤ 8TCK1(k)Δt + 8C
∫ t′

0
E

(

sup
0≤u≤s

∣∣∣x
(
u ∧ τk ∧ ρk−

) −X
(
u ∧ τk ∧ ρk

)∣∣∣
2
)

ds. (4.4)
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Hence, by substituting (4.3) and (4.4) into (4.2), we get

E

(

sup
0≤t≤t′

∣
∣
∣x
(
t ∧ τk ∧ ρk

) −X
(
t ∧ τk ∧ ρk

)∣∣
∣
2
)

≤ Δt
(
6T2CkK1(k) + 24TCkK1(k) + 24TCK1(k)

)
+ (6TCk + 24Ck + 24C)

×
∫ t′

0
E

(

sup
0≤u≤s

∣
∣
∣x
(
u ∧ τk ∧ ρk−

) −X
(
u ∧ τk ∧ ρk

)∣∣
∣
2
)

ds.

(4.5)

So using the Gronwall inequality (see [13]), we have the result (4.1) by choosing

K2(k) =
(
6T2CkK1(k) + 24TCkK1(k) + 24TCK1(k)

)
exp

(
6T2Ck + 24TCk + 24TC

)
. (4.6)

Now, let’s state our theorem which demonstrates the convergence in probability of the
continuous-time Euler method (3.2).

Theorem 4.2. Under Assumptions 2.1, 2.2, and 2.3, for sufficiently small ε, ς ∈ (0, 1), there is a Δt∗

such that for all Δt < Δt∗

P

(

sup
0≤t≤T

∣∣∣x(t) −X(t)
∣∣∣
2 ≥ ς

)

≤ ε, (4.7)

for any T > 0.

Proof. For sufficiently small ε, ς ∈ (0, 1), we define

Ω =

{

ω : sup
0≤t≤T

∣∣∣x(t) −X(t)
∣∣∣
2 ≥ ς

}

. (4.8)

According to Lemmas 2.4 and 3.2, there exists a pair of k� and Δt�1 such that

P(τk� ≤ T) ≤ ε

3
,

P
(
ρk� ≤ T

) ≤ ε

3
, ∀Δt ≤ Δt�1.

(4.9)
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We thus have

P
(
Ω
)
≤ P

(
Ω ∩ {τk� ∧ ρk� > T

})
+ P

(
τk� ∧ ρk� ≤ T

)

≤ P
(
Ω ∩ {τk� ∧ ρk� > T

})
+ P(τk� ≤ T) + P

(
ρk� ≤ T

)

≤ P
(
Ω ∩ {τk� ∧ ρk� > T

})
+
2ε
3
,

(4.10)

for Δt ≤ Δt�1. Moreover, according to Lemma 4.1, we have

ςP
(
Ω ∩ {τk� ∧ ρk� > T

}) ≤ E

(

I{τk�∧ρk�>T} sup
0≤t≤T

∣
∣
∣x(t) −X(t)

∣
∣
∣
2
)

≤ E

(

sup
0≤t≤T

∣∣∣x
(
t ∧ τk� ∧ ρk�

) −X
(
t ∧ τk� ∧ ρk�

)∣∣∣
2
)

≤ K2(k�)Δt,

(4.11)

which leads to

P
(
Ω ∩ {τk� ∧ ρk� > T

}) ≤ ε

3
, (4.12)

for Δt ≤ Δt�2. Therefore, from the inequalities above, we obtain

P
(
Ω
)
≤ ε, (4.13)

for Δt ≤ Δt�, where Δt� = min{Δt�1,Δt�2}.

We remark that the continuous-time Euler solution X(t) (3.2) cannot be computed,
since it requires knowledge of the entire Brownian motion and Poisson random measure
paths, not just only their Δt-increments. Therefore, the last theorem shows the convergence
in probability of the discrete Euler solution (3.1).

Theorem 4.3. Under Assumptions 2.1, 2.2, and 2.3, for sufficiently small ε, ς ∈ (0, 1), there is a Δt∗

such that for all Δt < Δt∗

P
(
|x(t) − Z(t)|2 ≥ ς, 0 ≤ t ≤ T

)
≤ ε, (4.14)

for any T > 0.

Proof. For sufficiently small ε, ς ∈ (0, 1), we define

Ω̃ =
{
ω : |x(t) − Z(t)|2 ≥ ς, 0 ≤ t ≤ T

}
. (4.15)
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A similar analysis as Theorem 4.2 gives

P
(
Ω̃
)
≤ P

(
Ω̃ ∩ {τk� ∧ ρk� > T

})
+
2ε
3
. (4.16)

Recalling that

ςP
(
Ω̃ ∩ {τk� ∧ ρk� > T

}) ≤ E
(
|x(T) − Z(T)|2I{τk�∧ρk�>T}

)

≤ E
∣
∣x
(
T ∧ τk� ∧ ρk�

) − Z
(
T ∧ τk� ∧ ρk�

)∣∣2

≤ 2E

(

sup
0≤t≤T

∣
∣∣x
(
t ∧ τk� ∧ ρk�

) −X
(
t ∧ τk� ∧ ρk�

)∣∣∣
2
)

+ 2E
∣∣∣X
(
T ∧ τk� ∧ ρk�

) − Z
(
T ∧ τk� ∧ ρk�

)∣∣∣
2

≤ 2K1(k�)Δt + 2K2(k�)Δt,

(4.17)

and using Lemmas 3.1 and 4.1, we get that

P
(
Ω̃ ∩ {τk� ∧ ρk� > T

}) ≤ ε

3
, (4.18)

for sufficiently small Δt. Consequently, the inequalities above show that

P
(
Ω̃
)
≤ ε, (4.19)

for all sufficiently small Δt.
So we complete the result (4.14).

5. Numerical Example

In this section, a numerical example is analyzed under Assumptions 2.1, 2.2, and 2.3 which
cover more classes of SDEs driven by Poisson random measure.

Now, we consider the following equation:

dx(t) = a(x(t−))dt + b(x(t−))dW(t) +
∫

ε

c(x(t−), v)p̃φ(dv × dt), t > 0, (5.1)

with x(0) = x(0−) = 0, where d = m = r = 1. The coefficients of this equation have the form

a(x) =
1
2

(
x − x3

)
, b(x) = x2, c(x, v) = xv. (5.2)
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The compensated measure of the Poisson randommeasure pφ(dv × dt) is given by φ(dv)dt =
λf(v)dvdt, where λ = 5 and

f(v) =
1√
2πv

exp

(

− (ln v)2

2

)

, 0 ≤ v < ∞ (5.3)

is the density function of a lognormal random variable.
Clearly, the equation cannot satisfy the global Lipschitz conditions and the linear

growth conditions. On the other hand, we have

2〈x, a(x)〉 + |b(x)|2 +
∫

ε

|c(x, v)|2φ(dv) = x
(
x − x3

)
+ x4 +

∫

ε

x2v2λ
1√
2πv

exp

(

− (ln v)2

2

)

dv

≤
(
1 + 5e2

)(
1 + x2

)
,

(5.4)

that is to say, Assumptions 2.1, 2.2, and 2.3 in Section 2 are satisfied. Therefore, Albeverio
et al. [12] guarantee that (5.1) has a unique global solution on [0,∞).

Given the stepsize Δt, we can have the Euler method

Xn+1 = Xn +
1
2

(
Xn −X3

n

)
Δt +X2

nΔWn +Xn

∫ tn+1

tn

∫

ε

vp̃φ(dv × dt), (5.5)

with X0 = 0.
And in Matlab experiment, each discretized trajectory is actually given in detail by the

following.

Algorithm

Simulate X−
n+1 := Xn + (1/2)(Xn −X3

n − 10
√
eXn)Δt +X2

nΔWn;

Simulate variable pφ(tn+1) − pφ(tn), where pφ(tn) is from Poisson distribution with
parameter λtn;

Simulate pφ(tn+1) − pφ(tn) independent random variables ιi uniformly distributed
on the interval [pφ(tn), pφ(tn+1));

Simulate pφ(tn+1) − pφ(tn) independent random variables ξi with law f(v);

obtain Xn+1 = X−
n+1 +Xn

∑pφ(tn+1)
i=pφ(tn)+1

Itn≤ιi<tn+1ξi.

Subsequently, we can get the results in Theorems 4.2 and 4.3.
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