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Abstract

Protecting secret keys is crucial for cryptography. There are some relatively insecure devices (smart
cards, mobile phones etc.) which have threat of key exposure. The goal of the forward security is to
protect security of past uses of key even if the current secret key is exposed. In this paper we propose
lattice based forward-secure identity based encryption scheme based on LWE assumption in random
oracle model. We also propose lattice based forward-secure identity based encryption scheme in the
standard model.

Keywords: lattice, identity based encryption, forward security, random oracle model, learning with
error (LWE).

1 Introduction

The concept of identity-based cryptosystem was introduced by Adi Shamir in 1984 [23]. In this new
paradigm users’ public key can be any string which uniquely identifies the user. For example email or
phone number can be public key. As a result, it significantly reduces system complexity and cost of
establishing public key infrastructure. Although Shamir constructed an identity-based signature scheme
using RSA function but he could not construct an identity based encryption and this became a long-
lasting open problem. Only in 2001, Shamir’s open problem was independently solved by Boneh and
Franklin [9] and Cocks [15].
First Canetti et al [12] presented Identity-Based Encryption in standard model. They proved the security
of scheme in selective-ID model. In the Selective-ID model the adversary must first declare which iden-
tity it wishes to be challenged before the global parameters are generated. Boneh and Boyen [7] then
provided an efficient secure scheme in selective-ID model. Boneh and Boyen [8] described a scheme
that was fully secure in the standard model, but their scheme is too inefficient for practical use. Finally,
the first practical and fully secure IBE scheme was proposed by Waters [24] in the standard model under
the Decisional Bilinear Diffie-Hellman assumption.
Lattice based cryptogrphy have arisen in recent years. Lattice based cryptography are attractive due
to their worst case hardness assumption and their potential resistance to quantum computers. Recently
Regev [22] defined the learning with errors (LWE) problem and proved that it enjoys similar worst-case
hardness properties under a quantum reduction. A number of constructions of lattice identity based en-
cryption is known [18, 13, 21, 1, 2].
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Protecting secret keys is crucial for cryptography. There are some relatively insecure devices (smart
cards, mobile phones etc.) which have threat of key exposure. The goal of the forward security is to
protect security of past uses of key even if the current secret key is exposed. The notion of forward
secrecy was first proposed by Günther [14] in 1989 and later by Diffie et al [16] in 1992 in the contexts
of key exchange protocol. A key exchange protocol is said to provide forward secrecy if compromise
of long term secret keys does not compromise the secrecy of the previously generated exchange keys,
which can be converted as forward secure interactive public key encryption scheme. The notion of non-
interactive forward security was proposed by Anderson [4] in 1997 and later formalized by Bellare and
Miner [5]. In non-interactive forward security the lifetime of the system is divided into N time interval
labled 0,1, ...,N− 1. The device initially stores the secret key SK0. After that device at beginning of
interval i computes secret key SKi at interval i using update algorithm (SKi−1, ..,) and then delete secret
key SKi−1 at interval i−1. A forward secure encryption scheme guarantees that exposer of secret key at
interval i will not compromise on the security of system for any prior time interval. But system can not
prevent the adversary from breaking the security of system for any time interval greater than i. Forward
secure encryption scheme in symmetric setting was proposed by Bellare and Yee [6]. The construction
of forward secure encryption scheme in public key setting was a open problem since the question was
first raised by Anderson [4]. Only in 2003, Anderson’s open problem was solved by Canetti et al [11]. In
this paper Canetti et al [11] constructed Binary Tree Encryption (BTE) based on billinear Diffi-Hellman
assumption. They have also proposed a method to convert forward secure PKE scheme from any BTE
scheme. Lu and Li [20] proposed efficient forward secure PKE scheme in standard model. Two forward
secure encryption scheme in identity based setting have been proposed so far [19, 25].
Chris Peikert [21] proposed lattice based BTE scheme based on Learning With Error (LWE) assumption.
Using Canetti et al [11], it can be converted into lattice based forward PKE scheme.

Our Contribution: To the best of our knowledge, there does not exist any lattice based forward-
secure identity based encryption (fs-IBE) scheme. In this paper we propose lattice based fs-IBE scheme
in random oracle model based on LWE assumption. We also propose lattice based fs-IBE scheme in
standard model. Our schemes are based on lattice based hierarchical identity based encryption (HIBE)
scheme proposed by Cash et al [13].

2 Preliminaries

2.1 Forward Secure IBE

Here definition of IBE is similar to [11, 19]. Forward secure IBE consists of five algorithms.

Setup(n,N): On input a security parameter n, outputs the master public key mpk and master secret key
msk.

Extract(mpk,msk,id): On input master public key mpk, a master secret key msk, and an identity id
∈ {0,1}∗ outputs private key corresponding to an identity id.

Update(mpk,SKid||i,id||i): On input master public key mpk, secret key SKid||i at ith time period outputs
secret key SKid||(i+1) at (i+1)th time period.

Encrypt(mpk, id||i,M): On input master public key mpk, id||i and a message M outputs ciphertext C.
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Decrypt(C,mpk,SK(id||i)): On input master public key mpk, a private key SKid||i, and a ciphertext C
outputs message M.

2.2 Selective-ID Security Model for Forward-Secure IBE

Security model is adapted from [11]. We define adaptive-ID security model using a game that the chal-
lenge ciphertext is indistinguishable from a random element in the ciphertext space. This property im-
plies both semantic security and recipient anonymity. The game proceeds as follows.

Init: The adversary submits a target identity id∗.

Setup: The challenger runs Setup(1n,N) and gives the master public parameters (mpk) to adversary
and keeps master secret key (msk) to itself.

Query Phase:

• Hash query: The adversary can issue hash query for any identity id. Adversary can repeat this
polynomial number of times for different identities adaptively.

• Extraction query: The adversary can issue a query for a private key SKid||0 corresponding to
identity id||0. Adversary can repeat this polynomial number of times for different identities(id 6=
id∗) adaptively.

Attack: The adversary issues one breakin(j) query and challenge(i,b) query, in either order, subject to
0≤ i < j ≤ N. These queries are answered as follows:

• On query breakin(j), secret key SKid|| j is computed and return to the adversary.

• On query challenge(i,b), the challenger picks a random bit r ∈ {0,1} and a random ciphertext C. If
r = 0 it sets the challenge ciphertext to C∗ = Encrypt(mpk, id∗||i,b). If r = 1 it sets the challenge
ciphertext to C∗ =C. It returns C∗ as challenge to the adversary.

Guess: The adversary outputs a guess r′ ∈ {0,1}, it succeeds if r′ = r.
We refer an adversary A as an IND-sID-CPA adversary. We define the advantage of the adversary A in
attacking fs-IBE scheme ξ as Advξ ,A(n) = |Pr[r = r′]−1/2|.

Definition 1. We say that forward-secure IBE scheme ξ is selective-ID, indistinguishable from ran-
dom if for all IND-sID-CPA PPT adversaries A we have Advξ ,A(n) is a negligible function.

2.3 Integer Lattices

A lattice is defined as the set of all integer combinations

L(b1, ...,bn) =

{
n

∑
i=1

xibi : xi ∈ Z for 1≤ i≤ n

}
of n linearly independent vectors b1, ...,bn ∈ Rn. The set of vectors {b1, ...,bn} is called a basis for the
lattice. A basis can be represented by the matrix B = [b1, ...,bn] ∈ Rn×n having the basis vectors as
columns. Using matrix notation, the lattice generated by a matrix B ∈ Rn×n can be defined as L(B) =
{Bx : x ∈ Zn}, where Bx is the usual matrix-vector multiplication. The determinant of a lattice is the
absolute value of the determinant of the basis matrix det(L(B)) = |det(B)|.
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Definition 2. For q prime, A ∈ Zn×m
q and u ∈ Zn

q , define:

Λq(A) := {e ∈ Zm s.t. ∃s ∈ Zn
q where AT s = e (mod q)}

Λ
⊥
q (A) := {e ∈ Zm s.t. Ae = 0 (mod q)}

Λ
u
q(A) := {e ∈ Zm s.t. Ae = u (mod q)}

2.4 The Gram-Schmidt Norm of a Basis

Let S be a set of vectors S = {s1, ...,sk} in Rm. We use the following notation:

• |S| denotes the L2 length of the longest vector in S, i.e. ‖S‖ := maxi|si| for 1≤ i≤ k.

• S̃ := {s̃1, ..., s̃k} ⊂ Rm denotes the Gram-Schmidt orthogonalization of the vector s1, ...,sk taken in
that order.

We refer to ‖̃S‖ as the Gram-Schmidt norm of S.

2.5 Discrete Gaussians

Let L be a subset of Zm. For any vector c ∈ Rm and any positive parameter σ ∈ R> 0, define:
ρσ ,c(x) = exp(−π

‖x−c‖
σ2 ) : a Gaussian-shaped function on Rm with center c and parameter σ ,

ρσ ,c(L) = ∑x∈L ρσ ,c(x) : the (always converging) ρσ ,c over L,
DL,σ ,c : the discrete Gaussian distribution over L with parameters σ and c,

∀y ∈ L , DL,σ ,c =
ρσ ,c(y)
ρσ ,c(L)

The distribution DL,σ ,c will most often be defined over the Lattice L = Λ⊥q for a matrix A ∈ Zn×m
q or over

a coset L = t +Λ⊥q (A) where t ∈ Zm.

Lemma 1 ([[17],Lemma 7.1]). Let Λ be an m-dimensional lattice. There is a deterministic polynomial-
time algorithm ToBasis(S,s) that, given an arbitrary basis of Λ and a full-rank set S = {s1, ...,sm} in Λ,
returns a basis T of Λ satisfying

‖T̃‖ ≤ ‖S̃‖ and ‖T‖ ≤ ‖S‖
√

m/2

.

RandBasis(S, s) ([[21]]) Randomized algorithm RandBasis(S, s) takes a basis S of some m-dimensional
lattice ∧ and a parameter s≥ ‖S̃‖

√
(logn), and outputs a new basis S of lattice ∧, generated as follows.

1. For i = 1, ...,m:

(a) Choose v← SampleBasis(S,s). If v is linearly independent of {v1, ...,vi1}, then let vi = v and
go to the next value of i; otherwise, repeat this step.

2. Output S′ = ToBasis(V,S)
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Lemma 2 ([[21],Lemma 3.3]). With overwhelming probability, S′← RandBasis(S,s) repeats Step 1a
at most O(m2) times, and ||S̃′|| ≤ s

√
m. Moreover,for any two bases S0 , S1 of the same lattice and

any s≥ ||S̃i||
√

(log n) for i = {0,1} RandBasis(S0,s) and RandBasis(S1,s) are within negl(n) statistical
distance.

Theorem 1 ([[3], Theorem 3.2]). Let q≥ 3 be odd and m := d6nlogqe.
There is probabilistic polynomial-time algorithm TrapGen(q,n) that outputs a pair (A ∈ Zn×m

q ,S ∈ Zn×m)
such that A is statistically close to a uniform matrix in Zn×m

q and S is a basis for Λ⊥q (A) satisfying

‖S̃‖ ≤ O(
√

n logq) and ‖S‖ ≤ O(n logq)

with all but negligible probability in n.

Theorem 2 ([[13], Lemma 3.3]). Let A = [A1, ...,Ak], where each Ai ∈ Zn×m
q . For S ⊆ [k], S =

{i1, ..., i j}, we write AS = [Ai1 , ...,Ai j ]. Let n,q,m,k be positive integers with q ≥ 2 and m ≥ 2n log q.
There exists a PPT algorithm ExtendBasis, that on input of A∈ Zn×km

q , a set S⊆ [k], a basis BS for Λ⊥q (AS),
and an integer L≥ ‖B̃S‖.

√
km.w(

√
km) outputs B← ExtendBasis(A,BS,S,L). With overwhelming prob-

ability B is a basis of Λ⊥q (A) with ‖B̃‖ ≤ L.

2.6 The LWE Hardness Assumption

The LWE (learning with error) hardness assumption is defined by Regev [22].

Definition 3. Consider a prime q, a positive integer n, and a distribution χ over Zq, typically taken to be
normal distribution. The input is a pair (A,v) from an unspecified challenge oracle©, where A ∈ Zm×n

q
is chosen uniformly. v is chosen uniformly from Zm

q or chosen to be As+e for a uniformly chosen s ∈ Zn
q

and a vector e ∈ Zm
q . When v is chosen to be As+e for a uniformly chosen s ∈ Zn

q and a vector e ∈ Zm
q an

unspecified challenge oracle© is a noisy pseudo-random sampler©s. When v is chosen uniformly an
unspecified challenge oracle© is a truly random sampler©$.
Goal of the adversary is to distinguish with some non-negligible probability between these two cases.
Or we say that an algorithm A decides the (Zq,n,χ)-LWE problem if |Pr[A©s = 1]−Pr[A©$ = 1]| is
non-negligible for a random s ∈ Zn

q .

Definition 4. Consider a real parameter α = α(n) ∈ {0,1} and a prime q. Denote by T = R/Z the
group of reals [0,1) with addition modulo 1. Denote by ψα the distribution over T of a normal variable
with mean 0 and standard deviation α/

√
2π then reduced modulo 1. Denote by bxe= bx+ 1

2c the nearest
integer to the real x ∈ R. We denote by ψα the discrete distribution over Zq of the random variable
bqXemod q where the random variable X ∈ T has distribution ψα .

Theorem 3 ([22]). If there exists an efficient, possibly quantum, algorithm for deciding the (Zq,n,ψα )-
LWE problem for q > 2

√
n/α then there exists an efficient quantum algorithm for approximating the

SIVP and GapSVP problems, to within O(n/α) factors in the l2 norm, in the worst case.

3 Lattice Based Forward Secure IBE Scheme

Our scheme is similar to scheme of [13] and [21]. Now we describe our new forward secure-IBE scheme
as follows.
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Setup(n,N): On input a security parameter n, we set the parameters q,m accordingly. Let H : {0,1}∗→
Zn×m

q be hash function. Next we do the following.

1. Use algorithm TrapGen(q,n) to generate a matrix A ∈ Zn×m
q and a short basis TA for Λ⊥q (A) such

that ‖T̃A‖ ≤ O(
√

n logq).

2. For each j ∈ [N] = {0,1,2, ...,N} and an arbitary identity id we define the associated parity check
matrix Aid,[ j]

Aid,[ j] = [A,Aid,0,Aid,1, ...,Aid, j] ∈ Zn×( j+2)m
q , where Aid,i = H(id||i) ∈ Zn×m

q

3. We choose y← Zn
q uniformly.

4. Output the master public key and master secret key,
mpk = (A,y), msk = TA.

Extract(mpk,T,id): PKG generates the secret key for a user identity id ∈{0,1}∗ by calling the function
RandBasis(SampleBasis(A,T,Aid,0)) (theorem 2 and lemma 2). Output of function SKid||0 is the secret
key of this user.

Update(mpk,SKid||i,id||i): Given secret key at ith time period SKid||i user can find secret key at i+1th

time period as follows.
SKid||i+1 = RandBasis(ExtBasis(SKid||i,Aid,[i+1])) by theorem 2 and lemma 2.
Output SKid||i+1.

Encrypt(mpk,id||i,b): To encrypt a bit b ∈ {0,1}, we do the following.

1. We compute Aid,[i] = [A,Aid,0,Aid,1, ...,Aid,i] ∈ Zn×(i+2)m
q , where Aid,i = H(id||i) ∈ Zn×m

q .

2. we choose s← Zn
q uniformly.

3. Compute p=AT
id,[i]s+e∈ Zm(i+2)

q , where e← χm(i+2). Here χm(i+2) is error (gaussian) distribution.

4. Compute c = yT s+bbq
2c+ e, where e← χ . Here χ is error (gaussian) distribution.

5. Output the ciphertext C = (p,c).

Decrypt(C,mpk,SK(id||i)): To decrypt C = (p,c), we do the following.

1. s← invert(mpk,SK(id||i), p).

2. Now we compute b′ = c− yT s.

3. If b′ is closer to 0 than bq
2c mod q output 0 otherwise output 1.

It is required that above forward secure IBE scheme has the correctness property, i.e, for any index i∈
[0,N] and secret key SKid||i and any message bit b we have b=Decryption(mpk,SKid||i,Encryption(mpk, id||i,b)).

Theorem 4. If hash function H is modeled as random oracle, then our lattice forward-secure IBE is
IND-sID-CPA (semantic) secure assuming the LWEq,χ is hard or AdvB,LWEq,χ (n) =

1
N Advχ,A(n).
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Proof: Here proof is similar to proof of theorem 4.1 of [13].
We now show semantic security of fs-IBE in the random oracle model. We will show that if there exist a
PPT adversary A that breaks fs-IBE scheme with non-negligible probability then there must exist a PPT
adversary B that solves LWE hard problem by simulating views of A. We assume that

• For each i ∈ [N], A always makes polynomial number of QH different H-queries of interval i.

• Whenever A makes an H-query of interval i, we assume that it has queried H-query of interval
j < i.

• Whenever A submits a user secret key query, we assume that it has made all relevant H queries
beforehand.

Adversary A declares an identity ID∗ that it intends to attack. Adversary B(works as challenger for
adversary A) first pick i∗ ∈ [N]. Here i∗ is a guess for the i of challenge (i,b) query. Now B obtains
(i∗+2)(m+1) LWE samples, which get parsed as
(A∗i , p∗i ) ∈ Zn×m

q ×Zn
q (0≤ i≤ j∗) and (y∗,c∗) ∈ Zm

q ×Zq.

Setup: Adversary B sets master public key to be mpk = A = A∗0 (m samples from LWE oracle). Next
Adversary B simulates the view of A as follows:

• Hash H Queries: A’s hash query on id∗||0, adversary B returns A1 ∈ Zm×n
q (samples obtained from

LWE oracle). Similarly on A′s hash query on id∗||1, ..., id∗||N, adversary B returns A2,A3, ...,AN

respectively. For A’s hash query on identity id 6= id∗, adversary B run the trapdoor algorithm
TrapGen to generate A∈ Zn×m

q with corresponding trapdoor T ∈ Zm×m. Adversary B returns matrix
A and stores the tuple (id,A,T ) in list H.

• Extraction Queries: When adversary A asks for the secret key for the identity id 6= id∗. As we have
assumed that before extraction query adversary A would have made hash query for it, so adversary
B will check the list H and returns the corresponding T to adversary A.

Attack:

• Challenge(i,b): When adversary A queries challenge (i,b), the adversary B picks a random bit
r ∈ {0,1} and a random ciphertext C. If r = 0 it returns challenge ciphertext to be (p∗,C∗) else it
returns random ciphertext C.

• Breakin(j): When adversary A queries breakin(j), if i ≤ j ≤ i∗ then adversary B outputs a random
bit and game abort (since B can not answer extraction queries for j ≤ i∗). Otherwise adversary
B run the trapdoor algorithm TrapGen to generate A j ∈ Zn×m( j+1)

q with corresponding trapdoor
Tj ∈ Zm( j+1)×m( j+1)

q and then returns Tj.

When adversary A terminates with some output, adversary B terminates with same output. Since form
of ciphertext is same as form of LWE problem, so if adversary A breaks the scheme then there exist
adversary B which solves LWE hard problem.
Since probability that i = i∗ is 1

N , so the probability that B does not abort during simulation is 1
N .

AdvB,LWEq,χ (n) =
1
N Advχ,A(n). Hence our scheme is semantic secure.
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4 Lattice Based Forward Secure IBE Scheme in the Standard Model

Cryptographic schemes which are secure in random oracle model does not mean that these schemes will
be secure when the random oracle model is instantiated by real hash function. Therefore constructing
schemes in standard model is an important goal [10]. Our scheme is similar to HIBE scheme in selective
model of [13]. Now we describe our new lattice based forward secure IBE scheme in standard model as
follows.

Setup(n,N): On input a security parameter n, we set the parameters q,m accordingly. Let H : {0,1}∗→
{0,1}λ be real. H(id||i) = (t1||t2||...||tλ ) where ti ∈ {0,1}. Next we do following.

1. Use algorithm TrapGen(q,n) to generate a matrix A ∈ Zn×m
q and a short basis TA for Λ⊥q (A) such

that ‖T̃A‖ ≤ O(
√

n logq).

2. For 0 ≤ i ≤ N, 1 ≤ u ≤ λ and b ∈ {0,1} sample the matrices Ci,u,b ∈ Zn×m
q uniformly and inde-

pendently and also sample y ∈ Zn
q uniformly. For each j ∈ [N] = {0,1,2, ...,N} and an arbitary

identity id we define the associated parity check matrix Aid,[ j] as

Aid,[ j] = [A,Aid,0,Aid,1, ...,Aid, j] ∈ Zn×(( j+1)λ+1)m
q ,

where Aid, j = [C j,1,t1 , ...,C j,λ ,tλ ] ∈ Zn×λm
q

for H(id|| j) = (t1||t2||...tλ ) ∈ {0,1}λ

3. Output the master public key and master secret key,

mpk = (A,y,(Ci,u,b) 0≤i≤N
1≤u≤λ

b∈{0,1}

), msk = TA

Extract(mpk,T,id), Update(mpk,SKid||i, id||i), Encrypt(mpk,id||i,b) and
Decrypt(C,mpk,SK(id||i)) function is same as Extract, Update, Encrypt and Decrypt function of section 3
lattice based forward-secure IBE scheme.

Theorem 5: Our lattice based forward-secure IBE is IND-sID-CPA (semantic) secure assuming the
LWEq,χ is hard or AdvB,LWEq,χ (n) =

1
N Advχ,A(n).

Proof: Here proof is same as proof of theorem 4 except how adversary B sets the matrix Aid|| j.
Adversary A declares an identity ID∗ that it intends to attack. Adversary B first pick i∗ ∈ [N]. Here i∗

is a guess for the i of challenge(i,b) query. Now B obtains 2λ (i∗+1)(mλ +1) LWE samples, which get
parsed as
(C j,i,ti , pi) ∈ Zn×m

q ×Zn
q for (0≤ j′ ≤ i∗,1≤ u≤ λ , ti ∈ {0,1}) and (y∗,c∗) ∈ Zn

q ×Zq. Adversary B sets
master public key to be mpk = A = A∗0 (m samples from LWE oracle). Based on hash value H(id|| j) =
(t1, t2, ..., tλ ) ∈ {0,1}λ , adversary B sets the matrix Aid|| j.
This proof differs from proof of theorem 4 by number of LWE samples required for adversary B. Number
of LWE samples required in this proof is approximately equal to 2λ times LWE samples required in proof
of the previous theorem 4.

125



Lattice Forward-Secure Identity Based Encryption Scheme Singh, Pandurangan and Bannerjee

5 Conclusion

We have proved our schemes to be semantically secure based on LWE assumption. Our schemes may be
improved by adapting them to ideal lattices. Construction of CCA secure lattice-based forward-secure
IBE scheme is open problem. Another open problem is to construct lattice-based forward-secure HIBE
scheme .
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