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Natural Confection in Enclosed Porous 
Media With Rectangular Boundaries 
Numerical methods are used to solve the field equations for heat transfer in a porous 
medium filled with gas and bounded by plane rectangular surfaces at different tempera­
tures. The results are presented in terms of theoretical streamlines aiul isotherms. 
From these the relative increases in heat transfer rate, corresponding to natural convec­
tion, are obtained as functions of three-dimensionless parameters: the Darcy number 
Da, the Rayleigh number Ra, and a geometric aspect ratio L/D. A possible corre­
lation using the lumped parameter Da Ra is proposed for Da Ra greater than about 40. 

Introduction 

T, I HE work reported proposes a theoretical model for 
the motion of a fluid when it is heated in an enclosed porous 
medium bounded by solid plane surfaces which are different in 
temperature. The model yields a theoretical rate of heat trans­
fer between these surfaces. This is related to the problem of 
radial heat transfer from the wall of a nuclear power reactor core, 
through a multishield structure containing air spaces or porous 
insulating material, to the pressure vessel. 

Most of the studies on natural convection in enclosed spaces 
have been related to rectangular cavities where an air gap is used 
for insulation. In these and other cases, it is important to de­
termine the rates of heat transfer across the gap which result 
from a temperature difference between the opposing faces. 
Theoretical analysis of the problem usually began with the 
fundamental differential equations of conservation of mass, 
momentum, and thermal energy, together with an appropriate 
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equation of state. Where the curvatures of the enclosing sur­
faces are significant, the problems are generally treated by using 
cylindrical geometry for which the rectangular geometry is an 
asymptote. For natural convection in porous media, the prob­
lem has been treated similarly by expressing the convective flow 
in terms of some theoretical model, e.g., Darcy's law. 

Early theoretical and experimental studies of convective flow 
of a fluid in a porous medium were made by Morton and Rogers 
[I] ,3 Morrison, Rogers, and Ilorton [2], Rogers and Morrison 
[3], Rogers, Schilberg, and Morrison [4], in 1945-1951, in 
connection with the distribution of salt in subterranean sand 
layers. In recent years, in a study of the motion of underground 
water with particular reference to geothermal activities in New 
Zealand, Wooding [5-11], Elder [12-15].. and McNabb [16], 
1957-1967, have reported results on the structure of the flow 
field and corresponding heat transfer rates for convection 
of fluid in a porous medium owing to heat generation 
from below. The criterion for the onset of convective flow was 
predicted theoretically by Lapwood [17] in 1948, and confirmed 
experimentally by Kat to and Masuoka [18] in 1967. In these 
studies the term representing viscous forces was neglected in the 
equation of motion, which was derived from Darcy's law. This 
may lead to significant errors near the solid boundaries unless a 
boundary-layer effect is introduced. In a recent paper, two of 
the present authors, Chan and Ive3r [19] 1967, derived the field 
equations for natural convection in enclosed porous media using 
a modified form of Darcy's law which takes into account the 

3 Numbers in brackets designate References at end of paper. 

.Nomenclature.. 

A 

Co 

c„ 

D 

Da 

angle of inclination, Fig. 1, rad 

dimensionless constant 

specific heat of fluid at constant 

pressure, Btu/ lb deg F 

width of porous bed, ft 

D2 

l'\ = 

Gr = 

Q 

K 

- = Darcy number, dimension-

less 

percentage convergence factor, 

percent 

p2
g/3D3Ar __ (Ti - T2)gD3 

= Grashof number 

gravitational acceleration, ft/hr2 

permeability of porous medium, 
ft2 

/veO — 

K = 

L = 

Pr = 

V = 

enhanced, or effective, thermal 
conductivity of gas-filled por­
ous medium, including convec­
tive transfer, B tu /hr ft deg F 

effective thermal conductivity of 
porous medium filled with stag­
nant gas, Btu /hr ft deg F 

enhanced, or effective, thermal 
conductivity of fluid in a cav­
ity, including convective trans­
fer, B tu /hr ft deg F 

thermal conductivity of fluid, 
Btu /hr ft cleg F 

height of porous bed, ft 
v_ = 0&P 

a ki 

mensionless 
pressure of fluid 

Ra (r, Tt)gD> 
= Rayleigh 

= Prandtl number, di-

TiOiv 

number, dimensionless 
temperature, deg F; 2\, '1\ 

= temperatures at hot and 
cold walls, respectively, Fig, 1 

the ;r-component of the super­
ficial fluid velocity, i.e., the 
volume flow rate per unit 
cross-sectional area of bed, 
ft/hr 

the jy-component of the super­
ficial velocity, ft/hr 

distance along the rectangular 
coordinate axis which is di­
rected at angle A to the hori­
zontal plane, Fig. 1, ft 
(Continued on next page) 
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lop)/ 

T i>T , 

Horizontal 

Fig. 1 Coordinates of rectangular geometry notation 

viscous forces (Brinkman [20-22], 1947-1949). These equa­
tions may be solved numerically, under suitable boundary con­
ditions, to yield useful results and criteria for design. 

Theory 
The theory is limited throughout to steady state conditions, 

for which the four equations governing the system are 

P = pen 
V-u = 0 

Vp + 3 + vV2u 

u-VT = aXJ2T 

(1) 

(2) 

(3) 

(4) 
This formulation may be simplified by considering only the 

two-dimensional motion of the fluid in a space of rectangular 
cross section filled with unconsolidated particles. 1\ and T% in 
Fig. 1 are the absolute temperatures of the hot and cold bounda­
ries, respectively. The theory is based on the following assump­
tions: (a) the temperature difference (Ti — T%) is small com­
pared with T2; (b) the viscosity, density, and thermal conduc­
tivity of the fluid are constant except for the effect of density 
variation in producing buoyancy force; (c) the fluid is incom­
pressible, and (d) viscous heat dissipation may be neglected. 

The superficial velocity u in equations (2) to (4) is averaged 
over a region of space small with respect to macroscopic dimen­
sions in the flow system but large with respect to the pore size. 
Equation (3), the equation of motion, is the Darcy's law model 
for the flow regime where the damping force and the viscous 
force are of the same order of magnitude. In the energy equa­

tion, equation (4), the equivalent thermal diffusivity, ae, is de­
fined by 

cte = kc,,/pCp (5) 

where kei> is an equivalent thermal conductivity' of the porous 
medium, for nonflow conditions, taking into account conduction 
and radiation effects. Methods for estimating ke0 have been 
proposed by Smith [23], 1956, Yagi, et al. [24], 1961, and others. 
Recently, Kat to and Masuoka [18], 1967, verified experimentally 
that (5) is the correct form for a„ i.e., the equivalent thermal 
diffusivity in the energy equation should be defined as the 
equivalent stagnant thermal conductivity of the porous-medium 
divided by the specific heat capacity of the fluid. 

Boundary conditions of practical interest which are suitable for 
numerical calculations are: (a) uniform temperatures, or heat 
fluxes, or specified temperature or heat-flux distributions, on the 
two vertical faces of the space; and (6) perfect insulation, or 
specified temperature distributions, along the horizontal bounda­
ries. 

In Cartesian coordinates equations (1) to (4) take the forms 

I dp 

Pi dx 

1 dp 

P-i dy 

dT 
u 

dx 

dp dT 

p. Tt 

du dv 
(- — = o 

dx by 

• i (Pl ~ p \ i (dhl
 _ L

 d h l \ 

. 1 Pi - p\ . (&v , <>2v\ 
-gm*A\-,H )+VW + by>) 

dT /d2T d2T\ 

dy " \ d x 2 dy2 / 

(6) 

(7) 

(8) 

(«) 

(10) 

K 

The boundary conditions are: 

u = v = 0, T = Ti, at y = 0, for 0 < x < L ( t l ) 

u = v = 0, T = 1\ at y = D, for 0 <x < L (12) 

dT 
M = !> = <) , 

dx 
= 0, at x = 0 and L, for 0 < y < D 

0 < A < 
2 

(13) 

(14) 

Equations (6) to (10) may be made dimensionless by introduc­

ing: 
1 The relative distances 

X ' H 

for 0 < X < - , 0 < Y < 1. 

1 
D 

(15) 

-Nomenclature-

X = — = relative distance on x-axis 

y = distance along the rectangular co­
ordinate axis which is directed 
at angle A to the vertical 
plane, Pig. 1, ft 

Y = j - = relative distance on ;/-axis 

a = thermal diffusivity, ft2/hr 

kc. 
ae pCP 

= equivalent, or effective, 

thermal diffusivity in porous 
medium, ft2/hr 

13 = thermal coefficient of volumetric 
expansion, ft3/ft3 deg F 

AT = [Ti — Ti) = temperature dif­
ference 

0 = = relative temperature 
7'i - Ti 

difference, dimensionless; 0 l7 = 

elements in the field matrices 
for Q 

p. = viscosity of the fluid, lb /ft hr 

v == - = kinematic viscosity of the 
P 

fluid, ft2/hr 
p = density of the fluid, lb/ft; p2 = 

value of p at T = T-i 
\p = stream function, dimensionless; 

ipij = elements in the field matrices 
for ij/ 
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2 The dimensionless stream function \p, defined by 

ae dtp a„ bip 

3 The relative temperature difference 

7', - '1\ 

for 0 < 6 < 1. 
4 The dimensionless groups 

( 7 \ - 7'2)f/D3 

T,aev 
= Ra = Gr Pi 

£ - Da 
ir-

(16) 

(17) 

(18) 

(19) 

which the authors will term the Darcy number, after Henry 
Darcy who laid the foundation for the study of laminar How 
through porous media. 

The resulant field equations for ip and 9 are 

V V = - ^ V~4> + Ra (sin A - ; ; - cos /I & 

Da d F dA 

V20 WW 
a(A', r) 

(20) 

(21) 

where 

and 

V = = V 2 ( V 2 ) 

= dA2 + d Y°-

d(9, \fT)_ = Zd_ ty df? dxp 

i>(X, F) = dA d F ~ d F dA 

with the following boundary conditions: 

= 1, at 7 = 0, forO < X < 
dv£< dii 

^ dA d F 

diA di/-
at F = 1, for (XX < 

L 
D 

(22) 

L 

b 
(23) 

* dX d F 
— = 0, at X = 0 and - , 
dA D 

0 < A < 

for 0 < F < 1 (24) 

(25) 

For given A the solutions of equations (20) and (21) are 
uniquely determined by the three-dimensionless parameters Da, 
Ra, and L/D, to give the scalar fields \p and 6, with the associated 
streamlines and isotherms. 

The case of practical importance is one for which the side sur­
faces are vertical, i.e., A = TT/2, when equation (20) becomes 

W = -L VV + Ra ^ 
Da d F 

(26) 

The relative increase in heat transfer rate owing to convective 
flow is given by (Batchelor [25], 1954; Chan and Ivey [19], 1967) 

i CL/D 

« = ^ Jo d F 
dX (27) 

where kee is the enhanced equivalent, thermal conductivity which 
includes the effect of conduction, convection, and radiation. 
Hence the problem may be expressed parametrically as 

1^ 
= /[ l )a , Ra, L/D] (28) 

Numerical Methods 
The two field equations, (26) and (21), are solved subject to 

the boundary values given by equations (22), (23), and (24). 
Since Da is small the first of the field equations is transformed to 

V2i/< = Da V*\P - Ra 
i>6_' 

d F 
(29) 

Equations (29) and (21) are then solved by representing the 
finite-difference forms of the derivative components of the right-
hand sides by matrix operators (Woodhead and Kettleborough 
[26], 1903; De Vahl Davis, and Kettleborough [27], 1965). 

Since for L/D > 5.6, the number of mesh points makes the 
matrix method prohibitive, the present method is confined to the 
results for four values of the ratio L/D: 0.2, 0.5, 1, and 5.6. 

As the field matrix technique has been described elsewhere, 
(see [26, 27]) only the main features will be given here. The 
finite-difference formulas of Bickley ([28-30], 1939-1948) are 
used to construct, differential operators for 

d1 d1 d2 d2 d_ _d_ 

dA^' d F 1 ' dA2 ' dF 2 ' dA' d F ' e tC" 

An initial estimate is made for [\f/] and [0], of \ptj = 0 every­
where, and the temperature field is assumed to be linearly dis­
tributed, Ojj = F, . 

The right-hand side of equation (29) is then evaluated using the 
initial [\p] and the differential operators. The improved value 
for [t/d is found by the inversion of [V2] and use of the extrapo­
lated Liebman method. 

The new estimate of [\p] together with the old estimate of [d] 
is used to evaluate the right-hand side of equation (21) in a similar 
manner to that just described, giving a new estimate of [8]. 
This completes one iterative cycle. New and old values of [tb] 
and [6] are compared for satisfactory convergence. Iteration 
continues until convergence is satisfactory. 

Upon completion of solution for a particular Da and Ra, the Ra 
is increased and the old solution is used as initial values for the 
new problem. Ra is continually increased until convergence is 
no longer obtainable. 

Computations 
The computer used is an IBM 360/50H. 
For the square geometry, where L/D = 1, a mesh size of Vic is 

used, giving (11 X 11) field matrices. This in turn produces 
operators of order (81 X 81) and (99 X 99) to be inverted for 
solution of equations (29) and (21), respectively. 

For the rectangular case, where L/D = 5.6, a mesh size of Vs 
is used on the shorter side, producing field matrices of order (6, 
29), and inverse operators of order (108, 108) and (116, 116). 

The inversion is performed by the standard Gauss-Jordan 
method with good results. These are kept on magnetic tape for 
frequent use. 

The criterion used for convergence is 

LjJJ_ I ]£_[ l_J X m0 < Fc percent 

The value chosen for Fc percent is usually 0.001 percent. This 
test is also applied to the 6 field. 

One full iteration cycle takes approximately 2 sec. The 
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number of iterations required for convergence varies greatly 
ranging from 1 to about 200, being dependent on the L/'D con­
figuration, the value of Fc, the product of Da and Ra, and the 
weighting factor in the extrapolated Liebman method. 

Initial results are obtained for 

Da = 10-10, 10-", 10- 10" 1 

Ra = 1, 10, lO2, 109, 1011 

(30) 

(31) 

For a fixed value of Da, the computation is commenced at 
Ra = 1, increasing Ra in steps of powers of 10 until convergence 
is no longer obtainable. For the L/D = 1 geometry for the 
11 values of Da given by equation (30), convergence is not 
achieved at Ra = 1012, 10", 1010, 109, 10s, 107, 10°, 106, 1, 1, 1, 
respectively. Final results are then obtained for small incre­
ments of Ra close to values where convergence failed to be 
achieved. 

For a fixed value of Da, if Da Ra > 130 and Da is just low 
enough for convergence, the 6 field elements exceed 1 at points 
corresponding to the upper corner of the hot wall and fall below 0 
at those corresponding to the lower corner of the cold wall. 
These are obviously extraneous results since, from physical con­
siderations, no temperature can be higher than 1 or lower than 0 
for constant temperature walls. This apparent anomoly may be 
due to the use of too few mesh points. Further work employing 
an iterative numerical technique, incorporating finer mesh, seems 
to confirm this. Likely localized secondary flow effects, similar 
to those noted by Elder [13], would first take place at those 
corners where more mesh points may therefore be required. 
Moreover, these extraneous results may indicate the onset of 
physical instability (transition from laminar to turbulent flow) 
and/or mathematical instability (limit of applicability of the sys­
tem equations). 

Results and Discussion 
Since the present numerical method depends largely on the in­

version matrix [V~2], this matrix was first established. The 
determinants of the inversion matrices for all cases studied, 
L/D = 0.2, 0.5, 1, 2, 5.6, and 10, were also calculated. These 
had large values of the order of 1010, indicating that the matrix 
[V2] is noiisingular which means its inverse exists and that the 
linear set of equations are well-conditioned. For a given 
geometry, i.e., fixed L/D, varying the mesh sizes did not appear 
to have significant effect on the rate of convergence or on the final 
results. 

The theoretical isotherms and streamlines for the square 
geometry, at Da = 10 - 4 and Ra = 10', are compared with the 
results of Poots [31], 1958, for a square cavity, also at Ra = 104. 
Fig. 2 shows the predicted relative increase in heat transfer rate 
corresponding to convective flow, as a function of the Rayleigh 
number, for Da = 10~~4. This is compared with the analytical 
results of Poots up to Ra = 104, and with the experimental result 
of Mull and Reiher (quoted by Jakob [32], 1949) for 10' < Ra 
< 105, the correlations being 

Poots: - = 0.16 Ra9 Ra < 104 (32) 

Mull and Reiher: -' = 0.18 Ra^CL/D)-" - 1 1 , 
K 

104 < Ra < 10s (33) 

where kg is thermal conductivity of the fluid, and ke is the en­
hanced, or effective, thermal conductivity on account of convec­
tive flow. 

The results of Poots were obtained for a square cavity uni-

3-0 

^ 2-5 

I -< 
rr 

>- 20 
H 

O 

Q 

o 

< 
rr 
UJ 
x 

10 

- LEGEND 

No. I - SQUARE CAVITY, ANALYTICAL 

RESULT (POOTS 1958) 

No.2- SQUARE CAVITY, EXPERI- 2 / 
MENTAL RESULT! JAKOB 1949) 

-No. 3 - SQUARE POROUS MEDIA, 
NUMERICAL RESULT 
(THIS WORK) 

I02 I03 I04 I05 I06 

RAYLEIGH NUMBER Ra =[(T, ~T2)gD3 /T2 a v] 

Fig. 2 Variation of heat transfer with Rayleigh number 

formly heated at the right-hand-side vertical wall. Hence the 
streamlines for the two cases have opposing directions. Also, in 
Poots' calculations, it was assumed that the temperature dis­
tribution along the horizontal end walls is linear. This com­
parison seems to indicate that for a given geometry and at a 
given Rayleigh number, the presence of a porous material in an 
enclosed space would considerably modify the temperature and 
velocity fields: reducing the rate of convection. Fig. 2 indi­
cates that the present theory predicts the following: (i) for 
Da = 10~4, below Ra = 105 the rate of heat transfer through an 
enclosed porous medium is substantially the same as pure con­
ductive transfer (in addition to radiation); (ii) above Ra = 105, 
natural convection produces an enhancement of the transfer rate 
similar to that which occurs at Ra = 103 for an enclosed cavity; 
and (iii) the rate of increase of heat transfer also varies ap­
proximately as the one-fourth power of the Rayleigh number. 

Figs. 3 and 4 show isotherm and streamline patterns for the 
square geometry: Da = 10-"6, and Ra = 107. Figs. 5 and 6 
show some of the corresponding patterns for the rectangular 
geometry, where L/D = 5.6. Clearly the patterns predict that 
the following occur as Ra increases: 

1 A gradual and increasing development of convective 
motion, accompanied by distortion of the temperature field as 
compared with that for pure conduction. 

2 A gradual development of boundary layers, downward on 
the cold wall and upward on the hot wall. 

These predictions are consistent with the known phenomenon of 
natural convection in enclosed cavities. 

From these \(/ and d maps the following information may also 
be derived: (i) vertical and horizontal temperature gradients, 
d0 £)0 
— and ——:; (ii) vertical and horizontal velocity components u and 
oX d r 

•A v (from equation (16)); (iii) the local speed, (u2 + vr) ' ! , and hence 
localization of stagnation regions; and (iv) the distribution of heat 

transfer coefficient along the vertical walls, from ( — ) 
\ d F / F = 0 and 1 

In Fig. 7 the parameter kee/ka, of equation (27) is plotted 
against Ra for various values of Da with the square geometry. 
Similar plots are obtained showing corresponding results for the 
other geometries. The plots show the following: 
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= 0 

(Da-Ra) =10 

Fig. 3 Isotherms for Da = 10~5, Ra = 10', t /D = 1.0 

(Da-Ra)= IO 

Fig. 4 Streamlines for Da = 10~5, Ra = 108, L/D = 1.0 

1 The curves are approximately parallel and equally spaced, 
so that for fixed kec/k,o, Da decreases by powers of 10 as 
Ra increases by powers of 10. Hence, for a given value of kee/ke0, 
Ra = constant/Da. This implies that kcJkea is uniquely deter­
mined by Da Ra, or kee/keii = / (Da Ra) for given L/D which is 
predicted by equation (28). 

2 The critical value of Ra, i.e., the value at which the onset 
of convection occurs, increases exponentially with exponentially 
decreasing Da. 

3 For fixed values of Da, the ratio kce/kcii varies exponen­
tially, with Ra; and for fixed Ra, it varies exponentially with Da. 

I t would seem therefore that, for fixed L/D, the ratio kee/keo 
varies exponentially with Da Ra. This is verified in Fig. 8 in 
which keJke<l is plotted against Da Ra on logarithmic coordinates. 
For Da Ra > 40, the kce/kco values increase beyond unity, generat­
ing unique curves which are approximately linear and parallel 
for each of the six geometries studied. Hence an equation ex­
pressing a tentative correlation with these parameters may take 
the form: 

f(L/D)(Da. Ra)c'», 

where Co is a dimensionless constant (Co 
equation (28). 

for Da Ra > 40 (34) 

0.7). This confirms 

cvj o 
6 o 

Ra =10- Ra = l 0 6 Ra = I 0 7 

Fig. 5 Isotherms for Da = 10"5 , Ra = 105, 106, and 107, L/D = 5.6 

Ra = l 0 5 Ra = l 0 D 

Fig. 6 Streamlines for Da ~ 10~5, Ra 10s 

Ra =I07 

106, and 107, L/D = 5.6 

That Da Ra would be an approximate criterion of heat transfer 
in the present system may be seen from equation (26). The 
left-hand-side of this equation represents the viscous forces which 
may be small. If they are neglected, the equation becomes 

V V + Da Ra 
dY 

= 0 (35) 
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*ee 
keo 

Ra 
Fig. 7 Variation of thermal conductivity ratio kce/keft with Ra for various values of Da, square 
geometry {L/D = 1.0) 

Da.Ra 

Fig. 8 Correlation of thermal conductivity ratio kee/keo with lumped 
parameter Da Ra 

I t may be of interest to note that the criterion for the onset of 
convective flow of fluid in a porous medium, heated from below, 
is given by: 

Da Ra = 4TT2 = 39.5 (36) 

a result deducible from the analysis of Lapwood [17] who used 
equation (35), and from the experimental work of Kat to and 
Masuoka[18]. 

The function f(L/D) may be examined by a plot of heJke<s 

versus L/D for fixed values of Da Ra, Fig. 9. I t appears that 
the relative increase in the heat transfer rate has a maximum 
value in the vicinity of the L/D ratio of 1.5, a result which is 
similar to the case of the enclosed cavity (Ilirata, et al. [33] 1967). 
At the two limits of the L/D ratio: as L/D -* co (L -*• co, or 
D -*• 0), and L/D -*• 0 (L —* 0, or D -* c°), natural convection is 
either suppressed owing to increasing resistance to flow (for the 
cases L —»• 0, and D ~+ 0), or it is dominated by pure conduction 
(for the cases L —*• •*>, and D —»- co). Hence the ratio fcM/fc«o 
approaches unity at these limits, when it may have a maximum 
value between them. At L/D = 1.5, it seems reasonable to ex­
pect that a balance of these effects occur and hence the relative 
increase in the heat transfer rate reaches a maximum. 

Fig. 9 Variation of thermal conductivity ratio kee/l<co with L/D for various 
values of the lumped parameter Da Ra 

Conclusion 
The analysis presented suggests a correlation of heat transfer 

rate in a porous medium bounded by surfaces at different tem­
peratures. Theoretical flow patterns for an enclosed fluid, and 
temperature distributions within the medium, were obtained by 
a numerical method. These patterns are at least qualitatively 
consistent with known convective phenomenon. Rapid con­
vergence for the numerical technique may be achieved by using 
field matrices and an inversion matrix. 
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