Drop the Phone and Talk to the Physical World:
Programming the Internet of Things with Erlang

Alessandro Sivieri, Luca Mottola, Gianpaolo Cugola
Politecnico di Milano
DeepSE Group, Dipartimento di Elettronica e Informazione
Piazza L. da Vinci, 32 Milano, Italy
{sivieri,mottola,cugola} @elet.polimi.it

Abstract—We present ELIOT, an Erlang-based development
framework expressly conceived for heterogeneous and mas-
sively decentralized sensing/actuation systems: a vision com-
monly regarded as the “Internet of Things”. We choose Erlang
due to the functional high-level programming model and the
native support for concurrency and distributed programming.
Both are assets when developing applications as well as system-
level functionality in our target domain. Our design enriches
the Erlang framework with a custom library for programming
sensing/actuation distributed systems along with a dedicated
run-time support, while we wipe off unnecessary language and
run-time features. We couple the resulting platform with ad-
hoc tools for simulation and testing, supporting developers
throughout the development cycle. We assess our solution
by implementing three sensor network distributed protocols.
A comparison with traditional sensor network programming
platforms demonstrates the advantages in terms of terseness
of code, readability, and maintainability.

Keywords-distributed systems, Internet of Things, program-
ming languages, frameworks

I. INTRODUCTION

The vision of an “Internet of Things” (IoT)—an en-
semble of heterogeneous devices embedded within the
environment—brings along a plethora of software engineer-
ing challenges [1]. Wireless sensor networks, by many re-
garded as a forerunner of the future IoT and a key component
thereof, already exemplified some of these issues [2], [3].
The increased complexity of IoT applications, along with the
sheer number of heterogeneous resource-constrained devices
involved, is going to worsen such state of affairs.

Motivation. To date, embedded sensing/actuation systems
are mostly developed using low-level languages akin to C,
atop the operating system facilities [2]. This provides full
control of the scarce resources available and thus opens up
significant opportunities for optimizations. However, it also
typically leads to implementations that are difficult to test,
to maintain, and to port to different platforms [4].

The literature includes several attempts to raise the level
of abstraction, some to the point of considering the network
of embedded sensor and actuators as a single computational
unit—an approach commonly termed as ‘“macroprogram-
ming” [2]. Such solutions, however, often trade generality

and performance for ease of programming. Finding a middle
ground proves to be extremely difficult [5].

Erlang. We maintain that the Erlang language provides an
ideal stepping stone to address the issues above:

e it combines a functional core with dynamic typing
and pattern-matching to guide the computation and to
access data, supporting a form of concise declarative
programming that already proved effective in sensor
network development [6];

o it adopts an actor-like concurrency model [7]: different
processes communicate only though message passing
independently of their physical location, effectively
masking distribution to a great extent and thus facilitat-
ing developing massively decentralized functionality;

e owing to its origins, it provides features expressly
designed for embedded systems programming, e.g., the
ability to pattern-match on bit streams, enabling high-
level descriptions of packet manipulation functions;

e in most existing implementations, Erlang is an in-
terpreted language: this naturally addresses portabil-
ity issues and allows code to be easily hot-swapped,
supporting long running applications characterized by
transient interactions that are redefined on the fly.

Section II provides a brief Erlang primer to exemplify
some of the features above.

ELIOT. Nevertheless, Erlang is by no means directly ap-
plicable to developing IoT sensing/actuation systems. For
example, the semantics of Erlang’s inter-process communi-
cation leverages reliable point-to-point communication. This
does not capture the many-to-many localized interactions of
IoT scenarios, besides being typically provided using full-
fledged TCP/IP stacks rarely found in resource-constrained
IoT devices. The language evolution and inclusion of in-
creasingly sophisticated libraries also led existing run-time
support systems to grow accordingly, ultimately posing sig-
nificant requirements on the underlying hardware platform.

We address these issues with ELIOT!, our Erlang-based
development framework for IoT systems, described in Sec-

TELIOT is ErLang for the Internet of Things.

1 start(X) —>
2 Pid = spawn (fun power2/0),
3 Pid ! {self (), X},
4 receive
5 {Sender, Result} ->
6 Result
7 end.
8
9 power2() =>
10 receive
11 {Sender, Number} ->
12 Sender ! {self (), Number x Number}
13 end.
Figure 1. Sample Erlang code to compute the power of two.

tion III. We provide dedicated libraries for localized many-
to-many inter-process communication that developers use
to describe both system-level and application functionality.
By removing unnecessary features, we also significantly
reduce the hardware requirements of the run-time system:
our current implementation runs on embedded devices with
a few megabytes of RAM, the size of a gum stick, and
commercially available for less than 100$. The resulting
platform is thus immediately applicable in scenarios such
as smart energy [8] and remote patient monitoring [9].

To support developers during the validation phase, we
complement the framework with a dedicated simulator run-
ning un-modified ELIOT code. Leveraging Erlang’s concur-
rency model, our simulator allows developers to start vali-
dating the system in a fully simulated environment, and then
to progressively and transparently migrate to real hardware
by running mixed deployments including both simulated
and real nodes. This way, developers retain visibility into
the system state through the simulator, and yet are able to
check the execution of real hardware, e.g., w.r.t. timings and
unreliability of the wireless channel.

Section IV reports on our preliminary assessment of
ELIOT’s effectiveness. We consider three sensor network
distributed protocols as representative of the complexity
involved in embedded sensing/actuation systems. We im-
plement and test them with ELIOT. A comparison against
functionally-equivalent versions of the same protocols im-
plemented atop TinyOS [10] and Contiki [11]—the defacto
standard programming platforms for sensor networks—
reveals advantages in both readability and maintainability
of the implementations.

Following a brief survey of related work in Section V, we
conclude the paper in Section VI by illustrating the steps
ahead in our research agenda.

II. ERLANG IN A NUTSHELL

We exemplify some of Erlang’s features to provide a more
concrete illustration to readers unfamiliar with the language.
Figure 1 illustrates a simple snippet of Erlang code to
compute the power of two. The base number (X) is given
as input to the start function (line 1). The function then
spawns a second process (line 2) that starts executing the

power2 function. Erlang processes are lightweight compu-
tational units handled directly by the interpreter and are not
mapped directly onto system processes or threads. This way,
process creation is faster and consumes less resources.

According to the actor model, Erlang processes cannot
share memory. The only way to exchange data is via
asynchronous message-passing. Each process has an asso-
ciated persistent mailbox, where messages are read in FIFO
order. An example is shown in line 3, where the process
executing start sends a message carrying its own identifier
and the input number to the process previously spawned,
using the ! sign. At the other end, the receive keyword
(line 10) lists a set of patterns to process incoming messages,
executed according to pattern matching. In this example,
the receiving process simply bounces back another message
with its own identifier and the result of the computation
(lines 11-12). Upon receiving such message, the first process
exits by returning the final result (lines 4-7). Such model of
computation inherently fosters the development of loosely
coupled functionality.

Beyond this example, Erlang features several charac-
teristics of functional languages that favor reliable imple-
mentations of distributed software. For instance, it features
a single-assignment semantics, whereby variables can be
assigned only once and maintain the same value throughout
the execution, improving readability. Moreover, function
evaluation is side-effect free, enabling concurrent execution.
Higher-order functions (functions receiving or returning
other functions as parameters) are permitted, allowing the
development of generic functions that specialize at run-time
based on the actual parameters. Finally, Erlang supports list
comprehension, which makes it possible to manipulate lists
directly by applying predicates or functions.

The OTP (Open Telecom Platform) library also adds
several functionality to the core language. It introduces
the concept of supervisor processes, computational units
external to the main application that monitor its execution
and apply counter-measures should faults be detected. The
library also provides a configuration facility to ease the
hot-swapping of existing functionality and process design
patterns implementing generic behaviors that developers
customize to their application-specific needs.

At run-time, the Erlang interpreter hides a great part of the
complexity due to distribution. As example, messages are
delivered across different processes independently of their
physical location: it is completely transparent to developers
if a message originates from a process in the same or dif-
ferent host. This allows developing and testing applications
first in a local setting, and then to progressively move to a
distributed setting with (almost) no changes to the code. We
leverage this feature to ease the testing of IoT embedded
sensing software, as described next.

1 -module (example_module) .
2 -export ([start_link/0, example_function/0]).
3 -define (SLEEP, 60000).
4 -define (NODE, 1).
5 -define (TEMPERATURE, 1).
6
7 start_link() =>
8 Pid = spawn_link (?MODULE, example_function, []),
9 register (example_proc, Pid),
10 eliot_api:export (Pid),
11 {ok, Pid}.
12
13 example_function() =->
14 timer:send_after (2SLEEP, read),
15 receive
16 read =->
17 Value = eliot_sensors:read (?TEMPERATURE),
18 eliot_api:bcast_send(example_proc,
19 {?NODE, Value});
20 {SourceId, RSSI, Pload} when ?NODE==1 ->
21 eliot_api:send(example_proc,
22 {node@192.168.1.1,Pload});
23 {SourceId, RSSI, Pload} ->
24 eliot_api:bcast_send(example_proc,
25 {?NODE, Pload})
26 end,
27 example_function ().
Figure 2. ELIOT program implementing a sense-and-send pattern.

III. ELIOT

ELIOT includes three core parts: i) a small library to de-
velop decentralized sensing/actuation systems; ii) a custom
interpreter tailored to resource-poor IoT devices; and iii) a
dedicated simulator to test the implementations in a fully or
partially simulated environment.

A. Library

Figure 2 illustrates the use of the ELIOT library to de-
velop a simple sense-and-send data collection functionality,
in fact a pattern seen in many sensor network implemen-
tations [2]. The code, with the proper filtering of duplicate
packets—not shown in the picture, is already sufficient to
implement such behavior across multiple hops.

Following the specification of module name, exported
processes, and constants, the entry point of the module
(line 7) spawns a new local process to execute the main
loop (line 8), registers the spawned process locally (line 9),
and makes it reachable from the network using the export
function in the ELIOT library (line 10). The main loop
(line 13) executes periodically, with such timed behavior
realized with local timer messages (line 14). When such
a message arrives, the process queries the sensing device
(line 17) % and broadcasts the value to all reachable nodes
using the becast_send function in the ELIOT library
(line 18). The receiving nodes re-broadcast the message
(line 23-24) using the same function. When the message
reaches a node with a specific identifier (line 20), the guard
expression (indicated by the when keyword) recognizes this
identifier and consequently the node treats this message
differently from the others, and it unicasts the value to a

2The code supposes that TEMPERATURE is a constant referring to a
GPIO pin.

given IP address, e.g., to log sensed data outside the network
of embedded sensors, this time with the send function from
the ELIOT library (line 21-22).

Compared to standard Erlang, the main difference in
ELIOT regards the semantics of inter-node communication.
Standard Erlang platforms are built atop full-fledged TCP/IP
stacks ensuring reliable communication between remote
processes. Such network architectures are rarely found in
networks of embedded sensors and actuators, especially
when communication is wireless. Communication is indeed
one of the most expensive operations in such networks, e.g.,
in terms of energy consumption, and guaranteeing absolute
reliability in such settings is usually very difficult.

As a result, we use a different syntax for ELIOT’s inter-
node process communication than the original Erlang syntax.
In ELIOT, developers use the ! sign only to communicate
between local processes. Instead, remote communication is
realized using specific functions from the ELIOT library, as
shown in the example, whose semantics is best effort and,
in wireless networks, limited to single hop. The latter choice
allows developers to describe system services, e.g., routing
protocols as discussed in Section IV, besides application-
level functionality [2].

Using the original Erlang syntax, albeit technically possi-
ble, would trick developers to think that local and distributed
inter-process communications incur the same cost, ultimately
leading to inefficient implementations. Conversely, our de-
sign increases the developers’ awareness of such operations,
and thus allows them to reason more precisely on where
and how to invest the typically scarce resources. We retain,
however, the original syntax on the receiver side, which
allows us to leverage the pattern matching facilities offered
by the language.

The ELIOT library also supports spawning new processes
to a specific node or all devices reachable using ELIOT’s
communication functions. These functions do not return any
value; in particular, differently from Erlang, they do not
return any process identifier. Indeed, such an identifier is of
no use in ELIOT, since inter-node communication is based
on registered names and node addresses.

B. Interpreter

Erlang was originally designed to run on embedded
platforms. However, over time it has grown to include a
large set of libraries and a complex run-time infrastructure,
e.g., to guarantee fault-tolerance. Most of these features find
limited application in embedded sensing/actuation systems,
unnecessarily increasing the hardware requirements.

To address this issue, we developed a custom ELIOT
interpreter by wiping off most functionality not required
in our target domain. For example, we removed several
libraries, e.g., Corba support, as they are not required in
our target domain. Thus, our design still addresses the
heterogeneity of foreseeable IoT platforms by providing

an interpreted environment, but also drastically reduces the
hardware requirements, especially w.r.t. memory consump-
tion. We hitherto tested our interpreter on two platforms: i)
an ARM-based board with 64 MB of RAM and 64 MB of
flash memory, and ii) a board with an RT3050 chip coupled
to a MIPS processor, 32 MB of RAM and 8§ MB of flash,
featuring both wireless and wired networking.

With the current prototype, running a sensor network
collection protocol, as reported Section IV, consumes about
SMB of RAM and uses very few CPU cycles (less than 5%)
on the ARM board. Nevertheless, we are working on further
reducing the footprint by modifying the interpreter itself and
by further removing processes and features unlikely to be
used in IoT embedded sensing scenarios. The ELIOT inter-
process communication library, described in Section III-A,
goes exactly in this direction. Indeed, not only it adapts
the communication model to the peculiarities of the target
platforms, which hardly implement full fledged TCP/IP
stacks, but it also represents the pre-requisite to remove all
the standard inter-node communication mechanisms of the
original interpreter.

C. Simulator

Debugging and testing embedded sensing/actuation sys-
tems is a key area scarcely supported by most programming
platforms. Gaining the required visibility into the system
state, in particular, is deemed to be a key issue [4]. ELIOT
offers a great opportunity to overcome this situation. By
leveraging Erlang’s blurred distinction between local and
distributed functionality we developed a custom simulator
that allows:

o to simulate an entire system by instantiating a set of
virtual nodes running unmodified ELIOT code;

o to model communication between nodes according to
real wireless traces for increased fidelity?;

o to interact with the simulation, if required, via a stan-
dard Erlang shell, e.g., to proactively inject messages;

e to run a mixed deployment where virtual nodes can

seamlessly interact with physical devices®.

The simulator thus allows to start debugging a system in a
fully simulated deployment, and then progressively move to
a setting where the execution also spans physical nodes. This
retains visibility into the system state through the simulated
nodes, but it also allows to check the execution of real hard-
ware and the interactions with the physical environment. As
example, one could validate the operation of an embedded
sensing application by employing real devices to check its
sensitivity to sensor data, which is typically hard to simulate,

3We use the traces from the TOSSIM simulator [12], although using
different traces would only require developing the needed model translation.
4The current prototype supports mixed deployments only with hardware
devices that provide an Ethernet or WiFi connection, but nothing precludes
supporting other networks, like 802.15.4, provided the PCs running the
simulator instances can access such networks, e.g., via an ad-hoc gateway.

1 trickle (Tau, {TauRef, TRef}, Counter, Version) =>
2 receive
3 transmit when Counter<2 —=> ...
4 transmit => ...
5 restart => ...
6 {SourceId, RSSI,
7 {<<NewSrc:16/unsigned-little-integer,
8 NewVersion:32/unsigned-little-integer,
9 NewPayload/binary>>}
10 } when NewVersion>Version => ...
11 {SourceId, RSSI,
12 {<<NewSrc:16/unsigned-little-integer,
13 NewVersion:32/unsigned-little-integer,
14 NewPayload/binary>>}} —=> ...
15 end.
Figure 3. ELIOT implementation of Trickle (excerpt).

and still use the simulated nodes to test the operations of
the underlying routing protocols. All this happens with the
guarantee that the code being tested coincides, line by line,
with the code that developers will deploy.

IV. EVALUATION

To evaluate the expressiveness and effectiveness of
ELIOT we consider three distributed protocols representa-
tive of typical embedded sensing/actuation applications: an
opportunistic flooding protocol [13], the Trickle protocol for
data dissemination [14], and the Collection Tree Protocol
(CTP) [15]. The first protocol (part of CCBR [13]) addresses
the broadcast storm problem [16] by using re-transmission
timers proportional to the RSSI of the received message.
Trickle is a widely adopted solution to propagate data (e.g.,
code or operating parameters) in sensor networks. In our
implementation, we propagate an opaque payload. CTP is
the most complex and serves to transport data from all nodes
to the closest data sink according to a routing metric.

ELIOT in practice. Figure 3 shows the core part of the
ELIOT code for Trickle. We use the last two matches (lines 6
to 9 and 11 to 14) to receive a message from a different
node. The first parameter is added by the network layer, and
includes the sending process identifier and message RSSI.
The third parameter is the message itself, which is explicit
for pattern matching here, while in Figure 2 was seen as
a single variable. The code highlights the use of guards
to improve readability. The last two matches separately
specify the actions to take when a new version message
has been received or otherwise. Such distinction depends
on a message field (NewVersion), accessed by pattern
matching the appropriate portion of the bit sequence. These
can generally be used to pattern match a binary “blob” by
decomposing it in fields, each with its own length and type.
For example, the NewVersion field is specified as a 4-
byte little-endian unsigned integer (line 8). This caters for an
elegant mechanism to concisely describe message parsing.

Leveraging the actor-like model concurrency model, to
implement CTP we use four processes to modularize the
functionality: the main process is in charge of receiving
messages from other nodes; the link estimation process

& Monitor

Flle Edit Module Process Bresk Options Windows Help

wsn Fid Initial Call Name Status | Information
<037.0> ctpistart_simulation/1 idle

<0.79.0> wsniforwarder/1 forwarder waiting

utils
trickle

<0.81.0> wsniexecute/d mote_0 waiting
spawn_test <0.83.0> wsniexecute/d mote_1 waiting
oppflooder <0.85.0> wsniexecute/d mote_10 walting
cbp_routing <0.87.0> ctp!-ctp/0-Fun-0-'/0 waiting

etp_link <0.80.0> ctp!'-ctp/0-Fun-1-'/0 waiting

<0.88.0> wsniexecute/4 mote_11 waiting
ckp_fwd

<0.83.0> ctpi-ctp/0-Fun-2-'/0 waiting
ctp <0.95.0> wsniexecute/4 mote_12 walting
<0.97.0> ctpi-ckp/0-fun-0-//0 waiting
<0.99.0> ctpi-ctp/0-fun-1-//0 waiting
<0103.0> ctpi'-ctp/0-fun-0-'/0 waiting
<0.101.0> wsniexecute/d mote_13 walting
<0102.0> ctpi-ctp/0-fun-2-'/0 walting
<0.105.0> ctpr-ctp/0-Fun-1-'/0 waiting
<0108.0> ctp'~ctp/0-Fun-2-'/0 waiting
<0110.0> wsniexecute/4 mote_14 waiting
<0113.0> ctp!’-ctp/0-Fun-0-'/0 waiting
<0.115.0> ctp:'-ctp/0-Fun-1-/0 waiting

<0.119.0> ctp!'-ctp/0-Fun-0-'/0 walting
<0.120.0> ctpi-ctp/o-fun-2-/0 waiting
<0.124.0> ctp!-ctp/o-Fun-0-'/0 waiting
<0.123.0» ctp!'-ctp/o-Fun-1-/0 walting
<0.127.0» ctp!-ctp/o-Fun-1-/0 waiting
On Exit <0.130.0> ctpr'~ctp/0-Fun-2-//0 waiting

Auko Aktach:
First Call

On Break

Stack Trace! <0128.0> ctpi'~ctp/0-Fun-2-'/0 waiting
on (with tail) <0132.0> wsniexecute/4 mote_2 waiting

l:anznkTrazE Size: <0.134.0> ctpi'-ctp/0-Fun-0-'/0 waiting

Figure 4. ELIOT processes monitor.

computes routing metrics to the closest sink and report
changes to the routing process. This, in turn, provides the
forwarding process with the most efficient route to use.
Splitting functionality results in more readable code, with
a correct separation of concerns, making the individual pro-
cesses more reusable. Moreover, the hot-swapping capability
can be used for changing only one part of the protocol, e.g.,
to replace the link estimation protocol with a different one.

Figure 4 is a snapshot of the processes monitor interface
while running CTP. The process monitor allows to inspect
each process, showing variable values and letting developers
insert breakpoints into the code. The screenshot refers to a
mixed network configuration, enabled by our simulator: we
use a laptop running 14 simulated nodes, a more powerful
desktop running 48 simulated nodes, and two real ARM
devices. The possibility of inspecting the state of simulated
nodes using the process monitor, while they interact with
the real devices allowed us to easily spot bugs.

Comparison. We were also interested in measuring to what
extent ELIOT reduces the programming effort. To this
end, we measure the uncommented lines of code as an
approximate measure of the coding effort and we compare
the ELIOT implementations of the aforementioned protocols
with their counterparts in TinyOS [10] and Contiki [11].

Figure I reports the values we measured. It shows that the
more complex is the protocol, the greater is the advantage
in using ELIOT. Indeed, while Contiki already provides a
(slight) advantage over TinyOS, ELIOT shows even greater
improvements, due to the functional and declarative model.
This, together with the powerful pattern matching and seri-
alization/deserialization features, results in implementations

Table I
PROTOCOL IMPLEMENTATIONS LINES OF CODE.

[Algorithm [TinyOS | Contiki | ELIOT |
Opportunistic flooder | 495 187 100
Trickle 219 194 61
CTP 2169 1470 303

up to seven times more compact than their TinyOS and
Contiki counterparts.

V. RELATED WORK

Solutions exist to develop applications spanning both
standard Internet devices and networks of embedded sensors
and actuators. As example, the CoAP framework provides a
RESTful interface on resource-poor devices [17]. Implemen-
tations of such framework exist for common sensor network
platforms [18]. Unlike our approach, however, the appli-
cation logic runs entirely outside the embedded network,
whereas sensor and actuators are essentially application-
agnostic. This spares the need for embedded system pro-
gramming at the price of reduced performance. Differently,
we design ELIOT to allow developers to deploy even the
entire application logic on embedded devices, while still
retaining a high-level programming model.

The operating system facilities are the most used program-
ming platform in sensor networks. However, the low level
of abstraction typically provided usually results in entangled
implementation that are difficult to debug and maintain [2].
In this setting, TinyOS [10] and Contiki [11], which we
use in the comparison of Section IV, are most often em-
ployed. Commercial products may also come with their own
platform-specific APIs [19]. Applications developed atop
these APIs, however, are often difficult to port to different
platforms.

Higher-level sensor network programming abstractions,
on the other hand, often sacrifice generality for simplic-
ity [2]. For example, Regiment [20] features a functional
programming model, providing primitives such as fold and
map to process data originating from subsets of nodes.
Flask [6] provides a data-flow programming model based on
discrete computational steps, akin to side effect-free function
calls. Snlog [21] is a rule-oriented approach inspired by
logical programming, where rules are recursively applied on
data available in a dedicated repository. Common to these
approaches—and in fact to most solutions in the field [2]—
is that the language constructs are compiled to TinyOS or
Contiki code before deployment. Thus, the code running on
the embedded device bears little resemblance to the hand-
written one, complicating testing and debugging.

ELIOT sits in the middle between an operating system
layer and higher-level programming solutions. It still allows
the implementation of both system- and application-level
functionality, yet it spares programmers from many low-
level details and the intricacies of OS-level scheduling. The
latter is mainly due to the actor-like concurrency model,

which also helps dealing with distribution by blurring the
distinction between local and remote processes. Its inter-
preted nature also maximizes code portability, an asset in
the heterogeneous IoT scenarios.

Finally, worth noticing is that sensor network operating
systems often come with an accompanying simulator, e.g.,
TOSSIM [12] for TinyOS and Cooja/MSPSim [22] for
Contiki. This is key to quickly prototype applications and
has often significantly contributed to the adoption of the
platform. We do the same with ELIOT, with the added
feature of enabling mixed deployments with some simulation
instances running on real devices, akin to EmStar [23].

VI. CONCLUSION AND FUTURE WORK

We presented ELIOT, an FErlang-based development
framework for IoT embedded sensing/actuation systems. Er-
lang’s distinguishing features, such as the native support for
concurrency and distributed programming by virtue of the
actor-like model, played as stepping stones for ELIOT. To
address the specific requirements at stake we designed and
implemented a custom library for programming sensing/ac-
tuation embedded systems and a dedicated run-time support
meeting the resource constraints of typical IoT devices.
To aid in testing, we also provided a dedicated simulator
able to run mixed deployments of simulated nodes and
real devices. Our experience in implementing three sensor
network distributed protocols demonstrated the advantages
in terms of readability of code and maintainability.

Our immediate research agenda includes further investi-
gation to reduce the hardware requirements of the ELIOT
interpreter, possibly by rewriting it from scratch. We also
aim at providing a dedicated sensor API to interact with
sensing devices, and leverage existing work in formal veri-
fication of Erlang code [24] to enable exhaustive validation
of ELIOT implementations.

ACKNOWLEDGMENT

This work was partially supported by the European
Commission, Programme IDEAS-ERC, Project 227977-
SMScom.

REFERENCES

[1] F. Kawsar, G. Kortuem, and B. Altakrouri, “Supporting in-
teraction with the internet of things across objects, time and
space,” in Proc. Internet of Things Conference, 2010.

[2] L. Mottola and G. P. Picco, “Programming wireless sensor
networks: Fundamental concepts and state of the art,” ACM
Comput. Surv., 2011.

[3] G. P. Picco, “Software engineering and wireless sensor net-
works: happy marriage or consensual divorce?” in Proc.
FSE/SDP Workshop on Future of Software Engineering Re-
search, 2010.

[4] A. Bernauer and K. Roemer, “Meta-debugging pervasive
computers,” in Proc. Workshop on Programming Methods for
Mobile and Pervasive Systems, 2010.

[5] M. Hossain, A. Alim Al Islam, M. Kulkarni, and V. Raghu-
nathan, “uSETL: A set based programming abstraction for
wireless sensor networks,” in Proc. Int. Conf. on Information
Processing in Sensor Networks, 2011.

[6] G.Mainland, G. Morrisett, M. Welsh, and R. Newton, “Sensor
network programming with Flask,” in Proc. Int. Conf. on
Embedded Networked Sensor Systems, 2007.

[7] C. Hewitt, P. Bishop, and R. Steiger, “A universal modular
actor formalism for artificial intelligence,” in Proc. Int. joint
Conf. on Artificial intelligence, 1973.

[8] F. Mattern, T. Staake, and M. Weiss, “ICT for green: how
computers can help us to conserve energy,” in Proc. Int. Conf.
on Energy-Efficient Computing and Networking, 2010.

[9] J. Ko, C. Lu, M. Srivastava, J. Stankovic, A. Terzis, and
M. Welsh, “Wireless sensor networks for healthcare,” Proc.
IEEE, 2010.

[10] P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse,
A. Woo, D. Gay, J. Hill, M. Welsh, E. Brewer, and D. Culler,
“TinyOS: An operating system for sensor networks ambient
intelligence,” in Ambient Intelligence, 2005.

[11] A. Dunkels, B. Gronvall, and T. Voigt, “Contiki - a
lightweight and flexible operating system for tiny networked
sensors,” in Proc. Int. Workshop on Embedded Networked
Sensors, 2004.

[12] P.Levis, N. Lee, M. Welsh, and D. Culler, “TOSSIM: accurate
and scalable simulation of entire TinyOS applications,” in
Proc. Int. Conf. on Embedded Networked Sensor Systems,
2003.

[13] G. Cugola and M. Migliavacca, “A context and content-
based routing protocol for mobile sensor networks,” in Proc.
European Conf. on Wireless Sensor Networks, 2009.

[14] P. Levis, N. Patel, D. Culler, and S. Shenker, “Trickle: a self-
regulating algorithm for code propagation and maintenance
in wireless sensor networks,” in Proc. Conf. on Symposium
on Networked Systems Design and Implementation, 2004.

[15] O. Gnawali, R. Fonseca, K. Jamieson, D. Moss, and P. Levis,
“Collection Tree Protocol,” in Proc. Int. Conf. on Embedded
Networked Sensor Systems, 2009.

[16] S.-Y. Ni, Y.-C. Tseng, Y.-S. Chen, and J.-P. Sheu, “The
broadcast storm problem in a mobile ad hoc network,” in
Proc. Int. Conf. on Mobile Computing and Networking, 1999.

[17] Z. Shelby, K. Hartke, C. Bormann, and B. Frank,
“Constrained application protocol (CoAP),”
draft-ietf-corecoap-07, 2011.

[18] M. Kovatsch, S. Duquennoy, and A. Dunkels, “A low-power
CoAP for Contiki,” in Proc. Int. Conf, on Mobile Ad-hoc and
Sensor Systems, 2011.

[19] “Waspmote,” www.libelium.com/waspmote.

[20]

(21]

[22]

R. Newton, G. Morrisett, and M. Welsh, “The Regiment
macroprogramming system,” in Proc. Int. Conf. on Informa-
tion Processing in Sensor Networks, 2007.

D. Chu, L. Popa, A. Tavakoli, J. M. Hellerstein, P. Levis,
S. Shenker, and I. Stoica, “The design and implementation of
a declarative sensor network system,” in Proc. Int. Conf. on
Embedded Networked Sensor Systems, 2007.

J. Eriksson, F. Osterlind, N. Finne, N. Tsiftes, A. Dunkels,
T. Voigt, R. Sauter, and P. J. Marrén, “COOJA/MSPSim:

(23]

[24]

interoperability testing for wireless sensor networks,” in Proc.
Int. Conf. on Simulation Tools and Techniques, 2009.

L. Girod, J. Elson, A. Cerpa, T. Stathopoulos, N. Ramanathan,
and D. Estrin, “EmStar: a software environment for devel-
oping and deploying wireless sensor networks,” in Proc.
USENIX Annual Technical Conference, 2004.

Q. Guo, J. Derrick, C. B. Earle, and L.-A. Fredlund, “Model-
checking Erlang: a comparison between EtomCRL2 and
McErlang,” in Proc. Int. Conf. on Testing - Practice and
Research Techniques, 2010.

