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Bayesian Support Vector Regression for Traffic Speed Prediction

with Error Bars

Gaurav Gopi, Justin Dauwels, Muhammad Tayyab Asif, Sridhar Ashwin,

Nikola Mitrovic, Umer Rasheed, Patrick Jaillet

Abstract— Traffic prediction algorithms can help improve the
performance of Intelligent Transportation Systems (ITS). To
this end, ITS require algorithms with high prediction accuracy.
For more robust performance, the traffic systems also require
a measure of uncertainty associated with prediction data. Data
driven algorithms such as Support Vector Regression (SVR)
perform traffic prediction with overall high accuracy. However,
they do not provide any information about the associated
uncertainty. The prediction error can only be calculated once
field data becomes available. Consequently, the applications
which use prediction data, remain vulnerable to variations in
prediction error. To overcome this issue, we propose Bayesian
Support Vector Regression (BSVR). BSVR provides error bars
along with the predicted traffic states. We perform sensitivity
and specificity analysis to evaluate the efficiency of BSVR
in anticipating variations in prediction error. We perform
multi-horizon prediction and analyze the performance of BSVR
for expressways as well as general road segments.

I. INTRODUCTION

Traffic management systems require algorithms that can

deal with varying traffic conditions [1]–[3]. Data driven

prediction algorithms such as Support Vector Regression

(SVR) tend to provide on average high-prediction accuracy

for road networks [4]–[6]. This makes data driven methods

useful for many Intelligent Transportation Systems (ITS)

applications. These methods help ITS to deal with variations

in traffic conditions. However, the predicted values are

also prone to uncertainty. Prediction accuracy may vary

for different test conditions. Actual prediction error can

only be calculated once field data becomes available. For

instance, consider 15 minutes prediction horizon. In this

case, we can only calculate prediction error after 15 minutes.

Large variations in prediction error can severely degrade the

performance of applications which utilize prediction data.

Algorithms that can anticipate such variations in prediction

accuracy will be highly desirable. These algorithms will

allow ITS applications such as route guidance to take into

account the uncertainty associated with predicted network

state.

We propose Bayesian Support Vector Regression (BSVR)

to provide error bars [7], [8] for the predicted traffic states.
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This technique combines advantages of SVR and Bayesian

inference [8]. SVR is highly suitable for traffic prediction as

it can map non-linear relationships between past and future

traffic conditions for SVR [4], [9]. Bayesian methods for

SVR are useful for selecting suitable hyperparameters [10].

They can also estimate variance (termed as error bar, [7], [8])

associated with each prediction. The estimated variance can

be considered as a confidence measure for the corresponding

predicted traffic state. This additional information is helpful

for many ITS applications. One proposed approach to

estimate variance in prediction error is to combine prediction

from different neural networks [11], [12]. This approach has

two drawbacks. Neural network training algorithms tend to

suffer from the problem of local minima [13]. Secondly, we

are required to train multiple models [11]. This increases

the computational complexity of such algorithms. BSVR

overcomes both these issues [8].

In this study, we analyze the efficiency of BSVR in

forecasting the behavior of prediction error for multiple

prediction horizons. For this purpose, we perform traffic

speed prediction on two different sub-networks. Singapore

Land Transportation Authority (LTA) provided speed data

for the study. The confidence levels provided by BSVR will

help us to identify predicted states with high uncertainty.

We expect to incur high prediction error for these states. We

consider this as a detection problem. To be useful, BSVR

should anticipate whether or not the predicted state will have

large error. Therefore, we perform sensitivity and specificity

analysis on prediction data of BSVR. We analyze prediction

data for different scenarios and prediction horizons. The

analysis shows that BSVR can anticipate large prediction

errors with reliable sensitivity and low false alarm rate.

The paper is structured as follows. In section II, we briefly

explain Bayesian Support Vector Regression. In section III,

we explain the data set. In section IV, we explain the setup

for sensitivity and specificity analysis. In section V, we

analyze the detection performance of BSVR. In section VI,

we summarize our contributions and suggest topics for future

work.

II. BAYESIAN SUPPORT VECTOR REGRESSION

FOR TRAFFIC PREDICTION

In this section, we briefly explain the principle of

Bayesian Support Vector Regression for traffic prediction.

We represent the test network by a directed graph G=(N,E).
The links/road segments {si}

p
i=1 represent the edges of the

graph such that {si ∈ E}p
i=1. We represent the weight of each



link by the average speed z(si, t j) of the link during the time

interval (t j − t0, t j). The sampling interval is t0 = 5 minutes.

Future traffic states of a road segment may depend upon

certain past states of the road. These states are called input

features. Let x j be a vector containing input features at

time t j such that x j = [z(si, t j)...z(si, t j −mt0)]
T . Furthermore,

y jk = z(si, t j + kt0) is the k step ahead speed value. Let us

consider the training data set D = {(x j,y jk)}
d
j=1 for link si

and kth prediction horizon. We start by explaining traditional

SVR. In SVR training, our goal is to find the optimal

hyperplane w. In case of SVR, the relationship function takes

the following form:

fk(x j) = wT φ(x j)+ b, (1)

where φ(x j) represents the non-linear mapping of input

features x j into some high dimensional space [7], [14], [15].

To train SVR, we solve the following optimization problem

[15]:

min
1

2
wT w+C

r

∑
j=1

(ξ j + ξ ∗
j ),

subject to







y jk − fk(x j)≤ ε + ξ j

fk(x j)− y jk ≤ ε + ξ ∗
j

ξ j,ξ
∗
j ≥ 0,

(2)

where ξ j,ξ
∗
j are slack variables and ε is the parameter for

Insensitive Loss Function (ILF) with cost C [15]. Now, let

us extend the SVR formulation to bayesian framework called

BSVR. For BSVR, we consider following regression model:

y jk = fk(x j)+ δ j x j ∈R
n
, y jk ∈R, (3)

where fk is the relationship function for kth prediction

horizon with i.i.d noise samples {δ j}
d
j=1 [7], [8]. The

extension of (2) to Bayesian framework will help us to find

optimal hyperparameters for SVR. More importantly, we will

obtain error bars corresponding to the predicted traffic states.

For this purpose, let us consider fk = [ fk(x1)... fk(xd)]
T . It

contains the values of relationship functions { fk(x j)}
d
j=1

for the training data set D. In BSVR, we consider fk as a

random vector with prior probability P(fk). The probability

of obtaining fk, for a given speed data set D is:

P(fk|D) =
P(D|fk)P(fk)

P(D)
, (4)

where P(D|fk) is the likelihood of speed data D, given

function fk and is calculated as ∏d
j=1 P(y jk − fk(x j)) or

∏d
j=1 P(δ j). It is usually assumed that P(δ j) is of exponential

form [7], [8], so:

P(D|fk) ∝ exp−
(

C
d

∑
j=1

L(y jk − fk(x j))
)

, (5)

where L(·) is called the loss function and C is the associated

cost. In BSVR, we further assume that prior probability

P(fk) follows a multivariate Gaussian distribution such that

fk ∼ N(0,Σ) [7]. Hence, The Maximum a Posteriori (MAP)

estimate for the relationship function can be obtained as [7],

[8]:

min
fk

S(fk) =C
d

∑
j=1

L(y jk − fk(x j))+
1

2
fT
k Σ−1fk. (6)

For BSVR, we choose Soft Insensitive Loss Function (SILF)

[8]. Hence, by incorporating Bayesian framework to SVR,

we obtain the following formulation [8]:

min C
d

∑
j=1

(

Ψ(ξ j)+Ψ(ξ ∗
j )
)

+
1

2
fT
k Σ−1fk,

subject to







y jk − fk(x j)≤ (1−β )ε + ξ j

fk(x j)− y jk ≤ (1−β )ε + ξ ∗
j

ξ j,ξ
∗
j ≥ 0,

(7)

where β and ε are the parameters for SILF. The function

Ψ(·) is defined as [8]:

Ψ(a) =







a2

4β ε
a ∈ [0,2β ε)

a−β ε a ∈ [2β ε,∞).
(8)

The extension of SVR in (7) is termed as BSVR. For

implementation, we follow the procedure provided in [8].

For error bar (confidence level) estimation, consider an input

feature vector xt for kth prediction horizon. Suppose the

speed predicted by BSVR is ŷtk. The uncertainty in predicted

speed can arise from two factors (see (3)). It can be due

to either P( fk(xt)|D) or noise δt . The variances due to

P( fk(xt)|D) and δt are σ2
t and σ2

n respectively. Consequently,

the variance estimated by BSVR is σ2
t + σ2

n . We refer to
√

σ2
t +σ2

n as error bar. The variance σ2
n only depends upon

the choice of loss function [7], [8]. The value of σ2
t depends

upon the input feature vector xt and off bound support

vectors [7], [8], [16].

We perform speed prediction for multiple horizons by

applying BSVR. In this study, we consider horizons from

5 minutes up till 30 minutes. We train separate predictors

for each link si and prediction horizon k. For analysis, we

choose two different road networks. We explain the data set

in the next section.

III. DATA SET

In this section, we explain the data set for performance

analysis. For this purpose, we choose two different road

networks (see Fig. 1). The network G1 = (N1,E1) consists

of road segments from Pan Island Expressway (PIE) in

Singapore. We perform multi-horizon prediction on 20 links

in the network. The network G2 = (N2,E2) consists of 20

segments from arterial roads in the vicinity of Lavender Mass

Rapid Transit (MRT) and Boon Keng MRT stations.

For this study, the speed data was provided by Singapore

Land Transportation Authority (LTA). The data set has

averaging intervals of 5 minutes. We consider data from

the months of March and April, 2011. We perform BSVR

training on speed data of March and evaluate performance

on the data from April.



TABLE I: Prediction Performance for Pan Island Expressway (G1)

Error Measure
Prediction Horizon

5 min 10 min 15 min 20 min 25 min 30 min

MAPE 4.26% 5.28% 6.07% 6.68% 7.19% 7.50%

MAE 2.83 3.36 3.76 4.05 4.28 4.46

TABLE II: Prediction Performance for Lavender Area (G2)

Error Measure
Prediction Horizon

5 min 10 min 15 min 20 min 25 min 30 min

MAPE 6.94% 9.51% 11.08% 11.32% 11.45% 11%

MAE 2.05 2.80 3.25 3.31 3.34 3.21

Fig. 1: Regions for performance Analysis.

We calculate Mean Absolute Percentage Error (MAPE) to

evaluate prediction performance of BSVR. We define MAPE

e(si,k) for link si and kth prediction horizon as:

e(si,k) =
1

l

l

∑
j=1

|ẑ(si, t j)− z(si, t j)|

z(si, t j)
, (9)

where l is the size of the test data set. The speed values

ẑ(si, t j) and z(si, t j) represent the predicted and actual speed

values for the interval (t j − t0, t j) respectively. We calculate

MAPE for the whole network {e(Gi,k)}i∈{1,2} as:

e(Gi,k) =
1

p

p

∑
j=1

e(s j,k), (10)

where the network Gi contains p road segments. We also

calculate Mean Absolute Error (MAE) for the two road

networks [8]. MAE for link si and prediction horizon k is

calculated as:

d(si,k) =
1

l

l

∑
j=1

|ẑ(si, t j)− z(si, t j)|. (11)

We calculate MAE for the whole network Gi as:

d(Gi,k) =
1

p

p

∑
j=1

d(s j,k). (12)

The main advantage of BSVR is that it can provide

confidence measures (error bars) for the predicted traffic

Fig. 2: Absolute Error (normalized) with error bars for a

given road segment. The prediction horizon is 5 minutes.

Increase in error bar value, in most cases, corresponds to

large prediction error.

states. With error bars, we can anticipate variations in

prediction error (see Fig. 2). Traffic management systems

require information about discrete states of prediction error

(such as high/low). The state itself depends upon the

threshold of prediction error, which a system can tolerate.

For this purpose, we treat BSVR as a detection algorithm.

To evaluate the detection performance of BSVR, we apply

standard sensitivity and specificity analysis [17], [18]. We

explain the setup for sensitivity and specificity analysis in

the next section.

IV. SENSITIVITY AND SPECIFICITY ANALYSIS

FOR BSVR

In this section, we explain the setup to evaluate detection

performance of BSVR. For this purpose, we choose different

tolerance values τd of MAE. We categorize those prediction

errors which are higher than the tolerance limit τd as positive

events. Positive events are associated with large prediction

errors (MAE). During negative events, prediction error will

remain below the tolerance limit. The role of BSVR is to

anticipate such events. We represent the detector threshold

by γd . If the value of error bar is larger than γd , then we

expect to observe large prediction error and vice versa. For

instance, suppose we perform prediction for t j + kt0 at t j.

With error bars, we should be able to tell at time t j whether
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(a) Prediction Horizon: 5 minutes.
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(b) Prediction Horizon: 10 minutes.
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(c) Prediction Horizon: 15 minutes.

0 0.05 0.1 0.15 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

FP Rate (1−Specificity)

S
e
n
s
it
iv

it
y

 

 

Error (2σ)

Error (3σ)

Error (4σ)

Error (5σ)

(d) Prediction Horizon: 20 minutes.
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(e) Prediction Horizon: 25 minutes.
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(f) Prediction Horizon: 30 minutes.

Fig. 3: ROC plots for Pan Island Expressway (PIE) with

different tolerance limits τd ∈ {2σ , ...,5σ}, where σ is the

standard deviation of prediction error. In this study, we keep

the False Positive (FP) rate below 20%. The blue line (shown

as -x-) represents the no-discrimination line.

the prediction error at t j+kt0 will remain within the tolerance

limit or not. We expect four possible outcomes, which are

True Positive (TP), False Positive (FP), True Negative (TN),

and False Negative (FN). BSVR should be able to identify

time instances when we observe large prediction errors (True

Positives). We define the sensitivity of the detector as:

Sensitivity =
number of true positives (TP)

number of positive events (TP + FN)
. (13)

It should also accurately identify time instances, when

prediction error is small (True Negatives). The specificity

of the detector is defined as:

Specificity =
number of true negatives (TN)

number of negative events (TN + FP)
. (14)

Consequently, the proportion of false positives (FP) is

calculated as:

FP

TN + FP
= 1−Specificity. (15)

Our primary concern is to keep false positive rate low

(< 20%). We analyze whether we can achieve high sensitivity

with this constraint.
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(a) Prediction Horizon: 5 minutes.
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(b) Prediction Horizon: 10 minutes.
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(c) Prediction Horizon: 15 minutes.
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(d) Prediction Horizon: 20 minutes.
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(e) Prediction Horizon: 25 minutes.
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(f) Prediction Horizon: 30 minutes.

Fig. 4: ROC plots for Lavender Area with different tolerance

limits τd ∈ {2σ , ...,5σ}, where σ is the standard deviation

of prediction error. In this study, we keep the False Positive

(FP) rate below 20%. The blue line (shown as -x-) represents

the no-discrimination line.

We apply these criteria to assess the detection efficiency

of BSVR. In the next section, we perform multi-horizon

prediction on the test networks and analyze the results.

V. RESULTS AND DISCUSSION

In this section, we analyze the performance of BSVR. We

refer to network G1 as Pan Island Expressway (PIE) and

network G2 as Lavender area.

Table I and II summarize the prediction performance of

the two networks. As expected, expressways (PIE) have

smaller MAPE as compared to arterial roads (Lavender area).

However, MAE values seem to contradict this trend (see

Table I and II). This is due to different speed profiles of the

two networks. On expressways, we observe high speed traffic

and consequently get large MAE. For MAPE, we normalize

prediction errors with observed speed and arguably obtain a

better comparison measure.

Let us now analyze the detection performance of BSVR

for the two networks. Detection performance is typically

analyzed by keeping the false positive rate below a certain

limit [18]. In this study, we keep the false positive rate below

20%. We only consider those sensitivity values for which



TABLE III: Sensitivity and Specificity of BSVR for a fixed threshold of the detector for PIE. In this case, if the error

bar value is above its average then the corresponding instance will be detected as positive event by BSVR.

Prediction Error
5 min 10 min 15 min 20 min 25 min 30 min

Sen. Spec. Sen. Spec. Sens. Spec. Sen. Spec. Sen. Spec. Sen. Spec.

Error tolerance (1σ ) 44% 91% 53% 90% 56% 89% 58% 88% 59% 87% 60% 85%

Error tolerance (2σ ) 47% 90% 56% 89% 59% 88% 62% 86% 63% 85% 63% 84%

Error tolerance (3σ ) 50% 89% 58% 88% 60% 87% 63% 85% 62% 84% 61% 83%

Error tolerance (4σ ) 55% 89% 60% 87% 59% 86% 59% 85% 57% 84% 56% 82%

Error tolerance (5σ ) 56% 89% 55% 87% 56% 86% 57% 84% 60% 83% 55% 82%

TABLE IV: Sensitivity and Specificity of BSVR for a fixed threshold of the detector for Lavender Area. In this case, if

the error bar value is above its average then the corresponding instance will be detected as positive event by BSVR.

Prediction Error
5 min 10 min 15 min 20 min 25 min 30 min

Sen. Spec. Sen. Spec. Sens. Spec. Sen. Spec. Sen. Spec. Sen. Spec.

Error tolerance (1σ ) 21% 91% 21% 89% 24% 86% 25% 85% 28% 84% 29% 84%

Error tolerance (2σ ) 26% 90% 28% 88% 31% 86% 32% 84% 36% 83% 36% 83%

Error tolerance (3σ ) 33% 90% 36% 88% 38% 85% 39% 84% 42% 82% 43% 82%

Error tolerance (4σ ) 41% 90% 43% 88% 46% 85% 47% 84% 53% 82% 53% 82%

Error tolerance (5σ ) 51% 90% 49% 88% 54% 85% 62% 83% 66% 82% 60% 82%

we obtain specificity of 80% or more (false positive rate

< 20%). We plot each Receiver Operating Characteristic

(ROC) curve by varying detector threshold γd . This provides

us with different sensitivity and specificity values for each

error tolerance level.

Fig. 3 shows the ROC for different prediction horizons for

expressway links (PIE). In Fig. 4, we plot ROC curves for

the road segments in the Lavender area. The ROC curves

in these figures represent the average detection performance

of BSVR across a particular network. We plot each curve

by setting a certain tolerance limit for prediction error. We

plot ROC curves for different tolerance levels τd ∈ {2σ , ...

, 5σ}, where σ is the standard deviation of prediction error.

For analysis, we keep the False Positive (FP) rate below 20%.

The blue lines in Fig. 3 and 4 are called the no-discrimination

lines. These lines represent the performance of a detector that

randomly selects an event as either positive or negative. The

ROC curve should remain above the no-discrimination line

for a detector to be useful. ROC curves clearly remain above

the no-discrimination line for both networks (see Fig. 3 and

4). ROC curves for expressway links remain far above the

no-discrimination line for high as well as low error tolerance

levels (see Fig. 3). In case of general roads, ROC curves tend

to move closer to the no-discrimination line for low error

tolerance levels.

For a given false positive rate, we achieve higher

sensitivity for expressways as compared to general roads

(lavender area). In case of expressways (PIE), BSVR can

detect around 60% instances of large error for all the

prediction horizons. For this level of sensitivity, it only

reports false alarms in around 15% of time instances

(specificity ∼ 85%). More importantly, it provides similar

detection performance for small as well as large tolerance

levels (different error sigma levels, see Fig. 3).

For general roads, we observe slightly degraded detection

performance. In the Lavender area, average sensitivity varies

from 30% to around 60% for different error tolerance

levels and prediction horizons. We achieve these sensitivity

levels with specificity of around 85% (see Fig. 4). Still, we

can detect large errors with relatively high sensitivity and

specificity. For tighter error tolerance (prediction error ≤ 2σ ),

we observe degraded sensitivity (see Fig. 4).

Let us now perform specificity and sensitivity analysis for

a fixed threshold γd of BSVR error bars. In this analysis,

we expect large prediction error, if the corresponding

error bar value is above its average. We select positive

events by choosing different tolerance levels for prediction

error. We treat these events as ground truth. Table III

shows the sensitivity and specificity values across multiple

prediction horizons for expressway links. We find that the

detector sensitivity remains around 60% for expressways

across different prediction horizons. The detector specificity

degrades from 90% for small prediction horizons to around

82% for large prediction horizons. The detector performance

does not vary much for different error tolerance levels for

expressway links (PIE, see Table III). False positives rate

remains below 20% for all tolerance levels and prediction

horizons. We summarize the results from Lavender area in

Table IV. Detector specificity remains above 82% for all

tolerance levels and prediction horizons. We observe low

detection rate (sensitivity) for small error tolerance levels (

≤ 2σ ). Sensitivity of BSVR improves considerably for large

error tolerance levels (from 25% to 60%, see Table IV).

We also find that detector sensitivity improves slightly for

large prediction horizons. This improvement however comes

with higher false alarm rate (see Table IV). False alarm rate

increases from around 10% for 5 min prediction horizons to

18% for 30 min prediction horizon. We observe this trend

for small as well as large prediction errors (1σ , ... , 5σ , see

Table IV).

BSVR provides confidence measure for each prediction

in terms of error bars. For certain traffic conditions (input

features), we may not have enough historical data. In such

cases, BSVR will anticipate large prediction error for that

time instances. However, for similar input patterns, we might

still observe different future traffic trends. Such instances



(a) Sensitivity: 45%.

(b) Sensitivity: 64%.

Fig. 5: Location of input features for test data corresponding

to positive events for two road segments (from PIE) with

different sensitivity values. In both cases, false negative

events are embedded in the region which has high density

of training data points. Consequently, the detector did not

expect large prediction error for such instances.

might occur due to changes in on ground conditions. BSVR

will not be able to anticipate behavior of prediction error

during these time intervals. As an illustration, Fig. 5 shows

feature plots for two different road segments. In these figures,

we plot input features (current speed and speed observed 5

min earlier) of training data points and positive events (high

prediction error) for 5 minute prediction horizon. Fig. 5a

shows the plot for a road segment with sensitivity of 45%.

In Fig. 5b, we plot the input features of a link with sensitivity

of 64%. In both cases, input features of true positive events

are located away from training data points. On the other

hand, false negative events have similar input features as

many other training data points.

We can conclude that BSVR can detect variations in

prediction error with good sensitivity (∼ 60%, see Fig. 3, 4)

for expressways as well as general roads. We achieve these

values at high level of specificity (85% to 90%, see Fig.

3, 4) for both networks. The detection performance remains

consistent across small and large prediction horizons.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed Bayesian Support Vector

Regression (BSVR) to provide error bars associated with the

prediction errors. Uncertainty measures for prediction data

can be useful for many ITS applications. We apply BSVR

to provide error bars alongside predicted traffic states. These

error bars can be considered as confidence measures for the

corresponding predicted traffic states. With these confidence

measures, we can anticipate the behavior of prediction error

before field measurements become available. We analyzed

the detection efficiency of BSVR by performing sensitivity

and specificity analysis. To this end, we performed speed

prediction on expressways and arterial roads in downtown

area in Singapore for multiple prediction horizons. We found

that BSVR can detect variations in prediction error with

low false alarm rate and reasonable detection accuracy for

expressways as well as general road segments.

In the future, traffic management systems can incorporate

such measures to achieve more robust performance.
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