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Thermal and Inertia Effects in 
Hydrodynamic Lubrication of 
Rollers by a Power Law Fluid 
Considering Cavitation 
A theoretical aspect of hydrodynamic lubrication of two symmetric rollers by power 
law fluids is analyzed. The effect of fluid convective inertia, which is significant in 
case of high speed bearing, is taken into account. The effect of hydrodynamic 
pressure and temperature on the lubricant consistency m is assumed to vary with 
pressure and the mean temperature. The squeezing motion of the surfaces is also 
incorporated along with inertia and thermal effects. The Reynolds equation and the 
energy equation (with convection and conduction), which are coupled through m, 
are solved simultaneously. Various bearing characteristics such as pressure, tem­
perature, load and drag etc. are obtained and a comparison between results (with 
and without inertia) is also made. It is noted that the effect of inertia is to increase 
pressure, temperature, load and drag etc. and to displace the position of pressure 
peak slightly towards the center line of contact of the rollers. An attempt is also 
made to study the variation of film thickness with load, speed, Eckert number, 
pressure, and temperature viscosity exponents. 

Introduction 
Most of the early analytic treatment of line contact lubricated 

bearings, such as cylindrical roller bearings, cylinder on a plane 
type bearings, has been based on the solution of Reynolds 
equation embodied with the assumption that the lubricant film 
is isothermal (Floberg, 1961 and Dowson et al., 1976). This 
isothermal theory may be valid for the lightly loaded bearings, 
where hydrodynamic pressure and temperature are not high 
enough to produce significant changes in material properties 
of the lubricant. An experimental result (in support of it) on 
a lightly loaded bearing has also been reported by Markho and 
Dowson (1976). 

However, the bearings operating at heavy loads and high 
speeds, encounter extremes of pressure and temperature. This 
pressure-temperature field becomes even stronger if bearings 
are subjected to squeezing motion as well (Rohde and Ezzat, 
1974). In such cases, material properties of the lubricant require 
a careful reappraisal. In oil lubricated bearings, it is the vis­
cosity which changes most dramatically (Gethin, 1987). Thus 
for an accurate prediction of bearing characteristics, the con­
servation equation of thermal energy is also required in ad­
dition to the conservation equations of mass and momentum. 

The need of investigating the temperature field arises bas­
ically due to a strong dependence of lubricant viscosity on 
temperature. Hence bearing characteristics predicted using 
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isoviscous theory are found to deviate from the experimental 
result (Rajlingham, 1987). Several attempts have been made 
in this direction. Some of the early important investigations 
on heavily loaded lubricated line contacts have been presented 
by Crook (1961) and Cheng and Sternlicht (1965). Crook stud­
ied the thermal effects in lubrication of rigid cylindrical rollers 
by a Newtonian incompressible fluid theoretically and exper­
imentally. Results for pressure, temperature, film thickness, 
and traction were obtained. Cheng and Sternlicht studied a 
far more difficult case of this problem theoretically. Assuming 
the lubricant to be compressible and the rollers to be elastic, 
they investigated the thermal effects and presented various 
important bearing characteristics. More recently, Sadeghi and 
Dow (1987) presented a two-dimensional solution to the prob­
lem of thermal EHD lubrication of rolling/sliding contacts. 
The Reynolds, the energy and the elastic equations have been 
solved simultaneously giving pressure and temperature distri­
butions along with the film thickness. Sadeghi et al. (1987) 
also attempted the same problem using an approximate method 
for the prediction of mid-film temperature and sliding traction. 

Furthermore, in the heavily loaded system where high pres­
sure exceeding 107 dyne/cm2 is encountered, lubricant viscosity 
can no longer remain insensitive to pressure. Archard (1961), 
Dowson (1965), Conry (1981), Rong-Tsong and Hamrock 
(1989), among the pioneers in this field, also emphasized the 
need for considering viscosity variation with respect to pres­
sure. It is therefore imperative to account for the effect of 
pressure also on the lubricant viscosity. 

Another important factor which influences bearing char­
acteristics in case of high speed bearing lubricated with a low 
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Fig. 1 Lubrication of two identical cylinders together with pressure 
profile p, viscous distribution J, (x) - J_, (x) and inertia distribution /„(x) 

viscosity fluid and subjected to a squeezing motion is the fluid 
inertia (Hashimoto and Wada, 1986 and Elkouh, 1976). This 
effect is important even in case of laminar flow where an 
increase in load capacity is observed (Mori et al., 1985). An 
increase in hydrodynamic film thickness may also sometimes 
compel one to consider this effect. Dowson et al. (1980) con­
ducted a wide range of experiments on a cylinder-plane bearing. 
It is observed that for a moderately large Reynolds number, 
the experimental data deviated substantially (due to fluid in­
ertia) from the theoretical values predicted by classical Reyn­
olds equation using the Coyne-Elrod film rupture conditions. 
Very recently, You and Lu (1987) presented a theoretical anal­
ysis of a cylinder-plane bearing and journal bearing. They have 
shown that the lubricant inertia has a profound effect even at 
moderate values of the Reynolds number. 

In addition, the Newtonian behavior of the lubricant in 
concentrated contacts is also a matter of investigation. In fact, 

since the lubricant is subjected to extremely high pressures and 
shear-stresses, which act for a short time, the Newtonian hy­
pothesis for the lubricant may not be valid (Rashid and Seireg, 
1987). Besides, severe operational requirements have necessi­
tated the increasing use of lubricants, such as mineral oils with 
high molecular weight polymer additives. These polymers im­
prove the viscosity index of the oil and at the same time make 
the lubricant non-Newtonian (Williams and Simmons, 1987). 
Attention has been focused by several investigators to model 
non-Newtonian flow in bearing lubrication analysis. Among 
the various non-Newtonian models postulated in the recent 
years, the power law model has perhaps found the most ex­
tensive applications (Sinha and Singh, 1982). 

In the present analysis, the problem of two infinite rigid 
cylindrical heavily loaded rollers lubricated with power law 
fluids under rolling and squeezing motions is studied including 
the effects of fluid inertia and cavitation. The lubricant pres­
sure is assumed to be constant across the film thickness and 
the lubricant consistency is allowed to vary exponentially with 
pressure and the mean film temperature. The modified Reyn­
olds and energy equations are obtained and solved simulta­
neously yielding pressure and temperature. 

Mathematical Formulations 

Governing Equations. Making use of the constitutive re­
lation for a power law fluid, applying the usual assumptions 
of hydrodynamic lubrication for the geometry given in Fig. 1 
and retaining the fluid inertia terms, one obtains the following 
governing equations for an incompressible power law fluid: 

dp du du 

dx dy dx dy 

du dv n 

dx ay 

'du 

to. 
(1) 

(2) 

The lubricant temperature field resulting from viscous dis­
sipation is defined by the energy equation 

dT a n T, 
pClUTx + VTyTK^ + m 

d2T 
(3) 
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2(2/2 + l)/(3« +2) 
specific heat of the lubricant 
at constant volume 
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dimensionless number 
(= U2/3/C) 
X2 - X2 + 2q(X + Xi) 
film thickness 
film thickness at the maximum 
pressure (x = —x*) 
minimum film thickness 
dimensionless film thickness at 
x = -Xi (h0/R) 
1 + X2 etc. 
lubricant thermal conductivity 
variable lubricant consistency 
constant consistency 
2m c„ a etc. 
flow behavior index 
hydrodynamic pressure 
ap 
(Ch0/4KaU) (h0/2R)ln 

q = squeezing parameter 

r = 
R = 
1 = 
T = 

T„ = 
Tm = 

To = 
u = 

u = 

U 
U 
v 

V 

V 

USjlhoJ 
radius of the cylinder 
equivalent radius 
lubricant temperature 
/3retc. 
surface temperature 
the mean film temperature as 
defined in (5) 
ambient temperature 
lubricant velocity in x-direc-
tion 
u/U 
the mean velocity as defined in 
(24) 
velocity of the cylinder 
(U/R)/time 
lubricant velocity in ^-direc­
tion 
(2v/U) V(2i?//20) 
V/2 is the normal velocity of 
the cylinder 

Ws = load carrying capacity 

Ws = WS/{^]2RT0/CL) 

Wj = surface traction 
WT = -WT/{h0/2a) 
x* = point of maximum pressure 

, . , du 
X\ = point at which — = 0 

dy 
x2 = cavitation point 
X = x/yj2Rha etc. 
a = pressure coefficient 
18 = temperature coefficient 
7 = P ,E , (n / (3n + 1)) 

7 l = PrE, (n/(4n + 1)) 
p = lubricant density 
X = modified Reynolds number 

Subscripts 

1,2 = refer to the respective quan­
tities in the inlet and outlet re­
gions 

Bar denotes dimensionless number 
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Assuming that the lubricant consistency m varies with pres­
sure and temperature according to the following 

m = m0e
ap-{i(T»>-T°) (4) 

where Tm is the mean temperature derived from the fluid tem­
perature T as follows: 

< p/l/2 

Tm = r Tdy (5) 

Til (" 
du _ du\ TT, dp A d 

M+V3Y)dY+dX=AJY{m 
aw 
BY 

duX 

dY) 

m0 is the lubricant consistency at p = 0 and Tm = T0; a and 
/3 are, respectively, the coefficients of pressure and tempera­
ture. 

Boundary Conditions. The boundary conditions for Eqs. 
(1) and (2) are 

u d h v 
u=U, v = — — + — aly = h/2 

2 dx 2 
du 

by' 
0, v = 0 at y = 0 

p-Q a t x = - o o 

p = 0 , - f = 0, a t x = X 2 
dx 

and for Eqs. (3) are 

T=T0 at x= -oo 

r = T A a t 7 = /!/2 

— = 0 a t ^ = 0 
dy 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

Dimensionless Scheme. Making use of the following di-
mensionless values: 

Y=2y/h0, u = u/U, v = j - {^J2R/h0), 

p = ap,X--
\p2Rh0 

(12) 

Ch„ 
\ = pU2a, Pr=-77^- ( V V 2 R ) , Et=U^/C, 

T=f3T,H=h/h0,Pe = \Pr (13) 

Equations (l)-(5) can be rewritten as follows: 

. , _ du _ du\ dp 8 
Mu3X+VJf)+dX=A^m 

du dv „ 
— + — = 0 
dX 8Y 

dU 

dY 

du 

d~Y, 

{_ dT _ dT 
PAud~X+V-dY, 

d2T _ 
~^2 + mPrEtA 

dY ar 
m = m0e" (Tm To) 

Tm = Tr t Tdy 

where 

c„ = 

m = 2m c„u etc. 

A=(n/(2n+\))n 

2n + \\ 
(U/R)"(2R/h0) 

n+l/2 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 

(21) 

(22) 

_Similarly assuming the contribution of second term v 
dT/dY of (16) to be small (Dowson and Hudson, 1963) and 
dT/dX = dTJdX(Cheng and Sternlicht, 1965), Eq. (16) may 
be approximated as 

„:_ dTm dlT _ „ „ „ 
elim~dx^W2+m ' ' 

<fu_ 

dY 

'-l/du^2 

dY, 
(23) 

where velocity u occurring in the convection term has been 
taken as 

(24) Um=(u\y=0 + u\y=H)/2 

Solutions. Define 

,, \ f (-.du _ duX Jv dp 
F=H{ {U8X+VJY)dY+dX (25) 

D = PPu„ 
dTm 

dX 
(26) 

It may be noted that F and D are functions of x-alone. Solving 
Eq. (22) for w, using the following boundary conditions: 

du 
- = 0, Ii = 0 a t 7 = 0 

dY 

dH 
u = \, v= -2q + —at Y=H 

with 

One obtains for Y > 0 

«-te) 
The volume flux Q, defined by 

\/n 

q=u-

/ n+1 

\Y" -

^2h0 

n+ 1 

-H " 

Q -r. dY 

is obtained as 

Q = H- n 
2n+\ \Am 

{/„ 2n+l 

H " 

(27) 

(28) 

(29) 

(30) 

(31) 

(32) 

Integration of continuity Eq. (15), using the boundary con­
ditions (27) and (28), gives 

M["dY- 2q 

Q=-2qX+d 

where d is the constant of integration. 
Use of relations (30), (32) in (22) yields 

where 

(33) 

The presence of inertia and convection terms in (14) and 
(16) makes them complicated. Also, since their contributions 
are small in comparison to the other terms (occurring in the 
same equations), their average/mean values are not likely to 
differ significantly from their unaveraged values. Conse­
quently, Eq. (14) after averaging may be written as 

h(X) = 
H 

/»w+l=w 

f=H-2qX-d 

Jf(X)=mxf/H
2n+i 

H-,+f-£H(?-i)' 
5 = 2(2n+l)/(3n +2) 

(34) 

(35) 

(36) 

(37) 

(38) 
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du 
Now — = 0 at X= -Xx implies 

oY 

f=X2-X2 + 2q(X+X{) (39) 

Similarly Eq. (16) can be solved for T, using the boundary 
conditions 

dT 
^ = 0 at 7 = 0 

T=Th at Y=H 

(40) 

(41) 

Thus 

D 
Ti = T„ + -{Yl-Hl) 

3 n + l ' 

+ ym1r
+l\H « -Y " )/H 

(2H+!)(«+!) 

where 

y = PrE, n 
3n + l 

(42) 

(43) 

/ „ ( A ' 2 ) - / - / ( ^ 2 ) = 0 (53) 

The ordinary differential equations obtained above contain 
unknowns X\ and X2 which can be determined as follows. An 
arbitrary value of X\ is assigned and the differential equations 
are solved for p and Tm by Adams-Moulton method till p2 » 
0 for some X = X2 (say). If Eq. (53) is satisfied at X = X2 

then the assumed value of Xi was correct, otherwise another 
value of Xi is chosen and the process is repeated so that the 
desired conditions are satisfied. 

Load and Traction. The surface force Ws may be defined 

as 

= \ pdx=-[\ x—~dx+\ x—rdx 
J_„ \J-oo dx i_x dx t 

ws= 
"*' XmJ" 

H' rln TTdX 

-[ 
<2 Xm2(-f)

n 

H' •2n+l 

rx2 
dX- XI„(X)dX (54) 

J - 0 3 

Averaging Eq. (42) using definition (18), the expression for 
the mean temperature is obtained as: 

H1 
,-vz fn+l /Tjln Tmi = T„---jD + ylmxr*i'HL (44) 

(45) 

where 7! = PrE,n/(4n + 1). 
Substituting the value of D from (26), one may get 

TT2 (fr _ 
PeUm y ~~l= Th- Tmi+y{fnxf^/H2n 

Equations (34), (42), and (45) are the final forms of equations 
giving pressure, temperature and the mean temperature dis­
tributions, respectively, for the first region (—<x <X< -X\), 
where/ is given by (39), wm using (24) is as follows: 

(2n + \\ f 
um=\-

n+l 2H 
(46) 

Similar expressions for pressure, temperature and the mean 
temperature for the other region (-Xi < X < X2) can also 
be obtained as: 

I„(X)+d^ = J^f(X) (47) 

T2=Th+^(Y2-H2) 

3«+l 3«+l 

+ ym2(-/r
 + '(H " -Y " )/H 

(2n+!)(«+!) 

Pe% 
_ H2dTm2 _ 

3 dX 
= Th-T^ + yim2(-f)"

+l/H2' 

where 

J„f(X)=-m2{-f)"/H: 2n+l 

(48) 

(49) 

(50) 

Numerical Method. Reynolds and energy Eqs. (34), (45), 
(47), and (49) are coupled through m and have to be solved 
simultaneously satisfying the following conditions: 

p 1 = 0 ,T 1 =T o ,T ,„ 1 = T o a t ^ = - o o (51) 

ft = 0 = ^ a t * = ; r 2 (52) 

The last condition (52) in conjunction with (47) implies 

where Ws ( = Ws/(y/2Rh0/a)) is the dimensionless load. Sim­
ilarly, the traction force WT may also be defined as 

w C hdp J 
J-oo 2 dx 

which comes out to be in dimensionless form as 
-X\ -rr: sn nX-i —— 

WT = ~ C^-C .^" (55) 

where WT = - WT/(h0/2a). 

Results and Discussion 

The numerical values of the dimensionless pressure p and 
the mean film temperature Tm are obtained by solving Eqs. 
(34), (45), and (47), (49) simultaneously, for various values of 
the flow behavior index n (.4 < n < 1.15) and squeeze velocity 
q ( -0 .09 < q < +0 .09) . The value of a is taken to be 

= 1 .6x l0" 9 dyne - 1 cm 2 , and P r=5250.6 

It can be here noted that X = 0 corresponds to the result 
without inertia, i.e., behaves as a Reynolds number. The pa­
rameter Pe is a equivalent Peclet number and Pe = 0 signifies 
the results without energy convection. Consideration of both 
the above parameters to be zero simultaneously leads to the 
problem done by Prasad et al., 1987. The Eckert number Et 

= 0 means that there is no heat of dissipation. It also represents 
the results under isothermal condition (/? = 0). 

It can also be noted that it was not possible to draw curves 
for all n, q, X, Pe etc. So graphs have been made for X ( = 26 
X 10~5) ^ 0, P e ( = 136515.6 X 10~5) * 0 mainly and curves 
for only a few values of n and q in case of X ( = 52 x 10 ~7) 
- 0 and Pe ( = 273011.2 x 10 -7) - 0 have been given. Tables 
are also made only for a few values of the above parameters. 
However a special attention is paid to show relations among 
dimensionless film thickness h0 ( =ha/R), velocity U ( = (£// 
i?)/time), load Ws and Eckert number E,. 

Pressure Distribution. The lubricant pressure p which is a 
function of n and q has been computed numerically by solving 
Reynolds Eqs. (34) and (47). The results have been presented 
in Figs. 2 and 3. For both the cases of X ^ 0 and X — 0 (as 
mentioned earlier), the qualitative behavior of p for the dif­
ferent values of q (for fixed ri) is identical. This is in conformity 
with the results of Dowson et al. (1976) and those obtained in 
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\ t 0 , Pe * 0 n = 1.15 

-5.0 -4.0 -3.0 -2.0 -1.0 

Fig. 2 Pressure distribution p against X 

(0.0) 0.5 

.5.0 -4.0 -3.0 -2 .0 -1.0 (0.0) 

Fig. 3 Comparison of pressures with and without inertia 

0.5 

Prasad et al. (1987) and Rong-Tsong and Hamrock (1989). A 
similar trend for both the cases is displayed by the pressure 
curves when n is varied and q is held fixed. This kind of 
behavior was observed by Safar and Shawki (1979) for a thrust 
bearing, by Buckholz (1985) for a journal bearing and by Wang 
et al. (1988) for cylindrical roller bearing. The point of max­
imum pressure for the case X ^ 0 is of special interest here. 
Mathematically speaking, the point of maximum pressure for 
the present case is the point of intersection of the curves 7„ (X) 
and Jf(X). This has been shown in Fig. 1. Physically it is the 
point at which inertia and viscous forces balance each other. 
The point of maximum pressure for the case X =* 0 is different 
from the point X = -X\ (at which du/dY is zero) and lies 
before X = -X{. However, for the case X — 0, these two 
coincide i.e. the pressure gradient and the velocity gradient 
vanish simultaneously. 

A comparison between the two cases can also be made from 
Fig. 3. It is seen from Fig. 3 that for each fixed n and q, the 
pressure curves for X ^ 0 lie above the corresponding curves 
for X — 0. One may therefore infer that the inclusion of inertia 
term leads to an increased pressure. It may be further noted 

that the inertia effect is less on the Newtonian fluid (« = 1) 
in comparison to that for the dilatant fluid (« > 1). Increased 
pressure due to the presence of inertia has also been reported 
by Elkouh (1976) and by Safar (1979). 

Temperature Distribution. The mean film temperature Tm 
is computed from differential Eqs. (45) and (49). The results 
for Tm are elaborated through Figs. 4 and 5 for various values 
of n and q (for both the cases X ^ 0 and X — 0). It is clear 
from Fig. 4 that for a fixed n and q, Tm increases as the lubricant 
flows toward the pressure peak region. Subsequently, it de­
creases till the pressure is zero (ambient). However for a fixed 
«, q, and X — 0, the behavior of Tm is similar to that mentioned 
above, except near the centerline of contact {X = 0) where it 
increases_/decreases (see Fig. 5) though only marginally. Fo^a 
fixed n, Tm increases as q decreases whereas for a fixed q, Tm 
increases with n. A similar trend for temperature with n has 
also been obtained by Prasad et al. (1988). 

A comparison between the mean temperature for both the 
cases has also been made in Fig. 5.' It is observed from the 
figure that the mean temperature near the inlet for the case X 
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A 2 0 , P e 20 

q = -0.09 

- - - q = 0.00 

— - q = - 0 . 0 9 
2.5 

-2.25 

n = 1.15 

5.0 -4 .0 -3.0 - 2 . 0 -1.0 (0.75) 

Fig. 4 The mean temperature distribution Tm against X 

n=1.15,q= - 0.09 

A * 0 , P e * 0 

- • - A->0,P e^0 

-5.0 -4.0 (0.75) 
>X 

Fig. 5 Comparison between the temperatures Tm with and without 
inertia 

^ 0, is less than that for the case X -~ 0. However, the trend 
is reversed in the pressure peak region. One may interpret these 
results from a physical viewpoint as well. For the case X 5* 0, 
the convection dominant region extends farther than that for 
the case X -~ 0. Thus the heat lost by convection for X — 0 is 
smaller as compared to that for X ^ 0. This may cause the 
temperature rise there. However, as the lubricant flows towards 
the pressure peak region, the heat transported by conduction 
becomes more significant for the case X — 0. Consequently, 
Tm decreases continuously right-up to the pressure peak region. 
Thus for the case X ?£ 0, Tm is higher than that for X — 0 
near the pressure peak region. 

q =-0 .09 

— - q = 0.00 

-••- q=- .0 .09 

- - q = -0.'09, A->0,Pe-*0 

A * 0 , 
I \ 

- 4 -3 -2 -1 (0.0) 

Fig. 6 Consistency distribution m against X 

Consistency Variation. The dimensionless consistency m, 
given by the empirical relation viz. 

m = m0^~T"'+To 

is depicted in Fig. 6 for various values of n and q. It is evident 
that the consistency variation depends on the combined effects 
of pressure/? and the mean film temperature Tm. Since Tn for 
the pseudoplastic fluids (n < 1) does not vary significantly 
with respect to q. Therefore, for this case, m is plotted for 
only one value of q (= -0.09). Moreover, the consistency 
variation for all the values of « and q have similar trends i.e., 
Tn decreases near the inlet because increase in Tm is higher than 
the corresponding increase in p. Thereafter, Tn follows the 
pressure trend throughout the region i.e., except near the outlet 
where the trend is opposite. For each q, Tn increases with n 
throughout the region. However, for each n, Tn increases as q 
decreases in whole of the inlet and outlet regions except in the 
neighborhood of the centerline of contact but it differs slightly. 
It is seen from Fig. 6 that variation in Tn for n < i is very 
less. It may therefore be noted that m may be treated constant 
for pseudoplastic fluids (« < 1). 

The consistency variation for X — 0 has also been presented 
along with that for X ?* 0. The qualitative behavior of Tn versus 
X (for all n and q) in this case is similar to that for X ^ 0. 
However, quantitatively Tn for X — 0 is less than that for X 
^ 0 except in the pressure peak region where the trend is 
reversed. This is because of abnormal change in Tm and p in 
that region which has already been mentioned. 

Load̂ and Traction. The surface force Ws and the traction 
force WT are calculated from the expressions (54) and (55) for 
various values of n and q and for both the cases X ^ 0 and 
X — 0. These results are presented in_Table 1. It is seen from 
the table that for a fixed q, Ws, and WT both increase with n 
whereas for a fixed n, both of them increase as q decreases. 
This is in accordance with the results obtained by Prasad et 
al., 1987. 

In order to study the effect of inertia on load and traction, 
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Table 1 Normal force component and traction 

n/m0 

1.15/0.56 

1.00/0.75 

0.545/86 

0.40/128 

<7 

-0 .09 
0.00 

+ 0.09 

-0 .09 
0.00 

+ 0.09 

-0 .09 
0.00 

+ 0.09 

-0 .09 
0.00 

+ 0.09 

X = 2 6 x l 0 - 5 

Ws WT 

0.48104 
0.44338 
0.40211 

0.14965 
0.13100 
0.11293 

0.05450 
0.04888 
0.04352 

0.01273 
0.01148 
0.01029 

1.5382 
1.5323 
1.4936 

0.4095 
0.3881 
0.3620 

0.1112 
0.1078 
0.1033 

0.0234 
0.0228 
0.0220 

X = 5 2 x l 0 " 7 

0.34573 
0.29744 
0.25320 

0.11361 
0.09732 
0.08266 

0.04443 
0.03966 
0.03521 

0.01169 
0.01010 
0.00908 

0.7761 
0.7617 
0.7340 

0.2667 
0.2549 
0.2405 

0.0847 
0.0826 
0.0798 

0.0202 
0.0197 
0.0191 

Table 2 Relation between h0 and load Ws for X ^ 0, Pe * 0, and U = 150 

ho 

3.3333x10- ' 
9.5238x10"" 
2.7212xl0~" 
7.7746x10"' 
2.2217x10- ' 

q=-0.09 

.11157x10-' 

.83138X10"1 

.41130 
1.1505 
2.3647 

n/m„= 1.15/0.56 
9 = 0 

.96663 x l O - 2 

.70397x10-' 

.37600 
1.1069 
2.2575 

g = 0.09 

Values of ~WS 

.79035 x l O " 2 

.58778x10"' 

.33689 
1.0628 
2.1667 

n/m0= 1/0.75 
q = -0 .09 

.36456 x l O " 2 

.21123x10"' 

.12288 

.49216 
1.23745 

n/m0 = 0.545/86 
<7=-0.09 

.33934X10"2 

.12904x10"' 

.46658x10"' 

.15635 

.44446 

Table 3 Relation between h„ and U for a fixed load Ws = 2.5, X ^ 0 and Pe ^ 0 

Values of U 
1.79928x10"' 
0.59976x10-' 
1.9992 x lO"" 
0.6664 x lO"" 
2.2213 x l O " ' 

96024.671 
19857.000 
4105.000 

848.670 
172.133 

111139.000 
22982.367 
4751.467 

982.457 
203.137 

128228.240 
26510.540 
5480.881 
1133.147 
234.269 

784350.00 
151005.33 
29055.00 

5592.77 
1076.30 

330703666.66 
40245333.33 
4899514.00 

595323.33 
72443.33 

Table 4 Relation between h0 and E, for X * 0, Pc * 0, U = 150 and q = - 0.09 

Ws = 0.25, 
n/m0= 1.15/0.56 

E, 

Ws = 0.09, 
n/m„= 1.0/0.75 

E, 

^ = 0.035, 
n/ma = 0.545/86 

E, 
.35989x10-' 
.17993x1-"' 
.59976x10"" 
.19992x10"" 
.66640x10"' 

.31230X10"2 

.80349 XlO'2 

.18533x10-' 

.29404x10-' 

.53979X10"' 

.10900x10"' 

.15933X10"' 
,40817x10-' 
,68212x10"' 
,10502 

.23214x10 

.39865x10 

.99731x10 

.16447 

.23111 

results for X — 0 have also been presented in Table 1. It is 
seen that the inclusion of the inertia force leads to increase in 
the load and the traction for all n and q. 

Variation of h0 With Ws, U, E„ Pressure and Temperature 
Viscosity_Exponents. Coming over to the relation between 
the load Ws and the dimensionless minimum film thickness h0, 
the analysis of loads given in Table 2 shows that they vary 
reciprocal to each other for the Newtonian as well as non-
Newtonian fluids. This means that if the load increases, the 
gap between the rolling surfaces (i.e., film thickness) decreases 
and vice-versa. This is physically justified as well (Ghose and 
Hamrock, 1985). A similar trend follows between h0 and the 
Eckert Number Et when the load andjhe velocity are held 
fixed (see Table 4). Thus, it implies that h0 increases/decreases 
as the temperature viscosity_exponent (3 decreases/increases. 

Relation between h0 and U is given in Table 3 for various 
values_of n and q. It^follows from the table that for a fixed 
load, h0 varies with U. Physically, velocity increase/decrease 
causes a corresponding increase/decrease in the film thickness. 
A similar observation has also been made by Ghose and Ham-

Table 5 

n/ma 

1.15/0.56 
1.00/0.75 
0.545/86 
0.40/128 

1.15/0.56 
1.00/0.75 
0.545/86 
0.40/128 

Values of JVj for P c 

-0 .09 

0.35466 
0.40644 
0.43259 
0.44438 

0.32663 
0.37773 
0.40277 
0.42216 

Q 

0.0 

0.42610 
0.46711 
0.48907 
0.49856 

0.39046 
0.43686 
0.45993 
0.47830 

?i 0, and U = 

+ 0.09 

0.50138 
0.53256 
0.55119 
0.55863 

0.45985 
0.50197 
0.52325 
0.54043 

150 

X 

2 6 x 1 0 " ' 

52X10"7 

rock, 1985 for the Newtonian fluid. It can also be concluded 
from here itself that since t/and the pressure viscosity exponent 
a are the contemporary terms (they occur in the numerator, 
see Eqs. (19) and (21)), they are likely to have the same be­
havior. Hence film thickness increases/decreases with a. 

Separated Regions. The Reynolds and the energy Eqs. (34), 
(45), (47), and (49) contain Xi (X =?= -Xx is the point at which 
du/dY vanishes). This point X = -X{ separates the region 

Journal of Tribology APRIL 1993, Vol. 115/325 Downloaded From: https://tribology.asmedigitalcollection.asme.org on 06/29/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



- oo < X < X2 into two subregions - oo < X < —X\ and 
-Xl < X < X2. The values of Xx for different n and 9, and 
for both the cases have been presented in Table 5. It can be 
seen from the table that for a fixed n, X\ increases as q increases 
whereas for a fixed q, X\ decreases as n increases. A similar 
trend was also obtained by Sinha and Singh (1982) for X — 0 
and w constant. 

Conclusion 
A theoretical analysis of cylindrical rollers moving with equal 

velocity and lubricated with power law fluids has been pre­
sented. Thermal and inertia effects have also been incorporated 
together with the squeezing motion and film cavitation. A 
simple model for m given in Eq. (4) has been considered. 
Average/mean values of the fluid inertia and the energy con­
vection considered in the momentum and energy equations 
result in an analytical solution for temperature and semian-
alytical solutions for pressure and the mean temperature. 

Fluid inertia causes a significant increase in pressure and 
thus the load and the traction. This effect has even more 
significance in case of squeezing motion. This effect, however, 
has moderate effect on the mean temperature. The fluid inertia 
tends to stretch the fluid film which results in a lubricating 
flow field larger than that of the inertialess case (X —• 0) i.e., 
the point at infinity is shifted farther away from the center 
line of contact. This also tends to shift the position of pressure 
peak towards the origin. Further, it can also be noted that the 
dimensionless minimum film thickness varies reciprocal to the 
load. A similar trend follows between the film thickness and 
the Eckert number or temperature viscosity exponent. How­
ever, the film thickness increases/decreases according as the 
speed increases/decreases. The same relation is true between 
the film thickness and the pressure viscosity exponent as well. 
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