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Thin Films
A multigrid numerical solution algorithm has been developed for the laminar (Sto
flow of a compressible medium in a thin film. The solver has been applied to two m
problems each representative of lubrication problems in a specific way. For both prob
the solutions of the Stokes equations are compared with the solutions of the Re
equation. The configurations of both model problems were chosen such that based
ratio film thickness to contact length (H/L) the difference between the Reynolds an
Stokes solutions will be very small, so the geometry of the gap itself does not lead
significant cross film dependence of the pressure. It is shown that in this situatio
compressibility can still lead to a cross-film pressure dependence which is predicted b
Stokes solution and not by the Reynolds solution. The results demonstrate that limit
exist to the validity of the Reynolds equation related to the compressibility of the me
@DOI: 10.1115/1.1539058#
i

e

c
g

i

a

t
i

e

t

t

n

c

res-
-film
sed
that

rst
gs.

nal
en
ess-

the
olu-
basic
nal

ons
hen
oks

ier

d
ldsr
1 Introduction
In hydrodynamic~or aerodynamic! lubrication theory it is com-

mon practice to use the Reynolds equation@1#, to describe the
flow in the gap between the surfaces of the ‘‘contacting’’ mach
elements. This equation is valid under the assumption that
ratio of film thickness to contact length is small and that the R
nolds number is also small. If the Reynolds number is too la
~high speed applications! inertia effects have to be taken into a
count. If the ratio of film thickness to contact length is too lar
the Stokes equations have to be solved instead of the Reyn
equation. If both numbers are not small then the full Nav
Stokes equations must be solved. Based on the nominal film
ometry in most tribological settings these numbers are typic
O(0.01), and there seems little reason to doubt the validity of
solutions to the Reynolds equation. However, when looking at
micro geometry of the surface~surface roughness or waviness! the
local values of the ratio film thickness to roughness wavelen
may be significantly larger. In such cases, at least locally,
Reynolds equation may not be accurate, and the Stokes equa
should be used to model the flow.

The limitation of the validity of Reynolds equation related
the film aspect ratio can be referred to as a geometric limitat
In the past, several studies have been performed to study
limitation in relation to the effect of surface roughness, see S
@2#, Phan-Thien@3# and Myllerup@4,5#. Most of these studies ar
analytical. So far only a few authors Noordmans@6#, Schäfer @7#,
Odyck @8,9# have actually~numerically! solved the Stokes equa
tions for tribologically relevant problems.

Recently Bair@10# pointed out that there is another limitation
the validity of the Reynolds equation; namely, the pressure dep
dence of the viscosity, and of the density of the lubricant. In
standard derivation of the Reynolds equation when introduc
the narrow gap assumption, the effect of this dependence on
magnitude of the different terms is not taken into account. O
after the nondimensionalization and cancellation of terms that
small on the basis of geometrical arguments is the dependen
the viscosity and density with pressure reintroduced. In view
the exponential viscosity-pressure dependence, the increase o
viscosity with pressure may be so large that terms which are
glected using geometrical arguments may not be small when
actual magnitude of the viscosity gradients would be accoun
for. The same may be true if the density strongly depends on
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pressure as is the case for gas lubrication. So, the viscosity p
sure dependence and the compressibility can lead to cross
pressure variations which can not be predicted with models ba
on the Reynolds equation. The upshot of this paper is to show
such effects can indeed occur in a compressible flow.

Two compressible flow model problems are studied. The fi
problem has a direct relation to applications in grooved bearin
The second problem is of interest for its relation to conventio
hydrodynamic lubrication. For both problems differences betwe
the Stokes and the Reynolds solutions induced by the compr
ibility behavior are shown.

2 Theory
The objective is to study differences between the Stokes and

Reynolds solutions for the problems considered. The Stokes s
tions are supposed to be the more accurate ones. Below the
equations are presented. It is noted that only two dimensio
steady state problems are considered.

The Stokes equations follow from the Navier-Stokes equati
when it is assumed that inertia effects can be neglected, i.e. w
the Reynolds number is small, as is explained in most textbo
on fluid dynamics, e.g. Batchelor@11# or Langlois @12#. After
substitution of the following dimensionless variables in the Nav
Stokes equations:

u→ucū,

w→eucw̄, e5
H

L
,

x→Lx̄,

z→Hz̄, (1)

r→rcr̄,

h→hch̄,

p→ hcucL

H2 p̄.

see Myllerup@5#, whereuc is a characteristic speed,L a charac-
teristic length in thex-direction,H a characteristic height in the
z-direction ~nominal film height!, rc a characteristic density, an
hc a characteristic viscosity and, assuming that the Reyno
number based on the film height:

e-
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Re5
rcucH

hc
(2)

is small and neglecting the terms multiplied with this number,
momentum equations for the steady state two dimensional p
lem are:

e2
]

]x F2

3
h

]w

]z
2

4

3
h

]u

]xG2
]

]z Fe2h
]w

]x
1h

]u

]zG52
]p

]x
, (3)

e2
]

]z F2

3
h

]u

]x
2

4

3
h

]w

]z G2
]

]x Fe2h
]u

]z
1e4h

]w

]x G52
]p

]z
,

(4)

and the equation of continuity is given by:

]~ru!

]x
1

]~rw!

]z
50. (5)

Where, for convenience of notation the bars on the scaled q
tities have been dropped. Equations~3–5! will be referred to as
the ‘‘Stokes model.’’ The domain on which they are solved a
the boundary conditions that will be assumed are explained in
sections describing the problems in detail. It should be noted
in all cases presented here, the upper surface is stationary, an
flat lower surface is moving in thex-direction. The two important
parameters in the problems considered are then the film as
ratio (e5H/L) and the nondimensional lower surface speed (us).
The effects ofe on the solution have been described in detail
Odyck @8,9#.

In this paper the lower surface speedus , is the important pa-
rameter to study. It should be noted that it is not a just a sca
parameter as the equations are now nonlinear.

For smalle the Stokes equations simplify to the Reynolds eq
tion

d

dx F2rh3
dp

dx
16rhusG50 (6)

and in this case only one parameter remains:us the ~dimension-
less! lower surface speed.

To compare the Stokes and the Reynolds solutions to a p
lem, the generated load force can be used. For the Reynold
lution this load force consists only of the integral over the pr
sure. For the Stokes case a velocity gradient also appears i
load force which is then defined by:

F5Fp1Fw5E
21

1

p~x,0!dx2E
21

1 4

3
e2

]w

]zU
z50

dx (7)

TheFw term in Eq.~7! is associated with the normal stress on t
lower surface and it drops in the pure Reynolds’ case.

3 Problem Description
In the previous section the basic equations that will be use

model the flow were out-lined. These equations will be used
solve the two ‘‘model’’ problems that are described in the follo
ing sections.

3.1 Gas Lubrication Problem. As a first model problem
the surface driven flow of a gas through a restriction is treated,
Fig. 1. It can be thought as a section taken from a ‘‘groove
bearing. The lower surface moves with a certain velocity. Of p
ticular interest is the generated load bearing capacity in relatio
the surface speed and the geometry of the restriction. Becau
the compressibility of the gas, according to the Reynolds ba
models, this load bearing capacity has a maximum that is in
pendent of speed, see Constantinescu@13#. The boundary condi-
tions are given in the figure.

It is common in gas lubrication to take the viscosity of the g
to be constant and for the density pressure relation to use the
gas law:
544 Õ Vol. 125, JULY 2003
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p5rRgT, (8)

where Rg is the gas constant and the temperatureT has been
assumed constant.

The fluid motion can be described by the Stokes equations~3!,
~4!, and~5! or by the Reynolds equation~6!. The solutions to the
two equations will be compared. The density pressure depend
according to the ideal gas law does not lead to extra paramete
the proportionality constant appears in each term of the fluid m
tion equations so it cancels out. As mentioned previously the
cosity is assumed to be constant (h51).

The geometry of the restriction is defined by:

h~x!512
as

~12e2ks~ds2x!!~11e2ks~ds1x!!
. (9)

where in this workas(50.5) andds(50.05) are fixed, and the
parameterks is varied. This parameterks is proportional to the
slope of the restriction because:

dh

dxU
x5ds

5tan~a!'
asks

4
(10)

if ksds@1.
The pressure is set to unity at the in and outflow boundaries
that case the solutions of the Stokes equations for different vel
ties of the lower surface are independent, so the flow field depe
on the two parameterse and us , unlike the solution to the Rey-
nolds equation for the same problem which depends only onus .
In this study the value ofe(50.005) is fixed. This is a small value
for which one would normally expect the Reynolds equation to
accurate. The remaining input parameters to be varied are
surface velocity (us) and the geometry parameter (ks).

In Tribology it is common to use the bearing numberL to
characterize the condition of a gas lubrication problem. This~di-
mensionless! number appears in Eq.~6! when the pressure is
scaled on the atmospheric pressurepa instead of the dimension
less pressure used here andhc5h(pa) is used:

L5
6hcLusuc

paH2 (11)

whereus denotes the~dimensionless! runner velocity as in Eq.~6!,
so the productusuc is simply the actual velocity.

Thus, apart from a multiplicative constant, results shown
terms of variation ofus , can directly be translated to variation o
the bearing number. The parameter of interest is the load fo

Fig. 1 Geometry and boundary conditions for gas bearing
model problem
Transactions of the ASME
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For the Stokes case this force has two componentsFp and Fw ,
see Eq.~7!. The load force according to the Reynolds solution
defined as:

F rey5E
21

1

p~x!dx (12)

As mentioned previously, according to Reynolds models,
bearings have a limited maximum load bearing capacity. For
present problem this high speed limit can be calculated as follo
Dividing Eq. ~6! by us , integrating it with respect tox, taking
limit us→` and, using the fact thatr is proportional top, one
obtains:

6ph5c1 , (13)

where the integration constantc1 follows from the pressure
boundary condition 6p(21)h(21)565c1 . In the high-speed
limit the load force can be calculated according to:

F rey
` 5E

21

1 1

h
dx. (14)

So, for a given geometry this limit can be computed easily. Wh
ks→`, representing exactly a step, the integral can be evalua

F rey
` 521

2asds

~12as!
(15)

which for as50.5 andds50.05 givesF rey
` 52.1. This straightfor-

wardly follows from integration of the pressure profile given
p51/h and Eq.~9!.

3.2 Fluid Lubrication With Cavitation. The second prob-
lem model problem is the flow of a liquid below a parabola whi
is a classic hydrodynamic lubrication problem. Unlike the g
lubrication problem described in the previous section now
boundary pressure on each side will be the gauge pressure. W
solving this problem using either the Stokes equations or the R
nolds equation because of the symmetric height geometry
pressure field will be antisymmetric, and the resulting net lo
capacity of the pressure profile will be zero. In reality a liquid c
not sustain large tensile stresses and it will cavitate when
pressure drops below the vapor pressure and as a result in re
there will be a net load carrying capacity.

Figure 2 shows an illustration of the type of vapor/gas bub
observed experimentally in the flow under a stationary cur
upper surface driven by the moving lower surface, see Dow
@14#. It was found to occur downstream of the narrowest g
location near the stationary surface. On the moving surface a l
of liquid remains.

To simulate cavitation behavior the flow models have to
changed. When using models based on the Reynolds equation
can be done quite straightforwardly by limiting the comput
pressure from below with a complementarity condition, see El

Fig. 2 Cavitation bubble in the downstream portion of the con-
tact
Journal of Tribology
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@15#. However, this approach can not be used in combination w
the Stokes equations. In this section an alternative approac
shown to simulate the pressure limiting aspect of cavitation. It
the advantage that it can be used in both Stokes and Reyn
based models. In fact for Reynolds based models it is even ea
to implement than the aforementioned complementarity appro
The upshot is to treat the problem as a two phase~TP! flow prob-
lem or, the flow of a compressible medium with a special type
density pressure relation. The model used here is based on
work of Delannoy @16# and Hoeijmakers@17#. No distinction
needs to be made between the cavitated region and the pressu
region. Consequently it is easy to implement in a computatio
method. It may not correctly describe the physical mechanis
inside the cavity or at its boundary, but it will at least adequat
prevent the pressure from dropping below the vapor pressure
indicate the location and size of the cavitated region.

It is assumed that the vapor and the liquid move at the sa
speed, otherwise for each state separate equations woul
needed with interaction terms. In modeling the problem it is f
ther justified to take the saturation pressure and the vapor pres
both equal to the ambient pressure which is set to the gauge p
sure~zero! as is usually done in lubrication problems. In the T
model the dependent variables refer to the mixture and an e
tion of state is used to complete the system:

r55
r l if p.pv1Dp,

rv if p,pv2Dp,

rv1DrF11sinS p2pv

Dramin
2 D G otherwise

(16)

where

pv5vapor pressure

r l5density liquid

rv5density vapor

Dr5
1

2
~r l2rv!

Dp5
1

2
pamin

2 Dr

amin5minimal speed of sound in mixture (17

Figure 3 gives a graphical representation ofr(p). The parameter
amin can be approximated byamin'2avArv /r l if r l@rv with av
the speed of sound in the vapor~see Appendix!. For water at
standard conditionsamin'25 @m/s#. After scaling according to Eq
~1!, with rc5r l , one obtains:

Fig. 3 Pressure-density diagram for the liquid Õvapor mixture
JULY 2003, Vol. 125 Õ 545

ttp://www.asme.org/about-asme/terms-of-use



r̄5

1 if p̄. p̄v1
p

2br
,

r̄c if p̄, p̄v2
p

2br
, , (18)

Downloaded From
5
r̄c1
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r̄c5
rv

r l
,

br5
hcucL

H2Dramin
2 , (19)

p̄v5
pvH2

hcucL
.

For convenience the bars on the scaled quantities will be drop
Next, for the correct relation between viscosity and pressure w
the pressure approaches the vapor pressure there are differe
tions, see Kubota@18#. For example, a constant viscosity or
viscosity that exhibits the same behavior as the density as a f
tion of the pressure, i.e., Eq.~16! with h l replacingr l and hv
replacingrv .

The model problem considered in this paper is now formed
the computation of the flow under a parabolically shaped surf
given by:

h~x!50.8x210.2 (20)

using the Stokes equations, Eq.~3–5!, and the two-phase density
pressure Eq.~18!. The viscosity is assumed to be constant. T
boundary conditions arep50, w50 at the inlet and at the outlet
The parameter to be varied is the parameterbr which represents
the gradient of the density pressure curve in the transition reg

4 Numerical Solution
The approach to obtain numerical solutions is in principle

same as for the incompressible case, see Odyck@8,9#. Equations
~3–5! have been transformed to curvi-linear coordinates us
height scaling. The transformed domain is rectangular. On
domain the transformed equations have been discretized us
conservative discretization and a staggered grid arrangement
discrete system of equations is solved by means of a Multig
algorithm built around a Symmetric Coupled Gauss-Seidel re
ation.

Fig. 4 Stokes solution: „a… streamlines; and „b… pressure field.
Both as function of x and z for eÄ0.005, u sÄ10.0 and ks
Ä1343.
546 Õ Vol. 125, JULY 2003
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To have good efficiency for small values of the domain asp
ratio H/L it is required that this relaxation be carried out as
z-line relaxation. The main difference with the incompressib
problem discussed in Odyck@8,9# is the discretization of the equa
tion of continuity which has been changed from a second or
central to a first order upwind discretization. This was done
stability reasons as the compressible problem has a hyperb
character. Because the discretization is first order the soluti
will tend to be less accurate and should carefully be checked
effects of ‘‘artificial diffusivity ~viscosity!.’’ This was done by
comparing solutions obtained on different grids. For specific d
tails regarding the discretization and the numerical algorithm
reader is referred to Odyck@8,9#.

The solutions presented in the following section were all o
tained using a Full Multi-Grid algorithm with 5 V~2,2! cycles per
grid level. The finest grid contained 2563256 cells. The error
reduction per Multigrid cycle was grid independent. For the g
lubrication problem an error reduction per cycle of an order
magnitude was easily obtained. Moreover, the larger the run
velocity in the problem, the higher the speed of convergence. T
could be expected and is related to the choice of an upstre
discretization combined withz-line relaxation. For the cavitation
problem the convergence rate rather strongly depended on
value of the parameterbr of the density pressure relation. A back
tracking algorithm in the line relaxation was needed to ens
convergence for the larger values ofbr . In all cases presented in
this paper with the aforementioned number of cycles the error
the target grid was reduced to a level much smaller than the
cretization error.

5 Results
In this section the results obtained for the two model proble

are presented and discussed. In particular attention will be gi
to the differences between the solutions of the Stokes model
the solutions of the Reynolds equation in relation to the probl
parameters. In each section also some results are given to i
trate the accuracy of the solutions.

5.1 Gas Lubrication Problem. Figure 4 shows a typical
solution to the problem for the caseks51343 andus510.0. For
this value ofks the actual angle between the restriction and t

Fig. 5 Pressure as function of x for eÄ0.005, ksÄ1343 and
different u s for the Stokes solution to the gas bearing problem.
„a… Pressure at zÄ0; and „b… pressure at zÄh . In „a… the Rey-
nolds solution overlaps the Stokes solution for u sÄ2, 10, 50.
Transactions of the ASME
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horizontal is 40 deg. The figure shows the streamlines and a
pressure field as a function ofx andz. The streamline figure show
that the major part of the flow passes under the restriction but
a small recirculation zone occurs at its leading edge. The reci
lation is also predicted by the solution to the Reynolds equa
for this case. The pressure field shows no unexpected featur
‘‘block-shaped’’ pressure distribution along the restriction with
‘‘transition region’’ on its leading and trailing edge in which th
pressure builds up to the high level and decreases again from
level. Based on the Reynolds solution one would now expect
width of this transition region to decrease with increasing spe
However, the solutions to the Stokes equations show a diffe
behavior. Figure 5 shows the computed pressure profiles atz50
and z5h as a function ofus for the Reynolds and the Stoke
solutions to the problem. The Reynolds solutions with increas
speed show the aforementioned behavior. According to the St
solutions initially with increasingus indeed a block shape ap
pears, and for low speeds the pressure profiles atz50 andz5h
differ very little which indicates no cross-film pressure depe
dence. However, with increasingus the pressure profile move
away from the block shape and at the same time the profilez
50 and that atz5h start to differ. Forz50 the high pressure a
the restriction followed by a low pressure in its wake is replac
by a gradual increase along the restriction and a gradual decr
in its wake. At the surfacez5h the pressure profile tends to ex
hibit a narrow peak at the leading edge of the restriction and
here along the restriction it is not constant but shows a grad
decrease. In the wake of the restriction (x.0.05) a zone of very
low pressure is formed~nearly vacuum!. The length of this zone
increases with increasingus .

Summarizing it is concluded that with increasing speed o
observes that a cross-film pressure dependence develops rela
the compressibility of the medium. This cross-film dependenc
naturally not predicted by the Reynolds solution to the probl
and is the type of limitation to the Reynolds equation that w
indicated by Bair et al.@10#.

Having observed that the Stokes and Reynolds solution for h
speeds are very different the question arises if the maximum

Table 1 Computed load force for gas lubrication problem for
Reynolds solution „Frey… Stokes solution „Fp ,Fw… as a function
of the lower surface speed u s . The Reynolds limit for infinite u s

is Frey
` Ä2.1.

us

Stokes
Reynolds

F reyFp Fw Fp1Fw

2 2.1947 0 2.1947 2.1802
10 2.1245 0 2.1245 2.1157
50 2.1101 0 2.1101 2.1015
200 2.1084 0 2.1084 2.0994
1.03103 2.1081 0.0003 2.1084 2.0991
5.03103 2.1072 0.0010 2.1082 2.0990
2.03104 2.0892 0.0102 2.0994 2.0990
Journal of Tribology
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capacity of the configuration as it is predicted from the Reyno
solution is accurate. Table 1 shows the computed load capacit
the configuration as a function ofus for the Stokes and Reynolds
solutions. The table shows that the computed load forces for
two solutions differ little and, quite remarkably, in spite of the fa
that the Stokes solution to the pressure does not seem to ha
high-speed limit, the load force does. Moreover, its limiting val
is the same as the one predicted by the Reynolds model. Thus
bearing design in terms of load carrying capacity the obser
differences between the Reynolds solution and the Stokes s
tions are not likely to have significant consequences. Howev
they may be important for operational aspects related to lo
phenomena such as surface damage by fatigue which can lea
failure.

The effect of the slope of the side wall of the restriction is t
next topic of investigation. The parameter in the model repres
tative of this slope isks , see Eq.~10!. In Fig. 6 results are pre-
sented for a given~large! us and three values ofks : ks5582
which coincides with an angle (a520 deg), ks51343 (a
540 deg) andks52771 (a560 deg). The figure shows that th
pressure on the lower surface is hardly effected by a chang
ks . However, the pressure on the upper surface does change.
width of the pressure peak preceding the step decreases with
creasingks and so does the length of the nearly vacuum zo
following the restriction. So, it appears that if the lower surfa
speed is fixed and the slope of the side walls is increased,
pressure along the upper surface will approximate the Reyno
high speed limit ofp51/h, except for a pressure peak before th
step, and a suction dip behind the step. The lower surface pres
profile on the other hand is hardly affected by a change inks but
it is totally different from the high-speed Reynolds limit solution
Finally, Table 2 gives the computed load force according to
Stokes and Reynolds solution for the different values ofks and
velocitiesus52.0 andus55.03103, respectively. In this table it
can be seen that the load capacity does not strongly depend o
value ofks and again its value computed using the Stokes solut
differs little from the value obtained from the Reynolds solutio

To conclude this section, some details are given regarding

Fig. 6 Pressure as function of x for eÄ0.005, u sÄ5.0Ã103 and
different ks for the Stokes „p s… and Reynolds „p rey… solutions
to the gas bearing problem: „a… pressure at zÄ0; and „b… pres-
sure at zÄh
Table 2 Computed load force for gas lubrication problem for Reynolds solution „Frey… Stokes solution „Fp ,Fw… as a function of
the step parameter ks . The Reynolds limit for infinite u s is Frey

` Ä2.1.

us ks

Stokes
Reynolds

F reyFp Fw Fp1Fw

2.0 582 2.1894 0 2.1894 2.1755
2.0 1343 2.1947 0 2.1947 2.1802
2.0 2771 2.1970 0 2.1970 2.1825
5.03103 582 2.1046 0.0005 2.1051 2.0976
5.03103 1343 2.1072 0.0010 2.1082 2.0990
5.03103 2771 2.1090 0.0013 2.1103 2.0996
JULY 2003, Vol. 125 Õ 547
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accuracy of the solutions. Because a first-order upstream disc
zation was used, it is important to check whether observed
dencies in the solution are not a result of artificial ‘‘viscosity
This applies in particular to the solutions for largeus . Conver-
gence of the solution with decreasing mesh size was checked c
fully and some results are shown in Fig. 7. This figure shows
pressure as a function ofx at z50 according to the Stokes solu
tion for grids withN564, 128, 256, 512. Also shown is a plot o
some of the contour lines of the pressure. The figure shows
with decreasing mesh size the solution converges. This proces
the pressure contours is quite slow, as could be expected from
use of a first order scheme. However, the computed pressure
files are sufficiently accurate to be able to conclude that the
ferences between the Stokes solution and the Reynolds solu
observed for largeus are ‘‘real’’ and not due to artifacts of the
discretization on a grid that is too coarse.

5.2 Fluid Lubrication Problem With Cavitation. For this
problem results are presented obtained for values of the param
br of the cavitation model in the range 10<br<4.03104. br
represents the slope of the density-pressure curve around th
por pressure point. A larger value implies a steeper slope an
likely to have an effect on the solution in and near the cavitat
region. A typical solution to the problem is shown in the Figs.
and 9. The results are obtained fore50.01, pv523.0 andbr
510. In Fig. 8 are shown the pressure profile and the streaml
as a function ofx and z. From the figure it can be seen that th
two-phase model indeed leads to the desired behavior. The p
sure is bounded below by the vapor pressure. This would not h
been the case without the model as is illustrated in Fig. 9~a!
where, for the same case are shown the pressure atz50 computed
using the Reynolds model with and without cavitation, and t
present solution of the Stokes model with cavitation accoun
for. From the figure it can be seen that for the valuee50.01 and
br taken here the Reynolds and Stokes solutions are indistingu

Fig. 7 „a… Pressure as a function of x at zÄ0 for the Stokes
solution on different grids; and „b… contour plot of the pressure
for the Stokes solution on different grids. eÄ0.005, u sÄ5.0
Ã103 and ksÄ1343.

Fig. 8 „a… Pressure profile as function of x and z; and „b…
and Streamlines as function of x and z. eÄ0.01, brÄ10.0, p v
ÄÀ3.0.
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able. As for this value ofe there is no cross film dependence of th
pressure~see also Fig. 10~a!! it is sufficient to only show the
pressure at the lower surface. When cavitation is not accounted
the solution is anti-symmetric and when it is accounted for t
pressure is limited to the vapor pressure. The width of the ca
tated region will depend on the value of the vapor pressure.
this case wherepv is taken significantly lower than the boundar
pressure one observes a pressure drop reaching the vapor pre
at aboutx50.2 and a return to the liquid pressure at aboutx
50.6. The Fig. 9~b! shows an enlargement of the pressure profi
in the cavitated region together with the density profile.

In Fig. 9~a! the pressure gradient]ps /]x is also given as a
function of x. It can be seen that this gradient has a discontinu
at the edge of the pressure recovery zone, in this case atx'0.6.
Sinceps5pr , for small e, a shock relation can be deduced fro
the Reynolds equation.

Let the variables in the cavitated region be indicated by
subscript 1 and in the liquid region following the pressure reco
ery point by the subscript 2. Integrating the Reynolds equat
with respect to x across the shock usingh15h25h and
(dp/dx)150 it follows that:

S dp

dxD
2

5
6

h2 S 12
r1

r2
D (21)

which is the equivalent of the usual Jakobsson-Floberg-Ols
~JFO! relation @19,20#.

In the Figs. 10 and 11 the contour plots are shown of the d
sity for the casesbr510, 5.03103, 1.03104 and 4.03104, re-
spectively. Comparing the lines forbr510 with those forbr

55.03103, 1.03104 and 4.03104 shows that the width of the
cavitated region is not changed. However, the lines of cons
density inside this region are no longer straight which implies t

Fig. 9 „a… The pressure at zÄ0 as function of x for the Rey-
nolds solution without cavitation „p r „no cav. ……, the Reynolds
solution with cavitation „p r… and the Stokes solution with cavi-
tation „p s…; and „b… enlargement of the pressure and density at
zÄ0 as function of x for the Reynolds and the Stokes solution
with cavitation in the cavitation region, eÄ0.01, p vÄÀ3.0, and
brÄ10.0. The Reynolds and the Stokes solution with cavitation
overlap in both figures.

Fig. 10 Contour plot of the density for eÄ0.01 and p vÄÀ3.0,
„a… brÄ10.0; and „b… brÄ5.0Ã103
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p varies as a function ofz and that in this region the Reynolds an
the Stokes solutions differ. In particular, with increasingbr a
region of very low density develops close to the upper surface.
in this region the density equals the vapor density, this can
interpreted as a ‘‘bubble.’’ The development of such a fully vap
ized region or ‘‘bubble’’ with increasingbr is also illustrated in
Fig. 12. In this figure the density is plotted as a function ofz at
x50.5 for differentbr . Note that as a function ofz the transition
from the fully-vaporized region to the region withr.0.01 atx
50.5 is gradual. Furthermore, it can be seen in Fig. 12 that w
increasingbr the density nearz50 approaches unity, so near th
lower surface the mixture tends to remain liquid. This is also w
one would expect to happen from a physical point of view as
the present case the lower surface supplies the lubricant. To in
tigate if this formation of a fully-vaporized region is related to th
pressure solution by some parameter the differenceD p̃5p(x,z
5h(x))2p(x,z50), at the point wherep reaches a minimum in
the non-cavitating case was computed. It was found that the f
vaporized region occurs ifD p̃.p/2br and the minimum pressure
in the non-cavitating case is lower thanpv .

Next, a few words about the influence of the ratioe5H/L. For
the solutions shown in Figs. 10 and 11, even though the solu
inside the cavitated region changes, the boundaries of this re
remain straight. This can be ascribed to the small valuee. For a
larger value ofe these lines will no longer be straight as can
seen in Figure 13~a! where the result is shown obtained fore
50.5,pv524.0 andbr520.0. Figure 13~b! shows the density as
a function ofz at x50.5.

Having shown all this the question is if one should expect th
effects to occur in practice: What value ofbr is realistic for a
mineral oil. A crude estimate can be obtained taking the followi
values for a mineral oil at standard conditions flowing through
hydrodynamically lubricated contact:

Fig. 11 Contour plot of the density for eÄ0.01 and p vÄÀ3.0;
„a… brÄ1.0Ã104; and „b… brÄ4.0Ã104.

Fig. 12 Density as function of z at xÄ0.5 for eÄ0.01 and p v
ÄÀ3.0
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ho51.031021 kg/ms

r l51.03103 kg/m3

rv51.0 kg/m3

av55.03102 m/s (22)

H50.131026 m

uc51.0 m/s

e50.01

From Eq.~19! it the follows thatbr520.0. So, thez-dependency
in the density for the problem discussed here does not seem t
unrealistic. Moreover if the nominal film thickness is small
and/oruc is much larger it will only be stronger.

Summarizing, from the results presented in this section it
concluded that the cavitation model yields the desired ‘‘physic
behavior from the viewpoint of load force computations, i.e.,
provides a lower limit on the pressure. The width of the cavitati
region will be determined by the magnitude of the vapor press
itself. The solution inside this region will depend on the parame
br . For largebr in this region az-dependent pressure and densi
are found showing once again that the density-pressure rela
induces differences between Stokes and Reynolds solutions in
films.

The accuracy of the results has been verified by compar
solutions obtained on grids with a different mesh size. As an
lustration, for a typical case in Fig. 14~a! the contourline associ-
ated with a given density value is shown as obtained from
solutions computed on a grid withN5128, 256 and 512 respec
tively. In Fig. 14~b! is shown the density as a function ofz at a
given location for the same solutions. The results apply to the c
e50.01, pv523.0, andbr51.03104. These figures show tha
with decreasing mesh size the solution indeed converges rou

Fig. 13 „a… Contour plot of the density; and „b… density as
function of z at xÄ0.5. For eÄ0.5, p vÄÀ4.0 and brÄ20.0.

Fig. 14 „a… Contour plot of the iso-density contour rÄ0.5 for
the Stokes solution on different grids; and „b… Density as func-
tion of z at xÄ0.5 for the Stokes solution on different grids. e
Ä0.01, p vÄÀ3.0, and brÄ1.0Ã104.
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first order in accordance with the first order of the discretizati
Clearly the differences between the Reynolds and Stokes solu
are much larger than the error in the result.

6 Conclusion
A multigrid numerical solution algorithm has been develop

for the laminar~Stokes! flow of a compressible medium in a thi
film. The solver has been applied to two model problems rep
sentative of lubrication problems. For both problems the soluti
of the Stokes equations are compared with the solutions of
Reynolds equation.

The first problem is representative of a~section in a! grooved
gas bearing. It is shown that at high speeds even when accor
to the ratio nominal film thickness to contact length there is lit
reason to expect cross-film dependence of the pressure, su
dependence can occur induced by the compressibility of the
The pressure profile along the grooved surface resembles the
nolds high speed limit. However, the pressure profile along
smooth surface is different. Nevertheless, the predicted maxim
load force for the Stokes and the Reynolds solutions is the sa

The second problem is that of the surface driven flow o
liquid under a parabolically shaped counter-surface. This prob
was selected to illustrate an alternative way to simulate cavita
behavior in hydrodynamic lubrication problems. This alternat
is needed because the conventional models used with Reyn
equation are not suited to be used in combination with the Sto
equations. The alternative method considers the compres
equations combined with a special density pressure relation.
straight-forward to implement also in models based on the R
nolds equation. It has been shown that with this approach
objective to limit the pressure from below is indeed achieved. T
results compare well with the Reynolds model solutions for c
ditions of a small ratio nominal film thickness to contact leng
and when the density pressure gradient is not too large. For l
density pressure gradients it is shown that the compressibility
self can lead to cross-film pressure dependences which the
nolds equation can not predict.
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Nomenclature
If the dimension is not stated the variable or parameter is

mensionless.

as 5 amplitude
al 5 speed of sound in liquid@m/s#
av 5 speed of sound in vapor@m/s#

amin 5 minimal speed of sound@m/s#
ds 5 length block inh(x)
F 5 load force

Fp 5 force perpendicular to lower surface
Fw 5 force tangent to lower surface

F rey 5 force perpendicular to lower surface resulting from
Reynolds solution

F rey
` 5 force perpendicular to lower surface resulting from

high speed Reynolds solution
h 5 surface geometry
H 5 film thickness@m#
L 5 film length @m#
N 5 number of cells on square grid inx/z direction
p 5 pressure

pa 5 ambient pressure
ps 5 pressure of Stokes solution
pr 5 pressure of Reynolds solution
pv 5 vapor pressure@Pa#
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p̄v 5 scaled vapor pressurep̄v5pvH/hcu0
Rg 5 gas constant
T 5 temperature@K#

us 5 lower surface speed
u 5 velocity x-direction

uc 5 characteristic velocityx-direction @m#
uh 5 vector with unknowns
w 5 velocity z-direction
x 5 Cartesian coordinates in direction of the film
z 5 Cartesian in the cross-film direction
a 5 angle

aa 5 volume fraction of vapor bubbles in mixture
br 5 parameter in two phase cavitation model

br52hcu0 /Hr lamin
2

ba 5 parameterba5aarv /r
Dr 5 parameter in two phase cavitation model@kg/m3# Dr

51/2(r l2rv)
Dp 5 parameter in two phase cavitation model@Pa# Dp

51/2pamin
2 Dr

D̃p 5 pressure difference
e 5 H/L
h 5 viscosity

h l 5 liquid viscosity @Pas#
hv 5 vapor viscosity@Pas#
hc 5 characteristic viscosity@Pas#
ks 5 parameter film geometry
r l 5 liquid density@kg/m3#
rv 5 vapor density@kg/m3#
r 5 density

rc 5 characteristic density@kg/m3#
L 5 bearing numberL56hcLusuc /paH2

Appendix A

Determination Speed of Sound. In the two phase model the
minimum speed of sound in a mixture of liquid and bubbles
required. In the following an estimate for the minimum speed
sound is deduced. For a detailed discussion see Wijngaarden@21#,
p. 93. This parameter is then used in Eq.~18!. The speed of sound
in a fluid is defined as:

a25S ]p

]r D
s

, (23)

where ( )s indicates a constant entropy. Only in the transition
gion between the liquid and the vapor state the density is
constant and the speed of sound is not infinite~see Fig. 3!. This is
typical for the used model. Obviously, in reality the speeds
sound in the vapor and in the liquid have finite values.

To determine the speed of sound in the mixture the volu
fraction (aa) of the vapor bubbles in the mixture is introduce
The actual density is then a linear combination of the liquid d
sity and the vapor density:

r5aarv1~12aa!r l . (24)

It is assumed that the bubbles in the mixture are small enoug
follow the fluid when an acoustical wave passes. In that case,
ratio ba5aarv /r is a conservative quantity~i.e., the mass does
not change when an acoustical wave passes!. It can be substituted
in Eq. ~24! and results in:

1

r
5

ba

rv
1

12ba

r l
. (25)

This can be differentiated with respect top and after some ma-
nipulations the following equation can be found

1

a2r
5

aa

av
2rv

1
12aa

al
2r l

. (26)
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With the use of Eq.~24! it can be rewritten in a more useful form

a5
Ar lrvaval

A~r l~12aa!1rvaa!~pvav
2~12aa!1aar lal

2!
. (27)

The minimum speed of sound in the mixture can now be dedu
by solvingda/daauaa5a

min
a 50 and substitutingamin

a back into Eq.

~27!. Theamin
a is given by:

amin
a 5

rv
2av

222rvr lav
21r l

2al
2

2~r l2rv!~r lal
2rvav

2!
. (28)

If r l@rv than amin
a →1/2 and the following expression for th

minimal speed of sound is found

amin52avArv

r l
. (29)
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@7# Schäfer, C. T., Giese, P., and Woolley, N. H., 1999, ‘‘Elastohydrodynamica
Lubricated Line Contact Based on the Navier-Stokes Equations,’’Proceedings
of the 26th Leeds Lyon conference on tribology.

@8# Odyck van, D. E. A., 2001. ‘‘Stokes Flow in Thin Films,’’ Ph.D. thesis, Un
versity of Twente, The Netherlands.

@9# Odyck van, D. E. A., and Venner, C. H., 2003. ‘‘Stokes Flow in Thin Films
ASME J. Tribol.,125, pp. 1–14.

@10# Bair, S., Khonsari, M., and Winer, W. O., 1998, ‘‘High-Pressure Rheology
Lubricants and Limitations of the Reynolds Equation,’’ Tribol. Int.,31…~10!,
pp. 573–586.

@11# Batchelor, G. K., 2000,An Introduction to Fluid Dynamics, Cambridge Uni-
versity Press, UK, ISBN 0521663962.

@12# Langlois, W. E., 1964,Slow Viscous Flow, The Macmillan Company, New
York.

@13# Constantinescu, V. N., 1969,Gas Lubrication, ASME, New York.
@14# Dowson, D., and Taylor, C. M., 1979, ‘‘Cavitation in Bearings,’’ Annu. Re

Fluid Mech.,11, pp. 35–66.
@15# Elrod, H. G., 1981, ‘‘A Cavitation Algorithm,’’ ASME J. Lubr. Technol.,103,

pp. 350–354.
@16# Delannoy, Y., and Kueny, J. L., 1990, ‘‘Two-Phase Flow Approach in Unstea

Cavitation Modeling,’’Cavitation and Multiphase Flow, 98, ASME FED, pp.
153–158.

@17# Hoeijmakers, H. W. M., Janssens, M. E., and Kwan, W., 1998, ‘‘Numeri
Simulation of Sheet Cavitation,’’Proceedings of the third international sym
posium on cavitation, Grenoble, France.

@18# Kubota, A., Kato, H., and Yamaguchi, H., 1992, ‘‘A New Modeling of Cav
tating Flows: A Numerical Study of Unsteady Cavitation on a Hydrofoil Se
tion,’’ J. Fluid Mech.,240, pp. 59–96.

@19# Jakobsson, B., and Floberg, L., 1957, ‘‘The Finite Journal Bearing, Consi
ing Vaporization,’’ Trans. Chalmers Univ. Tech., Go¨teborg, 190.

@20# Olsson, K., 1965, ‘‘Cavitation in Dynamically Loaded Bearings,’’ Tran
Chalmers Univ. Tech. Go¨teborg, 308.

@21# van Wijngaarden, L., 1972, ‘‘One Dimensional Flow of Liquids Containin
Small Gas Bubbles,’’ Annu. Rev. Fluid Mech.,4, pp. 369–396.
JULY 2003, Vol. 125 Õ 551

ttp://www.asme.org/about-asme/terms-of-use


