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Compressible Stokes Flow in
D. E. A. van Odyck Thln Fllms

C. H. Venner A multigrid numerical solution algorithm has been developed for the laminar (Stokes)

flow of a compressible medium in a thin film. The solver has been applied to two model

University of Twente, problems each representative of lubrication problems in a specific way. For both problems

Faculty of Mechanical Engineering, the solutions of the Stokes equations are compared with the solutions of the Reynolds
Tribology Group, equation. The configurations of both model problems were chosen such that based on the

P.0. Box 217, ratio film thickness to contact length (H/L) the difference between the Reynolds and the

7500 AE Enschede, Stokes solutions will be very small, so the geometry of the gap itself does not lead to a

The Netherlands significant cross film dependence of the pressure. It is shown that in this situation the

compressibility can still lead to a cross-film pressure dependence which is predicted by the
Stokes solution and not by the Reynolds solution. The results demonstrate that limitations
exist to the validity of the Reynolds equation related to the compressibility of the medium.
[DOI: 10.1115/1.1539058

1 Introduction pressure as is the case for gas lubrication. So, the viscosity pres-
sure dependence and the compressibility can lead to cross-film
pressure variations which can not be predicted with models based
on the Reynolds equation. The upshot of this paper is to show that

In hydrodynamigor aerodynamiclubrication theory it is com-
mon practice to use the Reynolds equatjaf to describe the
flow in the gap between the surfaces of the “contacting” machi ch effects can indeed occur in a compressible flow.

elements. This equation is valid under the assumption that then compressible flow model problems are studied. The first

ratio of film thlqkness to contact length is small and thgt the Re roblem has a direct relation to applications in grooved bearings.
nolds number is also small. If the Reynolds number is too lar

high d licationsnertia eff h be taken i e second problem is of interest for its relation to conventional
(high speed applicationsnertia effects have to be taken into acy,qrqgynamic lubrication. For both problems differences between

count. If the ratio of film thickness to contact length is too largg e siokes and the Reynolds solutions induced by the compress-
the Stokes equations have to be solved instead of the Reynqmﬁty behavior are shown.

equation. If both numbers are not small then the full Navier

Stokes equations must be solved. Based on the nominal film ge-

ometry in most tribological settings these numbers are typically

0(0.01), and there seems little reason to doubt the validity of tie Theory

solutions to the Reynolds equation. However, when looking at thethg objective is to study differences between the Stokes and the

micro geometry of the §urfa¢eurface roughness or wavingsise Reynolds solutions for the problems considered. The Stokes solu-

local values of the ratio film thickness to roughness wavelenggfyns are supposed to be the more accurate ones. Below the basic

may be significantly larger. In such cases, at least locally, tR@uations are presented. It is noted that only two dimensional

Reynolds equation may not be accurate, and the Stokes equatig%dy state problems are considered.

should be used to model the flow. _ The Stokes equations follow from the Navier-Stokes equations
The limitation of the validity of Reynolds equation related tqyhen it is assumed that inertia effects can be neglected, i.e. when

the film aspect ratio can be referred to as a geometric limitatiofhe Reynolds number is small, as is explained in most textbooks

In the past, several studies have been performed to study ti$ fluid dynamics, e.g. Batcheldil] or Langlois[12]. After

limitation in relation to the effect of surface roughness, see Sgbstitution of the following dimensionless variables in the Navier

[2], Phan-Thier{3] and Myllerup[4,5]. Most of these studies are Stokes equations:

analytical. So far only a few authors Noordmdf$ Schder [7], _

Odyck[8,9] have actuallynumerically solved the Stokes equa- U—ucu,

tions for tribologically relevant problems.

Recently Baif 10] pointed out that there is another limitation to _
W— €eUW, €=

the validity of the Reynolds equation; namely, the pressure depen- L’

dence of the viscosity, and of the density of the lubricant. In the

standard derivation of the Reynolds equation when introducing x—LX,

the narrow gap assumption, the effect of this dependence on the _

magnitude of the different terms is not taken into account. Only z—Hz, @

after the nondimensionalization and cancellation of terms that are

small on the basis of geometrical arguments is the dependence of P~ PeP:

the viscosity and density with pressure reintroduced. In view of 17— e,

the exponential viscosity-pressure dependence, the increase of the

viscosity with pressure may be so large that terms which are ne- Ul __
glected using geometrical arguments may not be small when the p= H2 p.

actual magnitude of the viscosity gradients would be accounted ) o
for. The same may be true if the density strongly depends on th@e Myllerup[5], whereu is a characteristic speell, a charac-
teristic length in thex-direction,H a characteristic height in the
Contributed by the Tribology Division for publication in the ASMBURNAL OF z-direction (nomlnal film hEIgh)f, pc @ characteristic denSIty’ and

TRIBOLOGY. Manuscript received by the Tribology Division January 8, 2002; re7c & Characteristic vis_cosity_ and, assuming that the Reynolds
vised manuscript received October 22, 2002. Associate Editor: L. San#éndre  number based on the film height:
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is small and neglecting the terms multiplied with this number, the
momentum equations for the steady state two dimensional prob- u=0w=0 2d,
lem are: —_——
282 ow 4 Ju 1% 20w+ aul  ap 3
Cox|37z 3"ax| 9z|C Tox T "az|T T ax: ©)
= dp _
202 u 4 aw] af, u ., W] _ P p=1 HEREN i =0
€oz|3"ox 3"a9z) x| Taz € "ox|” oz w=0 w=0
(4) z
and the equation of continuity is given by: ‘ 1—as
d(pu)  d(pw) z
x oz O ®) u=us;, w=0 ,
Where, for convenience of notation the bars on the scaled quan- -1 ‘ ’ ‘ ‘ | l ‘ | ’ 0 l | ' ‘ | ’ ’ ’ t |

tities have been dropped. Equatiof®-5 will be referred to as

the “Stokes model.” The domain on which they are solved anfig. 1 Geometry and boundary conditions for gas bearing
the boundary conditions that will be assumed are explained in tR@del problem

sections describing the problems in detail. It should be noted that

in all cases presented here, the upper surface is stationary, and the

flat lower surface is moving in thedirection. The two important

parameters in the problems considered are then the film aspect p=pRyT, (8)

ratio (e=H/L) and the nondimensional lower surface speeg.(

The effects ofe on the solution have been described in detail iffN€T€ Rg is the gas constant and the temperatliréas been
Odyck[8,9]. assumed constant.

The fluid motion can be described by the Stokes equati®ns
rﬁé), and(5) or by the Reynolds equatiai). The solutions to the
0 equations will be compared. The density pressure dependence
iccording to the ideal gas law does not lead to extra parameters as
e proportionality constant appears in each term of the fluid mo-

In this paper the lower surface speeg, is the important pa-
rameter to study. It should be noted that it is not a just a scali
parameter as the equations are now nonlinear.

For smalle the Stokes equations simplify to the Reynolds equ

tion tion equations so it cancels out. As mentioned previously the vis-
d el cosity is assumed to be constant£1).
ax| PP gy t6rhus|=0 (6)  The geometry of the restriction is defined by:

and in this case only one parameter remainsthe (dimension- h(x)=1— as ©)

less lower surface speed. (1—e *s(ds™ X)) (1 + @ *s(dsTX)y -

To compare the Stokes and the Reynolds solutions to a prob- . . i
lem, the generated load force can be used. For the Reynolds \g/g_ere In th's. Work_as(:O.5) anddS(ZO.QS) are f'X.ed' and the
lution this load force consists only of the integral over the pre@arameterks is varied. This paramete; is proportional to the
sure. For the Stokes case a velocity gradient also appears in $fP€ ©Of the restriction because:
load force which is then defined by: dh agKs

— =tana)~
dx| _

dx  (7) x=ds
z=0 if kdg>1.

TheF,, term in Eq.(7) is associated with the normal stress on théhe pressure is set to unity at the in and outflow boundaries. In
lower surface and it drops in the pure Reynolds’ case. that case the solutions of the Stokes equations for different veloci-
ties of the lower surface are independent, so the flow field depends
3 Problem Description on the two parameters andug, unlike the_ solution to the Rey-
] i ) ) ] nolds equation for the same problem which depends only.on

In the previous section the basic equations that will be used 9this study the value of(=0.005) is fixed. This is a small value
model the flow were out-lined. These equations will be used tgr which one would normally expect the Reynolds equation to be
solve the two “model” problems that are described in the followaccurate. The remaining input parameters to be varied are the
Ing sections. surface velocity () and the geometry parametet.j.

In Tribology it is common to use the bearing numhgrto
Lharacterize the condition of a gas lubrication problem. Téis
Jneénsionless number appears in Eq6) when the pressure is
caled on the atmospheric presspieinstead of the dimension-
f5S pressure used here ang= n(p,) is used:

(10)

FoFptFu= | pxOd gl
=FptFy= —lp(x’) X 1555

3.1 Gas Lubrication Problem. As a first model problem
the surface driven flow of a gas through a restriction is treated,
Fig. 1. It can be thought as a section taken from a “groove
bearing. The lower surface moves with a certain velocity. Of p
ticular interest is the generated load bearing capacity in relation
the surface speed and the geometry of the restriction. Because of 67.Lugu,
the compressibility of the gas, according to the Reynolds based = ToHZ
models, this load bearing capacity has a maximum that is inde- Pa
pendent of speed, see Constantindskl]. The boundary condi- whereug denotes thédimensionlessrunner velocity as in Eq6),
tions are given in the figure. so the productigu,. is simply the actual velocity.

It is common in gas lubrication to take the viscosity of the gas Thus, apart from a multiplicative constant, results shown in
to be constant and for the density pressure relation to use the ideais of variation olig, can directly be translated to variation of
gas law: the bearing number. The parameter of interest is the load force.

(11)
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Fig. 2 Cavitation bubble in the downstream portion of the con-
tact

p

Fig. 3 Pressure-density diagram for the liquid  /vapor mixture

For the Stokes case this force has two componegtandF,,,
see Eq(7). The load force according to the Reynolds solution is
defined as: [15]. However, this approach can not be used in combination with
1 the Stokes equations. In this section an alternative approach is
Frey= f p(x)dx (12) shown to simulate the pressure limiting aspect of cavitation. It has
-1 the advantage that it can be used in both Stokes and Reynolds
gsed models. In fact for Reynolds based models it is even easier
implement than the aforementioned complementarity approach.
e upshot is to treat the problem as a two phd$® flow prob-
em or, the flow of a compressible medium with a special type of
density pressure relation. The model used here is based on the
work of Delannoy[16] and Hoeijmakerg17]. No distinction
needs to be made between the cavitated region and the pressurized
6ph=c, (13) region. Consequently it is easy to implement in a computational
method. It may not correctly describe the physical mechanisms
inside the cavity or at its boundary, but it will at least adequately
prevent the pressure from dropping below the vapor pressure and
indicate the location and size of the cavitated region.

As mentioned previously, according to Reynolds models, g
bearings have a limited maximum load bearing capacity. For t
present problem this high speed limit can be calculated as follo
Dividing Eg. (6) by ug, integrating it with respect te, taking
limit us—oe and, using the fact that is proportional top, one
obtains:

where the integration constam; follows from the pressure
boundary condition f(—1)h(—1)=6=c,. In the high-speed
limit the load force can be calculated according to:

. 11 It is assumed that the vapor and the liquid move at the same
Frey™ f 7ax (14)  speed, otherwise for each state separate equations would be
- needed with interaction terms. In modeling the problem it is fur-
So, for a given geometry this limit can be computed easily. Whdher justified to take the saturation pressure and the vapor pressure

ks—®, representing exactly a step, the integral can be evaluat®@th equal to the ambient pressure which is set to the gauge pres-
sure(zerg as is usually done in lubrication problems. In the TP

2a.ds model the dependent variables refer to the mixture and an equa-

Frey=2"+ (1—-ay) (15) tion of state is used to complete the system:
which for a;=0.5 andds=0.05 givesF o, =2.1. This straightfor- pi if p>p,+Ap,
wardly follows from integration of the pressure profile given by it D<p A
p=1/h and Eq.(9). p= Po P=P,~aP, (16)
. P—p, .
3.2 Fluid Lubrication With Cavitation. ~The second prob- pptAp|1+sin Apaﬁmﬂ otherwise
lem model problem is the flow of a liquid below a parabola which
is a classic hydrodynamic lubrication problem. Unlike the gaghere
lubrication problem described in the previous section now the _
boundary pressure on each side will be the gauge pressure. When P, =Vapor pressure
solving this problem using either the Stokes equations or the Rey- p/=density liquid
nolds equation because of the symmetric height geometry the
pressure field will be antisymmetric, and the resulting net load p,=density vapor
capacity of the pressure profile will be zero. In reality a liquid can
not sustain large tensile stresses and it will cavitate when the 1
pressure drops below the vapor pressure and as a result in reality Ap= E(pl_pv)
there will be a net load carrying capacity.
Figure 2 shows an illustration of the type of vapor/gas bubble 1
observed experimentally in the flow under a stationary curved Ap= EwaﬁﬂnAp
upper surface driven by the moving lower surface, see Dowson
[14]._It was found to occur downstream of tht_a narrowest gap a,;;=minimal speed of sound in mixture (17)
location near the stationary surface. On the moving surface a layer
of liquid remains. Figure 3 gives a graphical representatiorp¢p). The parameter

To simulate cavitation behavior the flow models have to be,;, can be approximated bg,..,~2a,\p,7p| if p;>p, with a,
changed. When using models based on the Reynolds equation thés speed of sound in the vap(ee Appendix For water at
can be done quite straightforwardly by limiting the computedtandard conditiona,,,~25[ m/s|. After scaling according to Eq.
pressure from below with a complementarity condition, see Elrdd), with p.=p,, one obtains:
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if p<pu—2—ﬁp‘ ; (18)
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(2]

_ 1 _ . o o T
LPc+E(1—13(:)[1+S|n(/3p(p—Pu))] if pv—z—ﬁpipﬁpﬁ—

where To have good efficiency for small values of the domain aspect
ratio H/L it is required that this relaxation be carried out as a
Fczp_“’ zline relaxation. The main difference with the incompressible
P problem discussed in Ody¢B,9] is the discretization of the equa-
tion of continuity which has been changed from a second order
_ 7cUcL (19) central to a first order upwind discretization. This was done for
P HzApafmn’ stability reasons as the compressible problem has a hyperbolic
2 character. Because the discretization is first order the solutions
= _ p,H will tend to be less accurate and should carefully be checked for
U peucl’ effects of “artificial diffusivity (viscosity.” This was done by
8mparing solutions obtained on different grids. For specific de-
Is regarding the discretization and the numerical algorithm the
der is referred to Odydi8,9].
he solutions presented in the following section were all ob-
%i_ned using a Full Multi-Grid algorithm with 5§2,2) cycles per
grid level. The finest grid contained 25&56 cells. The error
reduction per Multigrid cycle was grid independent. For the gas

The model problem considered in this paper is now formed B brication problem an error reduction per cycle of an order of

: ] gnitude was easily obtained. Moreover, the larger the runner
g?seiotr)r;putatlon of the flow under a parabolically shaped Surfavelocity in the problem, the higher the speed of convergence. This

could be expected and is related to the choice of an upstream
h(x)=0.82+0.2 (20) discretization combined witlz-line relaxation. For the cavitation

. . .. problem the convergence rate rather strongly depended on the
using the Stokes equations, E8--5), and the two-phase der]s'ty'value of the parametes,, of the density pressure relation. A back-

pressure Eq(18). The viscosity is assumed to be constant. Thﬁacking algorithm in the line relaxation was needed to ensure

?ﬂgnd:rgrﬁgtlﬂlttlglsee:/rg;e% Y;Th% atatrhaen:nlewﬂgha:;hfeggﬂfst. convergence for the larger values@f . In all cases presented in
P P e P this paper with the aforementioned number of cycles the error on

the gradient of the density pressure curve in the transition regiqnte target grid was reduced to a level much smaller than the dis-
cretization error.

For convenience the bars on the scaled quantities will be dropp
Next, for the correct relation between viscosity and pressure wh
the pressure approaches the vapor pressure there are different
tions, see Kubotd18]. For example, a constant viscosity or
viscosity that exhibits the same behavior as the density as a fu
tion of the pressure, i.e., Eq16) with 7, replacingp, and 7,
replacingp, .

4 Numerical Solution

The approach to obtain numerical solutions is in principle the ~Results
same as for the incompressible case, see Ofig&R. Equations In this section the results obtained for the two model problems
(3-5 have been transformed to curvi-linear coordinates usirge presented and discussed. In particular attention will be given
height scaling. The transformed domain is rectangular. On this the differences between the solutions of the Stokes model and
domain the transformed equations have been discretized usinthe solutions of the Reynolds equation in relation to the problem
conservative discretization and a staggered grid arrangement. pagameters. In each section also some results are given to illus-
discrete system of equations is solved by means of a Multigrithte the accuracy of the solutions.

algorithm built around a Symmetric Coupled Gauss-Seidel relax- L . .
ation. 5.1 Gas Lubrication Problem. Figure 4 shows a typical

solution to the problem for the casg= 1343 andugs=10.0. For
this value ofkg the actual angle between the restriction and the
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Fig. 5 Pressure as function of x for €=0.005, k;=1343 and

Fig. 4 Stokes solution: (a) streamlines; and (b) pressure field. different u for the Stokes solution to the gas bearing problem.
Both as function of x and z for €=0.005, us,=10.0 and ks (&) Pressure at z=0; and (b) pressure at z=h. In (a) the Rey-
=1343. nolds solution overlaps the Stokes solution for ug=2, 10, 50.
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Table 1 Computed load force for gas lubrication problem for i)
Reynolds solution (F) Stokes solution (F,,F,) as a function 2 — Pre 2
of the lower surface speed  u, . The Reynolds limit for infinite s ::Zj?;ji?gi; 16
is Frey=2.1. ol =2771
p1.2 \‘\\» 1.2h
Stokes

Reynolds 08 08
Ug Fo Fuw FotFw Frey
2 2.1947 0 2.1947 2.1802 0403 6 o1 04
10 2.1245 0 2.1245 2.1157
50 2.1101 0 2.1101 2.1015 (a) (b)
200 2.1084 0 2.1084 2.0994
1.0x10° 2.1081 0.0003 2.1084 2.091  Fig 6 Pressure as function of  x for €=0.005, us=5.0X10° and
5.0x 10° 2.1072 0.0010 2.1082 2.0990  ifferent & for the Stokes (p,) and Reynolds (Prey) solutions
2.0x 10 2.0892 0.0102 2.0994 2.0990 1o the gas bearing problem: (a) pressure at z=0; and (b) pres-

sure at z=h

horizontal is 40 deg. The figure shows the streamlines and a #apacity of the configuration as it is predicted from the Reynolds
pressure field as a function ®fandz The streamline figure shows solution is accurate. Table 1 shows the computed load capacity of
that the major part of the flow passes under the restriction but tile configuration as a function of, for the Stokes and Reynolds
a small recirculation zone occurs at its leading edge. The recir@slutions. The table shows that the computed load forces for the
lation is also predicted by the solution to the Reynolds equatidwo solutions differ little and, quite remarkably, in spite of the fact
for this case. The pressure field shows no unexpected featureghat the Stokes solution to the pressure does not seem to have a
“block-shaped” pressure distribution along the restriction with &igh-speed limit, the load force does. Moreover, its limiting value
“transition region” on its leading and trailing edge in which theis the same as the one predicted by the Reynolds model. Thus, for
pressure builds up to the high level and decreases again from thésiring design in terms of load carrying capacity the observed
level. Based on the Reynolds solution one would now expect thligferences between the Reynolds solution and the Stokes solu-
width of this transition region to decrease with increasing speeihns are not likely to have significant consequences. However,
However, the solutions to the Stokes equations show a differéhey may be important for operational aspects related to local
behavior. Figure 5 shows the computed pressure profilgs=t phenomena such as surface damage by fatigue which can lead to
and z=h as a function ofug for the Reynolds and the Stokesfailure.
solutions to the problem. The Reynolds solutions with increasing The effect of the slope of the side wall of the restriction is the
speed show the aforementioned behavior. According to the Stokext topic of investigation. The parameter in the model represen-
solutions initially with increasingus indeed a block shape ap-tative of this slope iscs, see Eq(10). In Fig. 6 results are pre-
pears, and for low speeds the pressure profiles=d andz=h sented for a giver{large us and three values oks: «s=582
differ very little which indicates no cross-film pressure deperwhich coincides with an angle of=20 deg), «;=1343 («
dence. However, with increasing, the pressure profile moves =40 deg) andks=2771 (=60 deg). The figure shows that the
away from the block shape and at the same time the profite apressure on the lower surface is hardly effected by a change of
=0 and that az=h start to differ. Forz=0 the high pressure at xs. However, the pressure on the upper surface does change. The
the restriction followed by a low pressure in its wake is replacewlidth of the pressure peak preceding the step decreases with in-
by a gradual increase along the restriction and a gradual decrees®sing«s and so does the length of the nearly vacuum zone
in its wake. At the surface=h the pressure profile tends to ex-following the restriction. So, it appears that if the lower surface
hibit a narrow peak at the leading edge of the restriction and alspeed is fixed and the slope of the side walls is increased, the
here along the restriction it is not constant but shows a gradysessure along the upper surface will approximate the Reynolds
decrease. In the wake of the restrictioni~(0.05) a zone of very high speed limit ofp=1/h, except for a pressure peak before the
low pressure is forme¢hearly vacuum The length of this zone step, and a suction dip behind the step. The lower surface pressure
increases with increasing . profile on the other hand is hardly affected by a changegibut
Summarizing it is concluded that with increasing speed orikis totally different from the high-speed Reynolds limit solution.
observes that a cross-film pressure dependence develops relatddrtally, Table 2 gives the computed load force according to the
the compressibility of the medium. This cross-film dependence $okes and Reynolds solution for the different valuescgland
naturally not predicted by the Reynolds solution to the problemelocitiesug=2.0 andus=5.0x 1C°, respectively. In this table it
and is the type of limitation to the Reynolds equation that wasan be seen that the load capacity does not strongly depend on the
indicated by Bair et al[10]. value ofkg and again its value computed using the Stokes solution
Having observed that the Stokes and Reynolds solution for higliffers little from the value obtained from the Reynolds solution.
speeds are very different the question arises if the maximum loadTo conclude this section, some details are given regarding the

Table 2 Computed load force for gas lubrication problem for Reynolds solution (Frey) Stokes solution (F,,F,) as a function of
the step parameter «. The Reynolds limit for infinite  ug is Fr,=2.1.

Stokes
Reynolds

U Ks Fp Fu Fot+Fy Frey

2.0 582 2.1894 0 2.1894 2.1755

2.0 1343 2.1947 0 2.1947 2.1802

2.0 2771 2.1970 0 2.1970 2.1825
5.0x10% 582 2.1046 0.0005 2.1051 2.0976

5.0x 10° 1343 2.1072 0.0010 2.1082 2.0990

5.0x 10° 2771 2.1090 0.0013 2.1103 2.0996
Journal of Tribology JULY 2003, Vol. 125 / 547
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x at z=0 for the Stokes
(b) contour plot of the pressure
€=0.005, us=5.0

Fig. 7 (a) Pressure as a function of

solution on different grids; and
for the Stokes solution on different grids.
X10°% and k,=1343.
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Fig. 9 (a) The pressure at z=0 as function of x for the Rey-
nolds solution without cavitation (p, (no cav.)), the Reynolds
solution with cavitation  (p,) and the Stokes solution with cavi-
tation (ps); and (b) enlargement of the pressure and density at

z=0 as function of x for the Reynolds and the Stokes solution
with cavitation in the cavitation region, €=0.01, p,=—3.0, and
B,=10.0. The Reynolds and the Stokes solution with cavitation
accuracy of the solutions. Because a first-order upstream discretierlap in both figures.

zation was used, it is important to check whether observed ten-

dencies in the solution are not a result of artificial “viscosity.”

This applies in particular to the solutions for large. Conver- ,p1e As for this value of there is no cross film dependence of the
gence of the solution with decreasmg r_nesh size was checked ¢ Rssure(see also Fig. 1@)) it is sufficient to only show the
fully and some resuits are shown in Fig. 7. This figure shows thigessre at the lower surface. When cavitation is not accounted for
pressure as a function afat z=0 according to the Stokes solu-yhe solytion is anti-symmetric and when it is accounted for the
tion for grids withN =64, 128, 256, 512. Also shown is a plot of 5 esqure s limited to the vapor pressure. The width of the cavi-
some of the contour lines of the pressure. The figure shows thatey region will depend on the value of the vapor pressure. For
with decreasing mesh size t.he solution converges. This process{pt -ase where, is taken significantly lower than the boundary
the pressure contours is quite slow, as could be expected from figqqre one observes a pressure drop reaching the vapor pressure
use of a first order scheme. However, the computed pressure Rloonqutx=0.2 and a return to the liquid pressure at abmut

files are sufficiently accurate to be able to conclude that the di-q 5 The Fig. ®) shows an enlargement of the pressure profiles
ferences between the Stokes solution and the R(_eynolds solutiQihe cavitated region together with the density profile.
observed for largess are “real” and not due to artifacts of the |, Fig. 9a) the pressure gradierips/x is also given as a
discretization on a grid that is too coarse. function of x. It can be seen that this gradient has a discontinuity

5.2 Fluid Lubrication Problem With Cavitation. ~For this at the edge of the pressure recovery zone, in this caze-at6.
problem results are presented obtained for values of the param&t#ice€pPs=Pp; , for small e, a shock relation can be deduced from
B, of the cavitation model in the range $(8,<4.0x10". 8, the Reynolds equation. ) , o
represents the slope of the density-pressure curve around the va-et the variables in the cavitated region be indicated by the
por pressure point. A larger value implies a steeper slope andSiPscript 1 and in the liquid region following the pressure recov-
likely to have an effect on the solution in and near the cavitatidify Point by the subscript 2. Integrating the Reynolds equation
region. A typical solution to the problem is shown in the Figs. #ith respect tox across the shock usindgi;=h,=h and
and 9. The results are obtained fer-0.01, p,=—3.0 andg, (dp/dx); =0 it follows that:
=10. In Fig. 8 are shown the pressure profile and the streamlines dp 6 p1
as a function ofx andz From the figure it can be seen that the ax :F(l_ —)
two-phase model indeed leads to the desired behavior. The pres- X/ 2 P2
sure is bounded below by the vapor pressure. This would not haygich is the equivalent of the usual Jakobsson-Floberg-Olsson
been the case without the model as is illustrated in Fi@) 9 (JFQ) relation[19,20.
where, for the same case are shown the pressure @icomputed | the Figs. 10 and 11 the contour plots are shown of the den-
using the Reynolds model with and without cavitation, and thg y for the caseg, =10, 5.0<10%, 1.0x 10" and 4.0< 10%, re-
present solution of the Stokes model with cavitation accountg ectively. Compa!;ing the lines ’fqﬂ? —10 with those fc’>r,8
for. From the figure it can be seen that for the vaiwe0.01 and 5 5 1% 1 010" and 4.0¢10" shows that the width of the

B, taken here the Reynolds and Stokes solutions are indiStingm%Qi/itated region is not changed. However, the lines of constant
density inside this region are no longer straight which implies that

(21)

1 1
—
— 3% — hlx) — hlz)
— $=0.14 08 -= =06 08 - p=04
p e $=012 - p=07 =05
—01 ----p=08 - p=0.6
Z0s o6l \ =09 06 e p=08
=0.02 z — p=1.0 z =1
/ 04 ( 04
h(z 71 i
0.2 ) [ ! 0.2 biz) N
b
[ il
P
05 05 ) 05 05 o5 ) 05
(a) (b)
(a) ()

Fig. 8 (a) Pressure profile as function of x and z; and (b)
and Streamlines as function of x and z. €=0.01, 8,=10.0, p,
=-3.0.

Fig. 10 Contour plot of the density for
(a) B,=10.0; and (b) B,=5.0X10°

€=0.01 and p,=—3.0,
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(a) () (a) ®)
Fig. 11 Contour plot of the density for €=0.01 and p,=—3.0; Fig. 13 (a) Contour plot of the density; and (b) density as
(@ B,=1.0% 10%; and (b) B,=4.0X 104, function of z at x=0.5. For €=0.5, p,=—4.0 and B,=20.0.
p varies as a function of and that in this region the Reynolds and —=1.0x10"! ka/m
the Stokes solutions differ. In particular, with increasigg a 70=1.0¢10 g/ms
region of very low density develops close to the upper surface. As p=1.0x 108 kg/m3
in this region the density equals the vapor density, this can be
interpreted as a “bubble.” The development of such a fully vapor- p,=1.0 kg/n?
ized region or “bubble” with increasings,, is also illustrated in
Fig. 12. In this figure the density is plotted as a functiorzatt a,=5.0<10° m/s (22)

x=0.5 for dif'ferentBP. Note that as a function afthe transition

— — 6
from the fully-vaporized region to the region wiih>0.01 atx H=0.1x10"" m

=0.5 is gradual. Furthermore, it can be seen in Fig. 12 that with u.=1.0 m/s
increasingB, the density neaz=0 approaches unity, so near the
lower surface the mixture tends to remain liquid. This is also what €=0.01

one would expect to happen from a physical point of view as f .
the present capse the Iom?epr surface SLf)ngies th?e lubricant. To inv(EEQm Eq.(1_9) it the follows that,l_30=20.0. So, thex-dependency
tigate if this formation of a fully-vaporized region is related to thdn the density for the problem discussed here does not seem to be
=h(x))—p(x,z=0), at the point wher@ reaches a minimum in and/orug is much larger it will only be stronger. -
the non-cavitating case was computed. It was found that the fullySummarizing, from the results presented in this section it is
Vaporized region occurs ﬁ'f)> ’7T/2Bp and the minimum pressure COhClU_dEd that the C.aVItatl.On model ylelds the deSIre_d “physma_l”
in the non-cavitating case is lower thap. behavior from the viewpoint of load force computations, i.e., it
Next, a few words about the influence of the ratieH/L. For Pprovides a lower limit on the pressure. The width of the cavitation
the solutions shown in Figs. 10 and 11, even though the solutif#gion will be determined by the magnitude of the vapor pressure
inside the cavitated region changes, the boundaries of this regitsi¢lf. The solution inside this region will depend on the parameter
remain straight. This can be ascribed to the small valugor a B, For larges,, in this region az-dependent pressure and density
larger value ofe these lines will no longer be straight as can bare found showing once again that the density-pressure relation
seen in Figure 1@) where the result is shown obtained fer induces differences between Stokes and Reynolds solutions in thin
=0.5,p,= —4.0 andB,=20.0. Figure 1@) shows the density as films. 3 .
a function ofz at x=0.5. The accuracy of the results has been verified by comparing
Having shown all this the question is if one should expect the§@lutions obtained on grids with a different mesh size. As an il-
effects to occur in practice: What value @, is realistic for a lustration, for a typical case in Fig. (& the contourline associ-
mineral oil. A crude estimate can be obtained taking the followingted with a given density value is shown as obtained from the
values for a mineral oil at standard conditions flowing through gelutions computed on a grid wit=128, 256 and 512 respec-
hydrodynamica”y lubricated contact: the'y. In Flg lqb) is shown the denSIty as a function ofat a
given location for the same solutions. The results apply to the case
€=0.01,p,=—3.0, andB,=1.0x 10*. These figures show that
with decreasing mesh size the solution indeed converges roughly

1 T T
0.8 :“:::\\ 055 1
RN
S ISIN
Y 0.45 08
0.6 -
A 0.6
NS 2035 P
p04 _ ,Bp:].0.0 \\\\‘t‘\\\ 04 _%zgég
AT B,=5.0x10% NN ' o2s My
4 N — 02
e B, =1.0x10% N \ N
02} --- ﬂp:4.0 x 104 \\\ \\\ 1 01§ 557 JRLL I 05 o7 0z 0.3 0.4
AN
NN (a) ®)
0 A A ST
0 0.1 O.% 0.3 0.4 Fig. 14 (a) Contour plot of the iso-density contour p=0.5 for
the Stokes solution on different grids; and (b) Density as func-
Fig. 12 Density as function of z at x=0.5 for €e=0.01 and p, tion of z at x=0.5 for the Stokes solution on different grids. €
=-3.0 =0.01, p,=—3.0, and B,=1.0X10%.
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first order in accordance with the first order of the discretization. P,
Clearly the differences between the Reynolds and Stokes solutions Ry

are much larger than the error in the result. T
. uS
6 Conclusion u

A multigrid numerical solution algorithm has been developed Yc
for the laminar(Stokes flow of a compressible medium in a thin u

film. The solver has been applied to two model problems repre- W
sentative of lubrication problems. For both problems the solutions X
of the Stokes equations are compared with the solutions of the 2
Reynolds equation. C:

The first problem is representative of(section in a grooved a
gas bearing. It is shown that at high speeds even when according 8,
to the ratio nominal film thickness to contact length there is little
reason to expect cross-film dependence of the pressure, such ag?
dependence can occur induced by the compressibility of the gas. Ap
The pressure profile along the grooved surface resembles the Rey-
nolds high speed limit. However, the pressure profile along the Ap
smooth surface is different. Nevertheless, the predicted maximum
load force for the Stokes and the Reynolds solutions is the same.zp

The second problem is that of the surface driven flow of a
liquid under a parabolically shaped counter-surface. This problem
was selected to illustrate an alternative way to simulate cavitation
behavior in hydrodynamic lubrication problems. This alternative
is needed because the conventional models used with Reynolds '°
equation are not suited to be used in combination with the Stokes
equations. The alternative method considers the compressible
equations combined with a special density pressure relation. It is
straight-forward to implement also in models based on the Rey-
nolds equation. It has been shown that with this approach the
objective to limit the pressure from below is indeed achieved. The
results compare well with the Reynolds model solutions for con-
ditions of a small ratio nominal film thickness to contact length

C
S
|

v

C

scaled vapor pressugg,= p,H/ 7:Uq

gas constant

temperaturgK]

lower surface speed

velocity x-direction

characteristic velocityk-direction[m|

vector with unknowns

velocity z-direction

Cartesian coordinates in direction of the film
Cartesian in the cross-film direction

angle

volume fraction of vapor bubbles in mixture
parameter in two phase cavitation model
B,=2nclo/Hpias,

parameteB?=a®p, /p

parameter in two phase cavitation mogley/m] Ap
=1/2(p;—p,)

parameter in two phase cavitation moges Ap
=1/27az, Ap

pressure difference

H/L

viscosity

liquid viscosity[Pag

vapor viscosity| Pag

characteristic viscositjPag

parameter film geometry

liquid density[kg/m°]

vapor densitykg/m"]

density

characteristic densitpkg/m®]

bearing numbeA =6 7.Lugu,/p,H?

and when the density pressure gradient is not too large. For 'a@ﬁpendix A

density pressure gradients it is shown that the compressibility it

self can lead to cross-film pressure dependences which the Reypetermination Speed of Sound. In the two phase model the

nolds equation can not predict.

minimum speed of sound in a mixture of liquid and bubbles is

required. In the following an estimate for the minimum speed of
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Nomenclature

sound is deduced. For a detailed discussion see Wijngag2d&n
93. This parameter is then used in Etf). The speed of sound
a fluid is defined as:

2

a‘= (23)

ﬁp)
aply

where () indicates a constant entropy. Only in the transition re-

If the dimension is not stated the variable or parameter is d#on between the liquid and the vapor state the density is not

constant and the speed of sound is not infifsee Fig. 3. This is

typical for the used model. Obviously, in reality the speeds of

mensionless.
a; = amplitude
a, = speed of sound in liquifim/s]

a, = speed of sound in vap¢m/s]
minimal speed of sounfin/s|
ds = length block inh(x)

F = load force
F, = force perpendicular to lower surface
F, = force tangent to lower surface
Fry = force perpendicular to lower surface resulting from
Reynolds solution
F’fey = force perpendicular to lower surface resulting from
high speed Reynolds solution
h = surface geometry
H = film thickness[m]
L = film length[m]
N = number of cells on square grid kiz direction
p = pressure
p. = ambient pressure
ps = pressure of Stokes solution
p, = pressure of Reynolds solution
p, = vapor pressurgPal
550 / Vol. 125, JULY 2003

sound in the vapor and in the liquid have finite values.

To determine the speed of sound in the mixture the volume
fraction («®) of the vapor bubbles in the mixture is introduced.
The actual density is then a linear combination of the liquid den-
sity and the vapor density:

p=a’p,+(1-a%p. (24)

It is assumed that the bubbles in the mixture are small enough to
follow the fluid when an acoustical wave passes. In that case, the
ratio 2= a?p, /p is a conservative quantit§.e., the mass does
not change when an acoustical wave pasdesan be substituted

in Eq. (24) and results in:

l a
.,

1-p2
p

PPy (@3)

This can be differentiated with respect poand after some ma-
nipulations the following equation can be found

1-a?

2 .
aip

1 a?

=4
a%  alp, (26)
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Lubrication Problems,” ECCOMAS 96.

/PIP a,a [7] Schder, C. T., Giese, P., and Woolley, N. H., 1999, “Elastohydrodynamically
a= vy . (27 Lubricated Line Contact Based on the Navier-Stokes EquatidPsceedings
\/(p|(1 —a?)+ pvaa)(pvaf( 1-a®)+ aap|a|2) of the 26" Leeds Lyon conference on tribology

[8] Odyck van, D. E. A., 2001. “Stokes Flow in Thin Films,” Ph.D. thesis, Uni-
The minimum speed of sound in the mixture can now be deduced versity of Twente, The Netherlands.
by 30|Vingda/daa|aa: ol =0 and substitutingy%in back into Eq. [9] Odyck van, D. E. A., and Venner, C. H., 2003. “Stokes Flow in Thin Films,”
min ASME J. Tribol., 125, pp. 1-14.
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