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Abstract— This paper develops a predictive repetitive con-
trol algorithm based on frequency decomposition. In partic-
ular,, the periodic reference signal is first represented using a
frequency sampling filter model and then the coefficients of
the model are analyzed to determine its dominant frequency
components. Using the internal model control principle, the
dominant frequency components are embedded in model
used to obtain the predictive repetitive control algorithm
such that the periodic reference is followed with zero steady-
state error. The design framework here is based on predictive
control using Laguerre functions and hence plant operational
constraints are naturally incorporated in the design and its
implementation.
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I. INTRODUCTION

Control system applications in mechanical systems,

manufacturing systems and aerospace systems often re-

quire set-point following of a periodic trajectory. In this

situation, the design of a control system that has the

capability to produce zero steady-state error is paramount.

It is well known from the internal model control principle

that in order to follow a periodic reference signal with zero

steady-state error, the generator for the reference must be

included in the stable closed-loop control system [1]. This

is the case for repetitive control system designs, such as

those in [2], [3], [4], [5].

In the design of repetitive control systems, the control

signal is often generated by a controller that is explicitly

described by a transfer-function with appropriate coeffi-

cients, see, for example, [2], [5]. If there are a number

of frequencies contained in the exogenous signal, the

repetitive control system will contain all periodic modes,

and the number of modes is proportional to the period

and inversely proportional to the sampling interval. As

a result, in the case of fast sampling, a very high order

control system may be obtained, which could lead to

numerical sensitivity and other undesirable problems in

actual implementations.

Instead of including all the periodic modes in the

periodic control system, an alternative is to embed fewer

periodic modes at a given time, and when the frequency

of the external signal changes, the coefficients of the

controller change accordingly. This will effectively result

in a lower order periodic control system by using a

strategy based on switched linear controllers. Apart from

knowing which periodic controller should be used, no

bump occurring in the control signal, when switching

from one controller to another, is paramount in terms of

implementations.

This paper develops a repetitive control algorithm us-

ing the framework of a discrete-time model predictive

control. In particular, the frequency components of a

given reference signal are analyzed and its re-construction

performed using the frequency sampling filter model [6],

from which the dominant frequencies are identified and

error analysis used to justify the selections. Secondly, the

input disturbance model that contains all the dominant

frequency components is formed and is combined with the

plant description to form an augmented state-space model

for controller design. The augmented state-space model

has an input signal which is inversely filtered with the

disturbance model and, as a result, the current control is

computed from past controls to ensure a bumpless transfer

when the periodic reference signal changes. Thirdly, with

the augmented state-space model, the receding horizon

control principle is used with an on-line optimization

scheme [7] to generate the repetitive control law with any

plant operational constraints imposed.

This paper is organized as follows. In Section II, the

frequency sampling filter model is used to construct the

reference signal, which forms the basis for analysis of

dominant frequency components and the quantification

of errors arising when insignificant components are ne-

glected. In Section III, the disturbance model is formulated

and augmented with the plant model to obtain the state-

space model used for design. In Section IV, the discrete-

time model predictive control framework based on the

Laguerre functions is used to develop the repetitive con-

trol law with any constraints present imposed. Also the

straightforward extension to the case when (a particular
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type of) control input constraints are imposed. In Section

V, simulation results from a gantry robot executing the

commonly encountered pick and place operation that can

be configured to operate in a repetitive control setting are

used to highlight the results obtained when the design

algorithm developed in the previous section is applied.

II. FREQUENCY DECOMPOSITION OF THE REFERENCE

SIGNAL

We assume that the periodic reference signal with

period T is uniformly sampled with interval ∆t and within

one period the corresponding discrete sequence is r(k),
where k = 0,1, . . . ,M − 1. Here M = T

∆t
, and is assumed

to be an odd integer for the reason explained below. From

Fourier analysis [8], this discrete periodic signal can be

uniquely represented by the inverse Fourier transform as

r(k) =
1

M

M−1

∑
i=0

R(e j 2πi
M )e j 2πik

M , (1)

where M is the number of samples within a period and

R(e j 2πi
M ) (i = 0,1,2, . . . ,M − 1) are the frequency com-

ponents contained in the periodic signal. Note that the

discrete frequencies are at 0,
2π
M

, . . . ,
4π
M

,
(M−1)2π

M
. For no-

tational simplicity, we express the fundamental frequency

as ω = 2π
M

.

The z-transform of the signal r(k) is defined as

R(z) =
M−1

∑
k=0

r(k)z−k
. (2)

Also, by substituting (1) into (2) and interchanging the

order of the summation, the z-transform representation of

the periodic signal r(k) is obtained as

R(z) =

M−1
2

∑
l=−M−1

2

R(e jlω)H l(z), (3)

where H l(z) is termed the lth frequency sampling filter

[6] and has the form:

H l(z) =
1

M

1− z−M

1− e jlωz−1

=
1

M
(1 + e jlωz−1 + ...+ e j(M−1)lωz−(M−1)).

Here we have used the assumption that M is an odd

number to include the zero frequency. The frequency

sampling filters are bandlimited and are centered at lω.

For example, at z = e jlω, H l(z) = 1. Equation (3) can also

be written in terms of real (denoted Re) and imaginary

(denoted Im) parts of the frequency component R(e jlω)

[9] as

R(z) =
1

M

1− z−M

1− z−1
R(e j0)

+

M−1
2

∑
l=1

[Re(R(e jlω)F l
R(z)

+ Im(R(e jlω)F l
I (z)], (4)

where F l
R(z) and F l

I (z) are the lth second order filters given

by

F l
R(z) =

1

M

2(1− cos(lω)z−1)(1− z−M)

1−2cos(lω)z−1 + z−2
,

and

F l
I (z) =

1

M

2sin(lω)z−1(1− z−M)

1−2cos(lω)z−1 + z−2
.

At this stage, note the following.

• The number of frequency components M is deter-

mined by the period T and the sampling interval ∆t.

As ∆t is reduced, the number of frequencies increases

but the number of dominant frequencies may not

change with a faster sampling rate, which is similar

to the application of a frequency sampling filter to

the model of a dynamic system.

• Given the z-transform representation of the reference

signal using the frequency sampling filter structure,

the time domain signal r(k) can be constructed using

the frequency components contained in the periodic

signal by convolving R(z) and the unit impulse

function and taking the inverse transform. Hence the

contribution of each frequency component can be

analyzed against the error arising when a specific

frequency component is neglected. This approach is

used in determining the dominant components of the

periodic reference signal.

• Once the dominant frequency components are se-

lected they can be combined with the plant descrip-

tion to obtain the augmented state-space model to be

used in the design of the predictive repetitive control

system as detailed in the next section.

III. AUGMENTED DESIGN MODEL

Suppose (as noted below this assumption cause no loss

of generality) that the plant to be controlled is single-input

single-output and described by the state-space model

xm(k + 1) = Amxm(k)+ Bmu(k)+ Ωmµ(k),

y(k) = Cmxm(k), (5)

where xm(k) is the n1 × 1 state vector, u(k) is the input

signal, y(k) the output signal, and µ(k) represents the

input disturbance. Then by the internal model principle,

in order to follow a periodic reference signal with zero

steady-state error, the generator of this signal must be

included in the stable closed-loop control system [1]. From
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the identification of dominant frequency components in

Section II, we assume that the dominant frequencies are

0 and some lωs and that the input disturbance µ(k) is

generated as the output of a system whose z transfer-

function has no zeros and a denominator polynomial of

the form

D(z) = (1− z−1)Πl(1−2cos(lω)z−1 + z−2)

= 1 + d1z−1 + d2z−2 + d3z−3 + . . .+ dγz
−γ

. (6)

In the time domain, the input disturbance µ(k) is

described by the difference equation in the backward shift

operator q−1

D(q−1)µ(k) = 0, (7)

and introduce the following auxiliary variables obtained

using the disturbance model (this can be viewed as fil-

tering the state vector and the input by the inverse z-

transform of D(z))

xs(k) = D(q−1)xm(k), (8)

us(k) = D(q−1)u(k). (9)

Also applying D(q−1) to both sides of the state equation

in (5) gives

D(q−1)xm(k + 1) = AmD(q−1)xm(k)+ BmD(q−1)u(k),

or

xs(k + 1) = Amxs(k)+ Bmus(k), (10)

where the relation D(q−1)µ(k) = 0 has been used. Simi-

larly, application of the operator D(q−1) to both sides of

the output equation in (5) gives

D(q−1)y(k +1) = Cmxs(k +1) = CmAmxs(k)+CmBmus(k),
(11)

or (on expanding both sides of this last equation)

y(k + 1) = −d1y(k)−d2y(k−1)− . . .−dγy(k− γ+ 1)

+ CmAmxs(k)+CmBmus(k). (12)

To obtain the augmented state-space model of the plant

and the disturbance, introduce the new state vector as

x(k) =
[

xs(k)
T y(k) y(k−1) . . . y(k− γ+ 1)

]T
,

and hence (on combining the plant and disturbance mod-

els)

x(k + 1) = Ax(k)+ Bus(k),

y(k) = Cx(k), (13)

where

A =



















Am O O . . . O O

CmBm −d1 −d2 . . . −dγ−1 −dγ

OT 1 0 . . . 0 0

. . .
. . .

OT 0 . . . 1 0 0

OT 0 . . . 0 1 0



















,

B =



















Bm

CmBm

0
...

0

0



















,

C =
[

OT 1 0 . . . 0 0
]

,

and O denotes the n1 × 1 zero vector. The structure

of this augmented model remains unchanged when the

plant is multi-input multi-output except that the O vector

becomes zero matrix with appropriate dimensions, and the

coefficients −d1, −d2, . . . are replaced by −d1I, −d2I,

. . . where I denotes the identity matrix with compatible

dimensions.

IV. DISCRETE-TIME PREDICTIVE REPETITIVE

CONTROL

Given the augmented state-space model, the next task

is to optimize the filtered control signal us(k) using the

receding horizon control principle. The key task in this is

to model the auxiliary control signal us(k) using a set of

discrete-time Laguerre functions. The main steps here are

summarized with full details in [7].

Assuming that the current sampling instant is ki, let the

control trajectory at future time m be

us(ki + m | ki) =
N

∑
i=1

li(m)ci = LT (m)η, (14)

where ηT =
[

c1 c2 . . . cN

]

is the coefficient vector

that contains the Laguerre coefficients and L(·) is the

N × 1 vector whose entries are the Laguerre functions

l1(·), l2(·), . . . , lN(·). Then the predicted state vector at

sampling instant ki + m | ki is

x(ki + m | ki) = Amx(ki)+
m−1

∑
i=0

Am−i−1BLT (i)η. (15)

The performance objective for the predictive repetitive

control here is to find the Laguerre coefficient vector η
that minimizes the cost function

J =
Np

∑
m=1

xT (ki + m | ki)Qx(ki + m | ki)+ ηT RLη, (16)

where Q ≥ 0 and RL > 0 where RL is a diagonal matrix

with identical elements.

Introducing

φT (m) =
m−1

∑
i=0

Am−i−1BLT (i),
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and substituting (15) into (16), it is easily shown that the

optimal solution here is

η = −(
Np

∑
m=1

φ(m)QφT (m)+ RL)
−1(

Np

∑
m=1

φ(m)QAmx(ki)).

(17)

Moreover, the filtered receding horizon control signal is

obtained as

us(k) = LT (0)η, (18)

and the actual control signal to the plant as

D(q−1)u(k) = us(k).

With the definition of D(q−1) (see 6) and noting that

the unit leading coefficient in the polynomial D(q−1), the

actual control signal to the plant is found using

u(k) = us(k)−d1u(k−1)−d2u(k−2)− . . .−dγu(k− γ),
(19)

where the current optimal control us(k) and the past values

of control are used.

If predictive repetitive controller is to be used for

disturbance rejection, the control objective is to maintain

the plant in steady state operation, with zero steady-state

filtered state vector xs(k) and a constant steady-state plant

output. If, however, the predictive repetitive controller is

used for tracking a periodic input signal, the reference

signal will enter the computation through the augmented

output variables. Note that, since the state vector x(k)
contains the filtered state vector xs(k), and the output y(k),
y(k−1), . . ., y(k− γ+1), the feedback errors at sampling

instant ki are obtained as

[y(ki)− r(ki) . . . y(ki − γ+ 1)− r(ki− γ+ 1)]T

= [e(ki) e(ki −1) . . . e(ki − γ+ 1)]T .

These will replace the original output elements in x(k)
to form a state feedback term in the computation of the

filtered control signal us(k) using (17) and (18).

The key strength of predictive repetitive control lies in

its ability to systematically impose constraints on the plant

input and output variables. The constrained control system

then minimizes the objective function J (16) in real time

subject to the constraints imposed. For example, control

amplitude constraints can be imposed at the sampling

instant k by writing them in a set of linear inequalities,

umin ≤ u(k) ≤ umax
, (20)

where umin and umax are the required lower and upper

limits of the control amplitude respectively. By substi-

tuting (19) into (20) and relating us(k) to the Laguerre

function expression, the constraints effectively become the

functions of Laguerre parameter vector η as,

LT (0)η ≤ umax + d1u(k−1) . . .+ dγu(k− γ), (21)

−LT (0)η ≤−(umin + d1u(k−1) . . .+ dγu(k− γ)). (22)

V. GANTRY ROBOT EXAMPLE

This section gives the results of a case study where

the plant transfer-function has been obtained from experi-

mental tests on a gantry robot undertaking pick and place

operations.

A. Process Description

The gantry robot, shown in Fig. 1, replicates a task

commonly found in a variety of industrial applications.

In particular, it is executing ‘pick and place’ operation

where the following operations must be performed in

synchronization with a conveyor system, i) collect an

object from a fixed location, transfer it over a finite

duration, ii) place it on the moving conveyor, iii) return to

the original location for the next object, and then iv) repeat

the previous three steps for as many objects as required.

This experimental facility has been extensively used in the

benchmarking of repetitive and iterative learning control

algorithms, see, for example, [10], [11].

For modeling and control design purposes, this gantry

robot can be treated as three single-input single-output

systems (one for each axis) that can operate simulta-

neously to locate the end effector anywhere within a

cuboid work envelope. The lowest axis, X , moves in

the horizontal plane, parallel to the conveyor beneath.

The Y -axis is mounted on the X-axis and moves in the

horizontal plane, but perpendicular to the conveyor. The

Z-axis is the shorter vertical axis mounted on the Y -axis.

The X and Y -axes consist of linear brushless dc motors,

while the Z-axis is a linear ball-screw stage powered by

a rotary brushless dc motor. All motors are energized

by performance matched dc amplifiers. Axis position is

measured by means of linear or rotary optical incremental

encoders as appropriate.

To obtain a model for controller design, each axis of the

robot was modeled independently by means of sinusoidal

frequency response tests. From this data it was possible

to construct Bode plots for each axis and hence determine

approximate transfer-functions. These were then refined,

by means of a least mean squares optimization technique,

to minimize the difference between the frequency response

of the real plant and that of the model. Here we only

consider the X-axis and use the following 7-order transfer-

function (with s denoting the Laplace transform variable)

approximation of the dynamics in the design.

B. Frequency Decomposition of the Reference Signal

The reference signal for the axis is shown in Fig. 2,

where the sampling interval is 0.01 sec with 199 samples

and hence the period of this signal is T = 2 (sec). Fig.

3 shows the magnitude of the coefficients for all the

frequency sampling filters, which decay very fast as the

frequency increases. Hence it is reasonable to reconstruct
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G(s) =
(s+ 500.19)(s+ 4.90×105)(s+ 10.99± j169.93)(s+5.29± j106.86)

s(s+ 69.74± j459.75)(s+10.69± j141.62)(s+ 12.00± j79.10)
(23)

Fig. 1. The gantry robot

TABLE I

SUM OF THE SQUARED ERRORS OF THE RECONSTRUCTED SIGNAL

freq. comp. 0 0-1st pair 0-2nd pair 0-3rd pair

error 0.0325 0.0017 0.0001 0

the reference signal using just a few low frequency compo-

nents. Fig. 2 compares the reconstructed signals using 0−
1st, 0−2nd and 0−3rd pair of frequency components near

the zero frequency component respectively. Table I shows

the sum of the squared errors between the actual reference

and re-constructed signals using a limited number of

frequencies. It is obvious that only a small error arises

if the reference signal is approximated using the 0− 3rd

pair of frequency components near the zero frequency

component. Hence 0−3rd pair of frequency components

are taken as the dominant frequency components for this

example.
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Time (s)

 

 

Reference Signal

Reconstructed Signal with 0−1st Pair Frequency

Reconstructed Signal with 0−2nd Pair Frequency

Reconstructed Singal with 0−3rd Pair Frequency

Fig. 2. Reference signal and its reconstructions using a limited number
of frequencies.

C. Controller Design and Simulation Results

Using (6), The pole polynomial in the z transfer-

function of the frequency sampling filter model for l = 3
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Fig. 3. Magnitudes of the coefficients in the frequency sampling filter.

is

D(z) = 1−6.70z−1 + 20.93z−2−34.86z−3 + 34.86z−4

−20.93z−5 + 6.70z−6− z−7
, (24)

and these, together with the state-space realization of

the plant dynamics, now enable the construction of the

augmented state space model (13). The filtered control

signal us(k) then can be optimized using the receding

horizon principle described in Section IV.

Figure 4(a) shows the perfect tracking of the reference

signal by the controlled plant and (as expected) Fig. 4(b)

shows the repetitive nature of input signal.

0 0.5 1 1.5 2 2.5 3 3.5 4
−0.01

0

0.01

0.02

0.03

0.04

0.05

Time (s)

P
o

s
it
io

n

 

 

Output signal under input constrains

reference signal

(a) System output
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(b) Input signal

Fig. 4. System simulation results (without input constraints).

In practice, there are circumstances where the input

of gantry robot could be saturated due, for example, to
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limitations of electrical or mechanical hardware and this

could degrade the tracking performance when the input

signal hits its limit. For example, in the case when umax =
0.6 and umin =−0.8, Fig. 5(a) shows that the system goes

unstable if the input signal is directly saturated according

to umin ≤ u(k) ≤ umax.
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(a) System output under input constraints.
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(b) Input signal under constraints.

Fig. 5. Simulated system response under input constraints.
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(a) System output under input constraints.
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Fig. 6. Simulated system response under input constraints with the
controller in place.

Figure 6(a) shows that if (21) and (22) are used in

conjunction with optimization of the cost function, then

tracking performance can be maintained. The tracking

mismatch here occurs when the input signal hits the limits

and is saturated.

VI. CONCLUSIONS

In this paper, a predictive repetitive control algorithm

using frequency decomposition has been developed. This

algorithm is developed from a state-space model formed

by augmenting the plant state-space model with the dom-

inant frequency components from the frequency sampling

filter model. A model predictive control algorithm based

on the receding horizon principle is then employed to

optimize the filtered input to the plant. Simulation results

based a gantry robot model shows that the algorithm can

achieve i) perfect tracking of the periodic reference signal,

and ii) superior tracking performance when the input is

subject to constraints. One of the next areas for this work

is to experimentally verify this algorithm on the gantry

robot.
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