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On Circular Pipe Wall Vibratory 
Response Excited by Internal 
Acoustic Fields 
Internal acoustic fields in pipes as generated by control valves, for example, interact 
with the pipe walls such that very large drops in transmission loss are experienced at 
a series of discrete frequencies, the coincidence frequencies. This paper develops the 
analysis for the calculation of the pipe vibration amplitude at the coincidence 
frequencies so that the radiation external to the pipe can be estimated. External 
acoustic loading and material damping are considered. The analysis was applied to 
experiments which were performed on a somewhat idealized test fixture. Combining 
the results of the analysis with the test results permitted the estimation of the 
material damping for the particular material used. Results show that structural 
damping for the low carbon steel varies from 0.04 at high frequency to a high of 
0.20 at the lowest frequency which agrees fairly well with the results from other 
research on flat steel plates. The rather large values of the estimated damping 
coefficients may well be caused by the visco-elastic damping materials used at the 
ends of the pipe's tee section. 

Introduction 
Research on control valve and regulator noise and its 

reduction has been in progress at The Pennsylvania State 
University's Noise Control Laboratory for some seven years 
with support from the National Science Foundation and 
several control valve manufacturers [1 through 13]. The noise 
generated downstream of the throttling element of control 
valves forms a propagating acoustic field in the downstream 
piping which in turn interacts with the pipe wall vibratory 
modes. The pipe wall vibrations result in the development of 
an acoustic field outside of the pipe which radiates into the 
surrounding space in a manner which depends on the pipe 
geometry and the external acoustic environment. The acoustic 
levels of this external field can become very high for large 
valves and high pressure dops, resulting in acoustic en
vironments in violation of the OSHA noise rules. 

The valve manufacturers have developed empirically based 
noise prediction techniques which are acceptably precise for 
the valve sizes tested but are not sufficiently reliable for the 
larger valve sizes or new configurations. 

The research at The Pennsylvania State University has dealt 
with the various aspects of the valve noise prediction problem 
as reported in the references cited. The topic of this paper is 
the transmission of the noise through the pipe walls and the 
radiation into the surrounding medium. Work along similar 
lines has been reported by Bull and Norton [14] and 
Fagerlund [15] who uses a statistical energy approach. 

The thrust of the work reported here is to start from 
fundamental principles recognizing that the transmission of 

the acoustic energy from inside the pipe is at a maximum at 
the coincidence conditions between the pipe's internal 
acoustic field and the pipe wall vibratory modes as developed 
at The Pennsylvania State University by Walter [11,21,22]. 
Both the radiation loading due to the external acoustic field 
and the pipe's material damping are considered in the for
mulation. The results reported are but one of several steps 
necessary in the development of a fundamentals based valve 
noise prediction technique which is the thrust of our research. 

Analytical Model of the Acoustic Field—Pipe Vibratory 
Mode Coincidence Conditions and the Resulting 
Radiation 

The development of this analytical model of the pipe wall 
motion resulting from an internal acoustic field is presented in 
five parts: 

1 A mathematical and physical description of the wave 
propagation inside of the pipe. 

2 A mathematical and physical description of the wave 
propagation outside of the pipe. 

3 Mathematical development for the acoustic loading of 
the external pipe wall. 

4 Analytical description of the pipe wall response in the 
presence of the internal damping of the pipe material and the 
external acoustic loading. 

5 Solution method of the simultaneous set of partial 
differential equations for a specific ideal case and comparison 
with experimental data. 

Contributed by the Noise Control and Acoustic National Group of The 
American Society of Mechanical Engineers and presented at the Winter Annual 
Meeting, November 16-21, 1980, Chicago, Illinois. Manuscript received at 
ASME Headquarters July 1980. Paper No. 80-WA/NC-13. 

1 A Mathematical and Physical Description of the Wave 
Propagation Inside of the Pipe. In setting up the wave 
equation in cylindrical coordinates, we have assumed that 
linear acoustic conditions will exist. The assumption is open 
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to question since acoustic intensities in excess of 130 dB exist 
downstream of typical conventional valves. Actually, only the 
(0,0) plane wave mode will experience progressive wave 
steepening, whereas the dispersive nature of all the other 
modes will result in the retention of the original spectral 
content. 

A second assumption is that we are dealing with 
anechoically terminated, thus effectively infinitely long, 
constant cross section circular pipes. 

From the general wave equation in cylindrical coordinates 
with uniform axial flow, equation (1) 

dr2 + 
1 dp 1 

r dr r2 

32p 
+ ( 1 - M 2 ) 

d2p 

~dxT 

1 d2p 2M d2p 

c2 IT2" +~cT~dxdl (i) 

where 

p is the complex pressure 
r is the radial coordinate 
8 is the circumferential coordinate 
x is the axial coordinate 
C is the speed of sound 
/is time 
M is the axial convection Mach number. 

Through the well-known separation of variable approach, we 
find the general solution in the form of equation (2). 

(2) -A 7 tk r \ p i(ut + k .y + mfl) 

where 

k,„„ is the radial wave number for circumferential mode m 
and radial node«, 

kx is the axial wave number. 

For forward wave propagation inside the pipe, the term Z,„„ 
is in the form of Bessel functions of the first kind of order m. 
Thus, equation (2) becomes equation (3). 

nmil Jm \*mn' I e (3) 
We shall assume that we are dealing with a hard-walled duct 
so that the acoustic velocity at the internal wall must be zero. 
(Note that we have shown in an earlier study [11] that the pipe 
wall vibrations resulting from the acoustic field do not 
significantly affect the internal acoustic field.) This radial 
boundary condition is given by the solution of equation (4). 

a 
J„Akm„r)/r=R=0 (4a) dr 

k>nn Jm ( k-mii« ) — 0 (4b) 

If we let 7„„, be the eigenvalues that satisfy /,'„ (ym„ ) = 0, we 
have 

R 
(5) 

We can now set up the dispersion relationship, relating the 
axial wave number kx to the frequency co and the parameter 
k,„„ so that 

* , = 
-<W(;) -O-M')*. mn 

1-M 2 
(6) 

The subscripts m and n refer to the circumferential and radial 
order of the higher-order acoustic modes that will "spiral" 
down the duct. This concept is well known and has been 
explained in prominent text books [16,17,18] and many ar
ticles in the literature. Three conditions are of interest. 

Case I: If co/c < (1 - M2)]/2k„,„, kx is complex so that 
from equation (3), the particular mode will decay 
with x. 

Case II: If co/c = k,mn so that kx becomes zero, the 
pressure field inside the pipe is a function of r, 8, 
and t, and is constant in the x direction. Thus, the 
field spins circumferentially and does not 
propagate. This is commonly called the cut-off 
condition. 

Case III: If co/c > (1 - M2)1/2A:m„, so that kx is real, we 
find that the pressure field propagates unat-
tenuated down the pipe with a velocity, termed 
the group velocity, Cg, which is equal to doi/dkx 

and spins with an angular velocity (dd/dt) x = const 

= ± oi/m. The phase velocity (dx/dt) 
becomes o>/kx. 

We have, therefore, established an expression for the 
acoustic pressure at the pipe wall for values of x and 8 as a 
function of frequency co for the various (m,ri) modes. 

2 A Mathematical and Physical Description of the Wave 
Propagation Outside of the Pipe. The solution to equation (1) 
is again of the form (2), but 

Zl„(km„r)=Hj2Hk,fwr) (7) 

and the pressure for the m,n th mode becomes 
P =A H <2)(k r)eJi"i~kxx±ine) /o\ 

We shall be dealing with far field conditions only so that kmnr 
> > m, so that 

2m +1 

"in \km„r) « 
ickmn r 

/ ( • -0 

Thus 

rk„ 
-&- - n + ut-kYx±m6] 

Pressure surfaces of constant phase then are given by 

(2m + l)ir 1 [, (2OT + 1)T 1 
' = — \krx con 

* „ . L 4 J 

(9) 

(10) 

(11) 

Since m/k,„„ < < 1 , equation (11) represents spiraling cones 
around the (x) axis and the angle (S) with the x axis is given by 

tan" 
k2 

- 1 . 

Interestingly, this angle (8) also is the angle between the 
normal to the pipe surface and the direction of propagation. 
Thus 

kmn = k cos 8,kx = k sin 9 

so that constant k,„„ represents the projection of wave number 
k in the r direction and kx represents its projection in the x 
direction. 

3 The Damping Effect (Acoustic Loading) of the Pipe Due 
to the Radiation Outside of the Pipe. The pipe wall as a result 
of the internal acoustic field, which in turn is caused by the 
throttled flow through the valve orifice, will vibrate with a 
complicated vibrational pattern with the radial velocity a 
function of both circumferential angle 8 and axial distance x. 
Since the air velocity on the outside surface of the pipe wall is 
equal to the wall velocity, the air mass will be set into motion. 
The reaction of this acoustic radiation will increase the ef
fective mass of the pipe wall and will also add to the damping 
because of the phase changes that take place as a result of 
compressibility effects. 

From a study of the radiation from a radially vibrating 
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sphere (in its pulsating mode only), we can see that for the 
case of the sphere's radius a much smaller than the wave 
length X (a > > X), the additional mass of the air (about 
three times the volume of the sphere) dominates the vibration 
with the damping effect being negligible. On the other hand, 
for high frequencies (ka < < 1), the effective mass increment 
becomes very small and the effective radiation damping 
becomes significant, meaning that energy dissipation by the 
surrounding air becomes an important factor [19]. 

The analysis for the pipe is far more complicated because of 
the higher order vibrational bending modes that are excited 
and which are of concern to us. Yet the simplified analysis for 
the pulsating sphere does shed some light on what we might 
expect. 

The pipe wall vibration velocity V,„„ in the m,nKh mode will 
be given by equation (12) 

Vmn = ^oCOS kxX COS md e'" (12) 

The general potential field of the acoustics generated by the 
pipe wall vibration outide of the pipe is given by equation (13) 

4>,„„=B H„W(k r)eJ^-k^nm ( 1 3 ) 

The air velocity at the wall has to be equal to the wall 
velocity—a boundary condition—so that 

d<t> 
• nm n 

dr 

Thus, equation (13) becomes 

</>,„„ =B,„„H,„{2)(k,„„r) cos kxxcos mde 

and 

V„,„=-& 

(14) 

(15) 

(16) k}imHm (k„mR) 

The sound radiated from a vibrating cylinder is determined by 
its radiation impedance Z,„„ which is defined by (17) 

P \ ipCkHm<2\k,w,R) 
Z = ( '"" ^ 

V V„„, /r=R * »w "m ( * «m " ) 
(17) 

By definition, the Hankel function is defined in terms of 
Bessel and Neumann functions as shown in equation (18) 

HnJ
2\kmnR) =J„, (k,„„R) -iN,„ (k,„„R) (18) 

so that the radiation impedance Z,m can be expressed as 
equation (19) 

IpCkR 

'"" ~ irknw
2R2 [ [j;„„ (km„R)}2 + [N;„ (k,„„R)]2) 

. pCkR[J„, (k„,„R)j;„ (k,„„R) +N„, (kmnR)N'm (k,mR)} 

k,„„R{[j;m, (k,„„R)]2 + [N;„ (k,„„R)]2 

(19) 

or in abbreviated form 

Z„„=X+iY 

The acoustic pressure exerted on the pipe wall is then given by 
equation (20) 

p =z >V =(X +iY )V 
tun '-'nm ' mil \'^mn ' l ± mil ' i 

(20) 

4 Analytical Description of the Pipe Wall Response in the 
Presence of the Pipe Wall Material Damping and the External 
Acoustic Loading. The derivation of the elastic response of an 
infinitely long, thin cylindrical shell to internal and external 
pressure fields was based on the formulation given by E. M. 
Frymoyer [20] and further developed by Walter [11]. 

The equations of motion are derived by applying 
Hamilton's minimum total energy principle. The Flii'gge thin 
shell approximations are used and allow the expansion of the 
displacement vector u; into a Taylor series in the thickness 
coordinate. The assumptions listed next reflect this approach. 

The coordinate system for the equations is given in Fig. 1. 

Fig. 1 Coordinate system for the shell 

(a) The thickness of the pipe shell is small compared with 
other dimensions. 

(b ) Strians and displacements are sufficiently small so that 
quantities of second and higher order magnitude may be 
neglected compared with the first order terms. 

(c) The transverse normal stress is small compared with the 
other normal stresses and may be neglected. 

(d) Normals to the undeformed middle surface remain 
straight and normal to the deformed middle surface, and 
suffer no extension. 

(e) The material is linearly elastic, homogeneous, and 
isotropic. 

(/) Shear deformations and rotary inertia effects are 
neglected. 

The three dynamic equilibrium equations are as follows: 

d2u 0-v) 
-faT +

 TOO |1 + [' 2R2 

1 r dvv 

12i?2 J 

d2u 

E' 

d2u (l + v) d2v 

1 r dw ¥ d'wl 
+ Rl'dx~T2~dxJ 1 + 

(1 + u) d2u (\~v) 

2R dxdd 

+ 

*[• 
h2 

2 

1 

R2 

a3« 

h2 a 3 w ] , ( i - v ) 

24R5" 

d2V 

~dxT 

h2 

dt2 

dxde2 

2R dxdO 

= 0 (21) 

1 

W2 
d2V 

E' 

dw (3-v) h2 d3w 

24 R2 dx2dd 
= 0 

d2v 

IF 

(22) 

du 
~dx ~ 12 dxl 

h1 

h2 (i-v) a3« i 

24 Ri dxdd2 + R2 

24R2 

d3v 

h2 a4w 

R2 L + \2R2 J + 

dv 

~dd 

Jf_ 
6R* de2 

d2^ 

h2 d4w 
+ V2])xJ + 6R2 dx2dd2 

d*w p d2w 

i2/?4 ae4 

- dw 
'"" Jt 

+ E' dt2 

E'h E'h 
(23) 

where w, v and w are the deflections in the x, Q, and r direc
tions, respectively. 

The following assumed displacement field terms are 
submitted into the equations: 

u = 5 , cos kxx cos me (24) 

v=B] 5, sin £xxsin md (25) 

w = Bxb2s\nkxxcosme (26) 

The indicated derivatives are taken and the following 
dimensionless parameters are formed: 
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a = hkx dimensionless axial wave number 

/? = — dimensionless shell thickness 
R 

/p(l - u 2 ) 
Q = o)/2A/ dimensionless frequency 

(27) 

(28) 

(29) 

The internal damping of the material is incorporated by using 
a complex modulus of elasticity E 

so that E' = 
E{l+iv) 

1-v2 

Equations (21), (22) and (23) take on the form 

l - v 

(30) 

+ [a(l(v+ ^ a 2 ) - ^ m 2 a ^ J 5 2 =0 

[-m/32-^Wf32]52=0 

(31) 

+ - / (32) 

\a&(-v- ~ ) + ~-^-m2a^\ + \m01 + —-^-ma2P2\l 
v \ x Z* ' ZJ^ •* ^- Zi*r J 

+ [>[ l + l j 8
2 ( /n 2 - l ) 2 ] 

1 Q2 

+ —a2(a2+2m2l32)-
12 1+irf 

+z„. ' (1 + iri)yJp~E J 2 BxE(\+in) 

The three simultaneous equations are of the form 

C ] B ] + C 2 ( B ] & ] ) + Ci(B]&2) = 0 

C 45,+C 5 ( f i 15,) + C6(5152) = 0 

C7fl, + C&(Bl52) + C9(Bl52)=A 

(33) 

(34) 

(35) 

(36) 

The solution for the radial displacement amplitude £ ,5 2 is 
then given by the following matrix equation: 

Bl52 = 

which is equal to 

Bt52 = 

c j c2 CT, 

C 4 C 5 C6 

Cy Cg C9 

A(C,C5-C2CA) 

(37) 

C\ C$ Cg + CjCfiCs-; + C4 C§ G3 —C3C5C7 C2C4C9 — CjGgCg 

(38) 

We have in equation (38) the solution for the radial pipe wall 
motion amplitude at the coincidence frequency for the (m,n)lh 

mode in the form of 

w„,„ = 15,52 Isub kxx cos m6 (39) 

5 Solution Method for the Simultaneous Set of Partial 
Differential Equations. An analytical trial and error approach 

was used to search for values of the material damping factor i\ 
for the several modes for which we had reliable experimental 
data and comparing these values with published data. These 
comparison were based on experiments which included sound 
source simulating the higher order acoustic modes generated 
by a typical control valve as the noise source pipe wall ac
celeration measurements are at the specific coincidence 
frequencies for modes m,n. 

We first determined the values for our steel pipe of h, R, v, 
E,p. 

We next calculated the coincidence frequencies for every 
mode m,n of interest using the relationships for the in
tersection of the dispersion characteristics for the internal 
acoustic field and the like mode pipe wall bending mode (see 
[11,20,21]). 

Next, we calculated the values of C, through C9 as defined 
by equations (34-36) as well as Z,„„ and A. These values 
determined, we can calculate Bxh2 from equation (38) for 
every mode m,n of interest. 

The dynamic response of the pipe as a function of x, 8, and 
/ is then given by equation (40) 

w = B152 sin kxx cos m 6 e'"' (40) 

and the potential acoustic field outside of the pipe by equation 
(4) 

*»>» = B,„„ H„,(2) (k,„„ r) sin kxx cos m 6 e"" (41) 

From the dynamic boundary conditions at the pipe wall, we 
have 

d<j>„ 

dr = R 

and Bmn can be calculated from equation (43) 

itoB [ 52 

"" = ~~ k H ( 1 ) ' ( k R ) 

(42) 

(43) 

In order to proceed further, we must have reliable values of 
the internal damping coefficient -q as defined in equation (30) 
and seen to occur in the equations for the pipe wall response, 
equations (31-33). The literature indicates that the structural 
damping of steels is somewhat dependent on the geometry of 
the structure, varies with the composition of the steels, and is 
also a function of frequency. The order of magnitude of ?j is 
given by 10~2. 

We then proceed to substitute the measured values of the 
pipe wall velocities and internal pressures at the wall in order 
to estimate the damping factor for each coincidence condition 
at the respective m,n modes. The results of this process are 
shown in Table 1. 

We see from Fig. 2 that -q tends to decrease with increasing 
frequency which agrees generally with findings from studies 
on flat plates (23). 

The published literature cites values of the damping factor 
of metals ranging from 10 ~3 to 10 " ' with 10 "2 being typical 
for steels. The somewhat higher values obtained in our study 
may well be due to the damping contributed by the short 
sections of viscoelastic material covering used at the ends of 
the long pipe as described in [11]. 

We are now in a position to determine the relationship for 
the acoustic pressure in a free field at some distance r from the 
center of a pipe which is excited by an internal acoustic field 
resulting from such sources as valves, fans or others. 

Thus, the acoustic pressure, pm„, at a distance r from the 
pipe wall is given by 

Pmn = P 

pu>2B, 82 

d<t>m„ ., . 
so that 

dt 

(44) 

kmn-Hm ' {^mnR) 
Hm m (kmn r) sin kxx cos mdeiul (45) 
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At the coincidence frequency (CJ = w,„„ ) of the m,n mode and 
a distance r, the acoustic pressure becomes 

P^mn B^2HmV{kmnr) 

k„HHm<*>'VcmaR) 
sin krx cos md e'" 

Conclusions 
A method has been developed to calculate the acoustic field 

strength outside of an infinitely long straight pipe which is 
subjected to an internal acoustic field generated by any of 
many possible compressible fluid flow noise sources. As a 
result of earlier studies, we had established that the 
predominance of the acoustic energy is transmitted through 
the pipe wall at the coincidence frequencies between the 
acoustic field and the like mode pipe wall bending vibrations. 
We note, however, that by far most of the internal field's 
acoustic energy is propagated down the pipe. 

We also note that at the coincidence frequencies for the 
modes studied the pipe wall motion and thus the external 
radiation is controlled by the damping factor of this thick-
walled but realistic pipe material. The damping factor ranged 
from 0.04 to 0.2 for this low carbon steel 8.28 cm internal 
diameter pipe of 0.305 cm thickness. 

Several important assumptions which we made must be 
kept in mind when attempting to apply these results or 
techniques to situations which differ markedly from our 
conditions. 

1 We assumed that the internal pipe wall vibrations do not 
affect the internal acoustic field. The assumption is valid for 
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Fig. 2 Plot of damping factor versus frequency for low carbon steel 
pipe of radius 4.14 cm and 0.305 cm wall thickness 

metallic pipes and gaseous fluids and breaks down if liquids 
are used in either metallic or nonmetallic pipes as then our 
assumption of decoupled fields is no longer valid. Walter [11] 
proved this point and established limits. 

2 The pipe motion equations are based on small 
displacements and thin pipe wall theory. 

3 The material is purely elastic, homogeneous and 
isotropic. 

4 The acoustic source inside the pipe is assumed to be 
devoid of any marked peaks in its spectrum. 

5 The solution is dominated by the transmission at the 
coincidence frequencies. 

The work reported in this paper is a portion of a larger 
effort to develop a fundamentals based valve noise prediction 
technique. 
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