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Abstract

The Nested L-shaped method is used to solve two- and multi-stage linear stochastic
programs with recourse, which can have integer variables on the first stage. In this paper
we present and evaluate a cut consolidation technique and a dynamic sequencing protocol
to accelerate the solution process. Furthermore, we present a parallelized implementation
of the algorithm, which is developed within the COIN-OR framework. We show on a test
set of 48 two-stage and 42 multi-stage problems, that both of the developed techniques
lead to significant speed ups in computation time.

Keywords: Stochastic programming, Nested L-shaped method, Sequencing protocols,
Cut consolidation

1. Introduction

Many real world applications can be modeled as a multi-stage stochastic program
with recourse, e.g. in applications from supply chain planning, electricity and finance
(cf. Wallace & Ziemba, 2005). An algorithm to solve two-stage stochastic linear pro-
grams with discrete and finite distributions is the L-shaped method developed by Van
Slyke & Wets (1969) which is an adaption of Benders decomposition (cf. Benders, 1962)
to two-stage recourse problems. It can be used in a nested application to solve multi-
stage stochastic programs with recourse (cf. Birge, 1985). The algorithmic improvement
of the L-shaped method is highly relevant and ongoing research. Recent achievements
include a variant of the algorithm with aggregated cuts introduced by Trukhanov et al.
(2010) and the generation of tighter feasibility cuts (see Aranburu et al., 2011). Zverovich
et al. (2010) compare alternative variantes of the L-shaped method, namely, a regular-
ized version based on work of Ruszczyński (1986) and the level decomposition method
developed by Fábián & Szőke (2006). They find that regularized versions outperform
non-reguralized versions on many of their test models.

In this paper we propose further algorithmic techniques that can improve the perfor-
mance of the parallel nested L-shaped method and its variants. The Nested L-shaped
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algorithm can decide at every stage other then the first or the last in which direction
it should push information. Information is pushed up the tree by feasibility or optimal-
ity cuts to the ancestor problems. The solution to the current problem can be passed
down the tree to form new right hand sides for the successor problems. The algorithm
decides where to push the information according to a tree-traversing strategy, a so called
sequencing protocol. Several studies showed that the sequencing protocol itself has an
impact on the solution time (cf. Gassmann, 1990; Morton, 1996; Altenstedt, 2003). We
propose a new dynamic sequencing protocol that leads to faster solution times compared
with the well known sequencing protocols FastForwardFastBack and ε-FastBack.

Depending on the level of cut aggregation, a certain number of cuts is added to the
subproblems at every iteration of the algorithm. Especially for the multi-cut case (see
Birge & Louveaux, 1988) this can become prohibitive in both memory usage and solution
time. An approach to reduce the computational burden is the removal of previously added
cuts. Ruszczyński & Shapiro (2002) showed, that there is no easy way to keep the number
of cuts bounded. However, they also point out, that it is possible to delete inactive cuts,
when the objective value of the master problem strictly increases. We suggest a cut
removal strategy that not only removes inactive cuts, but retains an aggregated cut so
that not all information contained in the removed cuts is lost. Our results show that the
removal of old and inactive cuts can lead to shorter solution times on many problems.
Furthermore, we investigate the scenario aggregation technique recently employed by
Trukhanov et al. (2010) for the two-stage case for the multi-stage case. We evaluate
the mentioned techniques using our own parallel implementation of the nested L-shaped
method that is partly based upon and embedded into the COIN-OR project (see Lougee-
Heimer, 2003).

The remainder of the paper is organized as follows. Section 2 describes a basic vari-
ant of the Nested L-shaped method. Our new sequencing protocol and cut consolidation
techniques are presented in Section 3. The parallel implementation is explained in Sec-
tion 4. In Section 5 we evaluate the presented techniques and implementation based on
a computational study. We conclude with a brief summary of our main results and an
outlook on future research opportunities in Section 6.

2. Nested Benders decomposition

This paper is focussed on two- and multi-stage stochastic programs with recourse with
discrete and finite distributions. For a general introduction to stochastic programming
see Birge & Louveaux (1997) and Shapiro et al. (2009), for an overview of applications
and implemented solution algorithms see Wallace & Ziemba (2005) and Kall & Mayer
(2010), respectively. In order to fix our notation and as an introduction for the non-
expert we start with describing a basic version of the Nested Benders decomposition
algorithm.

We can formulate the multi-stage stochastic program with recourse with discrete and
finite distributions as follows:
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lit ≤ xit ≤ uit ,

ljt+1 ≤ xjt+1 ≤ ujt+1 , j ∈ d(i, t)

and QT−1(·) = 0, for t = 0 and i = 01. This is a recursive, node-based formulation,
where the subscripts t denote the stage and the superscripts i denote the node of the
scenario tree. We use the notion of ancestor a(i, t) ∈ V and descendants d(i, t) ⊆ V of
a node i ∈ V at stage t in the scenario tree to refer to the respective parent and child
nodes. The set of descendants of the nodes at the last stage is empty. xit ∈ Rnt is the
vector of decision variables, cit ∈ Rnt is the cost vector and hit ∈ Rmt is the right-hand
side vector, all for nodes i ∈ {0, . . . ,Kt − 1} at stage t. pit denotes the node probability.
The technology matrices T i

t ∈ Rmt,nt−1 of stage t belong to the decision variables of stage
t− 1, whereas the recourse matrices W i

t ∈ Rmt,nt belong to the decision variables of the
same stage.

The Nested Benders decomposition algorithm (see Dempster & Thompson, 1998;
Birge & Louveaux, 1997; Gassmann, 1990; Ruszczyński & Shapiro, 2002, for further
descriptions) constructs an outer linear approximation θit of the recourse function Qi

t(·)
in consecutive iterations via cutting planes at every node of the scenario tree. To obtain a
LP formulation of this approach the restriction θit ≥ Qt(x

i
t) is removed from the problem

(1) and the approximation term θit is added instead of Qt(·) to the objective function.
Subproblems at stage t do no longer rely explicitly on all later stage problems. The
cutting planes that bound the approximation variables are optimality cuts. Feasibility
cuts restrict the solution set to solutions that are feasible for all subproblems.

The subproblem formulation (1) is hence transformed to the following subproblem
approximation problem:

min citx
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where (7) are the optimality and (6) are the feasibility cuts. F i
t (it) contains all iterations

where optimality cuts were added to the current problem, up to the current iteration it.
The single linear approximation θit of the recourse function can be split into up to Ai

t

approximation terms θit,k , so called aggregates, that form a partition of the descendant
node set d(i, t):

Ai
t⋃
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t,l = ∅,∀l 6= k

1For t = 0, we drop T i0x
a(i,0)
−1 from the constraints as there is no prior solution to the first stage.
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Each partition Si
t,k contains distinct nodes from the descendant node set. The multi-cut

method (cf. Birge & Louveaux, 1988) is a special case, where the number of partitions is
equal to the number of descendant nodes. In this case each partition consist of exactly
one descendant node. If only one partition is used, we have the single-cut method. This
notation can thus be used to refer to the hybrid method introduced by Trukhanov et al.
(2010) as well as the single and multi-cut methods which are just two special cases of
the hybrid method.

If a subproblem is solved to optimality, it has a primal and dual optimal solution.
With dual feasible solutions (πj

t+1, ρ
j
t+1, σ

j
t+1, λ

j
t+1, µ

j
t+1) to all the descendants problems

of the current node, j ∈ d(i, t), we can compute an optimality cut Ei
t,k,sx

i
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where djt+1 denotes the vector of all feasibility cut right-hand-side values and ejt+1 the
vector of all optimality cut right-hand-side values, respectively, for problem j at stage
t+ 1. The dual values πj

t+1 correspond to the original rows of the problem, ρjt+1 to the

feasibility cuts and σj
t+1 to the optimality cuts. λjt+1 corresponds to the lower bounds of

the variables and µj
t+1 to the upper bounds of the variables. If a subproblem is infeasible,

and the dual is unbounded, a dual ray (πj
t+1, ρ

j
t+1, σ

j
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j
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j
t+1) exists for the problem

j ∈ d(i, t). Using this ray we can then compute a feasibility cut Di
t,rx

i
t ≥ dit,r with
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with Dj
t+1 and djt+1 defined as above. If the primal subproblem is unbounded, the overall

problem is unbounded.
With these definitions we can now formulate the subproblem with scenario aggrega-

tion P (i, t) for node i at stage t:
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If more than one descendant problem is infeasible at a given iteration, it is in principle
possible to generate more than one feasibility cut, e.g. one cut for every infeasible node.
We formally state the general Nested L-shaped method as follows:
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1. Set t = 0, i = 0,it = 0,lb = −∞,ub = ∞, dir = forward. Initialize all θ variables
with a coefficient of 0 in the corresponding objective function.

2. If |ub− lb| < εgap or |ub− lb|/
(
|lb|+ 1e−10

)
< εgap, stop.

3. Solve problem P (i, t).

• If infeasible and t = 0 stop, problem is infeasible.

• If infeasible and t > 0 store the dual ray πi
t, ρ

i
t, σ

i
t, λ

i
t, µ

i
t and compute a fea-

sibility cut (14) for problem P (a(i, t), t − 1). Set dir = backward and go to
step 7.

• If feasible and t = 0 set lb to the objective value of P (i, t).

• If feasible and t < T − 1, store the dual values πi
t, ρ

i
t, σ

i
t, λ

i
t, µ

i
t and the primal

values xit. If i < Kt− 1, set i = i+ 1 and go to step 3. If i = Kt− 1 set i = 0.

4. Call sequencing protocol to decide the direction.

5. For all nodes j ∈ d(i, t) and for all partitions k = 0, . . . , Aj
t,it

• Compute optimality cut coefficients Ej
t−1,k,it (9) and right hand side values

ejt−1,k,it (10) to form an optimality cut (15) for aggregate k and problem P(t-
1,j).

• Test if generated cut should be added to the problem. If this is the first
optimality cut for this aggregate, set the corresponding objective coefficient
to 1.

• If i < Kt − 1, set i = i+ 1 and go to step 5, else set i = 0.

6. If t = T − 1, compute temporary upper bound tempub by summing up pi
′

t′c
i′

t′x
i′

t′ for
t′ = 0, . . . , T − 1, i′ = 0, . . . ,Kt′ . If tempub < ub, set ub = tempub.

7. If dir = forward, set t = t+ 1, else set t = t− 1. Go to step 2

3. Dynamic sequencing and cut consolidation

3.1. A dynamic sequencing protocol

After all problems of a certain stage have been solved, a decision has to be made
whether to move back up the tree and thereby give information in the form of optimality
or feasibility cuts to the previous stage or to proceed to the next stage with the new
solution from the current stage as input which modifies the right-hand-side of the prob-
lems at that stage. Sequencing protocols formulate rules for how this decision is made.
Sequencing protocols are only needed for multi-stage problems, as there is no choice in
which direction to go for the two-stage case.

At the first stage of a multi-stage problem it is only possible to move to the next
stage and pass the current solution down the tree. At the last stage it is only possible to
solve all the subproblems and generate optimality and/or feasibility cuts for the previous
stage. When a subproblem was found to be infeasible at a stage, the algorithm moves
back to the first stage, i.e. the direction is backward. Three common strategies were
developed by Gassmann (1990). The first strategy is the Fast-Forward-Fast-Back (FFFB)
or Fastpass strategy that goes down the whole tree and back up to the root from there.
This is called a full sweep, consisting of a full forward and backward sweep. A forward
sweep solves all subproblems from stage 0 to stage T − 1. A backward sweep consists
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of adding cuts to all subproblems at stages T − 2 to 0, by solving problems from stage
T − 2 up to stage 1. This is repeated until the algorithm finishes, i.e. the gap between
upper and lower bound is small enough.

The Fast-Forward (FF) strategy tries to move forward or down the tree whenever
possible. It only goes up the tree when the current stage is solved to optimality with
respect to the current primal information, i.e. the gap between the lower and upper
bound at the current stage is less than a small tolerance εgap. The Fast-Back (FB)
strategy does the opposite, it tries to move back up the tree whenever possible. It only
moves down a further stage, if no new optimality cuts can be generated at the current
stage or the gap is below an εgap. It requires an initialization period because it needs an
initial approximation of the recourse function at every stage.

An evaluation conducted by Gassmann (1990) showed that out of the three strate-
gies, the FFFB strategy is the best. Morton (1996) comes to the same conclusion, adding
that an ε-Fast-Back strategy reached comparable performance. He introduced the no-
tions of absolute error and discrepancy, which we describe below. In the ε-Fast-Forward
strategy, the algorithm goes back up the tree, when the absolute error is smaller than
ε ·min (|LB|, |UB|). The ε-Fast-Back strategy goes further down the tree, when the dis-
crepancy is smaller than ε ·min (|LB|, |UB|) instead of a fixed εgap. The discrepancy for
stage t is defined as

Disc(t) =

Kt−1∑
i=0

pitcitxit +

Ai
t∑

l=1

θit,l

− Kt−1−1∑
j=0

Aj
t−1∑
l=1

θjt−1,l, (17)

which is the difference between the approximation of the recourse functions for stage t
plus the probability weighted sum of the objective functions at stage t and the approxi-
mation of the recourse functions at stage t+ 1. The absolute error for stage t is defined
as

AbsErr(t) =

T−1∑
j=t+1

Kj∑
i=0

pijc
i
jx

i
j −

Kt−1∑
i=0

Ai
t∑

l=1

θit,l, (18)

which is the difference between the probability weighted sum of objective functions of
all stages after stage t and the approximation of the recourse functions at stage t. To be
able to compute the absolute error for stage t, all stages t′ > t have to be solved. Hence,
it is only possible to compute the absolute error after a full forward sweep or during a
backward sweep, whereas the discrepancy can also be computed during a forward sweep.

Another simple strategy, the bouncing strategy introduced by Altenstedt (2003), is
to solve the problem up to stage t, t < T − 1, return to the first stage and then do a full
iteration. The stage t is also called the bouncing stage, as the algorithm changes direction
at that stage. The motivation for this protocol is the observation, that the algorithm
spends most of the time at later stages, in particular the last stage. This is mostly due
to the large number of scenarios at the last stage which correspond to subproblems that
have to be solved on this stage. The idea of the bouncing strategy is to perform partial
iterations to achieve better solutions to the later stage subproblems and thereby reduce
the overall number of major iterations. However, it is not clear which stage is the best
bouncing stage a priori.

Our dynamic strategy uses a bouncing stage too, but in a different manner. We
declare a stage critical to enforce a full sweep after the algorithm reached this stage.
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This is done to prevent a cycle to the first stage and back that does not improve the
solution much, but costs computation time. The strategy is dynamic because it declares
the critical stage after the first full sweep and because the threshold that is used to
decide the direction is adapted to the current gap of the algorithm. This is a major
advantage over existing strategies which have to be adjusted to specific model instances.
Our strategy can be summarized as follows:

1. Do a full sweep. Repeat until no new feasibility cuts have been generated.

2. Determine a critical stage ct.

3. Solve stage 0 problem, set t = 0.

4. Set t = t+ 1, go to stage t and solve problems at stage t.

5. If a problem is infeasible, do a backward sweep and go to step 3.

6. If Disc(t) is lower than current ForwardThreshold, go to step 7. Otherwise do a
backward sweep and go to step 3.

7. If t == ct, do a full sweep and go to step 3. Else go to step 4.

The critical stage is determined by the first sweep of the algorithm in which no problem
was found infeasible. The wall clock time the algorithm stays in each stage is measured.
We calculate the wall clock time of all stages and the cumulated wall clock time for every
stage. If the cumulated wall clock time for stage k divided by the overall wall clock time
is greater than a predefined value, e.g. 0.1, the stage k is declared the critical stage.
This critical stage heuristic is used to prevent spending time generating cuts for the first
stages without getting new dual information from the last stage.

We do not use an absolute value as ForwardThreshold, but a relative value com-
pared to the absolute value of the current gap between lower and upper bound. Thus the
threshold adjusts along with the absolute gap. We propose to set ForwardThreshold =
10log10(UB−LB)−1, which is essentially equal to the number of digits of the current abso-
lute gap. In contrast to this setting the ε-FastBack strategy uses the minimum of |LB|
and |UB| times ε as a threshold. This works fine, until either the lower or upper bound
has a value of zero. If this is the case, Disc(t) is usually greater than the threshold,
namely zero. The algorithm concludes that it should generate new optimality cuts in
a backward sweep to improve the discrepancy. But the threshold remains at zero, so
the algorithm does not terminate. We observed this behavior for some of our test set
problems.

3.2. Cut consolidation

In each iteration of the algorithm where all subproblems are feasible new optimality
cuts are added to the corresponding master problem. In the multi-stage case, this leads
to a growing number of cuts in the respective master problems. In the regularized
decomposition method (cf. Ruszczyński, 1986) the algorithm keeps only a limited number
of cuts, instead of adding new and keeping all old cuts in the problem. It would be
preferable with respect to computational efficiency and memory requirements to keep
only the cuts in the problem, that are needed to solve the overall problem to optimality.
Unfortunately, as the nested Benders algorithm proceeds in generating new cutting planes
to approximate the recourse function, there is no reliable rule to determine which cut
can be safely removed (cf. Ruszczyński, 1997). The simple deletion of old inactive cuts
can therefore lead to the recomputation of those cuts in later iterations (cf. Ruszczyński
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& Shapiro, 2002). Trukhanov et al. (2010) note that the removal of cuts only lead to a
reduced memory usage, but had no other effect, e.g., on runtime. We propose a method
that reduces the number of cuts significantly, but keeps most of the information that was
contained in these cuts. In the case of pure multi-cut, we added the following cuts in
some previous iteration s to a node i at stage t:

Ei
t,k,sx

i
t + θit,k ≥ eit,k,s, k = 1, . . . , Ai

t

If all these cuts become redundant, i.e. their corresponding dual values are zero, we can
generate a new single cut out of these multiple cuts by just summing up the existing cuts

Ai
t∑

k=1

Ei
t,k,sx

i
t + θit,k ≥

Ai
t∑

k=1

et,k,s.

The only difference compared to a common single cut is the sum of aggregate variables∑Ai
t

k=1 θ
i
t,k instead of a single aggregate variable θit. We then replace all the cuts in

iteration s with the newly generated single cut. Thereby the number of redundant cuts
that needs to be stored in the master problem is reduced from as many as Ai

t to one for
iteration s. We call this technique cut consolidation. The trade-off between information
loss due to aggregation and memory and computational gains due to smaller problems
is evaluated in Section 5.

The decision when to aggregates cuts of one iteration into a single cut is called a cut
consolidation scheme. Our scheme is controlled via two threshold values that guide the
consolidation. The first threshold value ConsecInactive specifies the number of iterations
a cut needs to be consecutively inactive, before it is marked as removable. The second
threshold value RelativeActive specifies how many cuts must be marked as removable
before any cuts are consolidated. In our implementation, we set ConsecInactive = 5
and RelativeActive = 0.95.

If the scheme is too aggressive towards reducing the number of cuts, this can lead to
longer overall solution times as cuts are consolidated that the algorithm needs to bound
some aggregate and thus recomputes later on. The following pseudo-code summarizes
our cut consolidation scheme, which is performed at each iteration it while solving a
node i at stage t:

1. Set num inacs = 0 for all s ∈ F(it).

2. For all non-aggregated optimality cuts k and all (previous) iterations s ∈ F(it):

(a) If the current dual value of cut k is zero, set ick,s = ick,s + 1. Otherwise, set
ick,s = 0.

(b) If ick,s > ConsecInactive set num inacs = num inacs + 1.

3. For all iterations s ∈ F(it):
If num inacs > RelativeActive · Ai

t, aggregate all inactive cuts to a single cut.
Remove old cuts from problem, add new cut and resolve the problem. Store warm
start.

In the description above, the variables ick,s count for how many consecutive iterations
a cut k generated in iteration s is inactive (step 2(a)). These variables have to be
initialized with zero before calling the scheme for the first time. If a counter ick,s exceeds
the threshold ConsecInactive the corresponding cut is marked as removable and the
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counter num inacs, which counts the number of removable cuts which were generated
in a certain iteration s, is increased (step 2(b)). If the number of removable cuts, which
were generated in an interation s exceeds the relative treshold RelativeActive ·Ai

t all the
removable cuts generated in iteration s are consolidated (step 3).

3.3. A note on adaptive aggregation

Trukhanov et al. (2010) show that for their sample of problems it is preferable to
choose an aggregation between pure single- and multi-cut. They note, that “a good level
of cut aggregation is not known a priori”. For this reason they devise the adaptive multi
aggregation algorithm that decreases the number of aggregates during the runtime of the
algorithm. However, in our view the description of the aggregation scheme “Redundancy
Threshold” in their paper contains an inconsistency, which would let the algorithm to
be equivalent to the multi-cut method. This is due to the following observation: every
aggregate is a free variable with an objective function coefficient of one in the master
problem. Minimization of the master problem thus strives to minimize the objective
function and the value of this variable. Optimality cuts that are added for an aggregate
bound the aggregate variable, so that the problem as a whole is not unbounded. This is
noted in their algorithm, as aggregates without optimality cuts are ignored in the com-
putation. The scheme “Redundancy Threshold” explicitly requires that all optimality
cuts corresponding to an aggregate are redundant, i.e., their dual values are zero. But
if all cuts were redundant, the aggregate would not be bounded and thus the problem
would be unbounded. As the problem is supposed to have an optimal solution or to
be infeasible, this situation can never occur. Therefore, no aggregates would be aggre-
gated and thus the algorithm would behave like the multi-cut method. Furthermore,
the scheme still requires a fixed value for the maximal number of scenarios that can get
aggregated into a single aggregate. It follows that this value is a bound on the minimal
number of aggregates the algorithm should use. For a problem with 1000 scenarios, for
instance, a value of 10 is equivalent to at least 100 aggregates, as maximal 10 scenarios
can be aggregated into one aggregate. This value has to be determined a priori, which is
in principle as difficult as to find a good value for the number of aggregates in the static
method. In their computational study, the static approach is superior compared to the
adaptive approach for all the investigated problems. Also, Trukhanov et al. (2010) state
that they tried several further adaptive schemes which turned out to be inferior to the
static version. Due to these considerations we did not pursue further strategies for an
adaptive algorithm.

4. Implementation

Our algorithm is implemented in C++ and it is embedded into the COIN-OR project
(Lougee-Heimer, 2003), using the Stochastic Modeling Interface (SMI) and the Open-
SolverInterface (OSI) in particular. SMI is used to read in problems in the SMPS format
(Birge et al., 1987) and to store the scenario tree in memory as well as to query the stored
data. OSI provides access to different linear and mixed-integer programming solvers via
a common interface. In the remainder of this chapter we describe further design decisions
and parameter settings of our implementation.
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4.1. Tolerances

A practical issue that arises during implementation is numerical stability of the al-
gorithm. We receive computational results from a third party LP solver that are not
necessarily exact. To use the results, tolerances are used in the algorithm and the em-
ployed LP solvers. We use a zero tolerance of 10−8, so all values that are smaller than
10−8 are treated as zero. This applies to all the values that the LP solver returns such
as primal and dual solutions. In addition we use a relative gap tolerance εgap of 10−6

between upper and lower bound to decide if we can stop the algorithm. If no tolerances
are used, the algorithm does not converge well on practical model instances.

4.2. Parallelization of the algorithm

The Nested L-shaped method lends itself to parallelization, as all the subproblems
that have to be solved in a stage are independent of one another and can thus be solved in
parallel. Several different parallelization approaches have been proposed in the research
literature for different network and computing architectures. Distributed computing
techniques were used by (Birge et al., 1996; Dempster & Consigli, 1998; Moritsch et al.,
2001). A subtree-wise parallelization, i.e. different nodes in the network process different
subtrees, was developed by Birge et al. (1996). According to the authors, this approach
works well, but requires “careful attention to processor load balancing”. Another option
is to parallelize the task of solving subproblems and let a master node compute the cuts
(cf. Dempster & Thompson, 1999). An asynchronous protocol is devised by (Moritsch
et al., 2001). Vladimirou & Zenios (1999) give an overview over parallel algorithms to
solve stochastic programs other than Nested Benders decomposition. If a distributed
computing environment is used, the communication overhead has to be kept in mind for
the design of the algorithm. Our algorithm is suited for single workstation computers
with several processor cores and avoids the communication overhead by the use of shared
memory. Our parallel implementation of the Nested Benders algorithm can be described
as follows:

1. Initialization. Set cs = 0, dir = forward, lb = −∞, ub =∞. Set up thread-pool.

2. If absolute or relative gap between lb and ub is smaller than εgap, stop.

3. If cs = 0, set dir = forward. If cs = T − 1, set dir = backward

4. Iterate over all the nodes i of the current stage cs and add the task HandleSubproblem(i)

to the thread-pool. Wait until all tasks are finished.

5. Call sequencing protocol to determine direction dir.

6. If no subproblem was infeasible and dir == backward, iterate over all the nodes i of
the stage cs−1 and add the task AggregateOptimalityCut(i) to the thread-pool.
Wait until all tasks are finished.

7. If cs = 0 and no subproblem was infeasible, update lb. If cs = T − 1 and no
subproblem was infeasible, update ub, if possible.

8. If a subproblem was infeasible and cs = 0 stop, problem is infeasible. If dir =
forward set cs = cs+ 1, else set cs = cs− 1. Go to step 1.

The lower bound lb is the objective function value of the first stage problem c0x0 +∑A0
0

k=0 θ
0
0,k. The upper bound ub is the sum over the weighted objective function values

of all nodes
∑T−1

t=0

∑Kt−1
i=0 pitc

i
tx

i
t, excluding the approximation terms. We use both an
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absolute gap ub− lb and a relative gap |ub− lb|/(|ub|+ 1 · 10−10) as a stopping criterion.
In the following we give a description of the subroutines used in the above pseudo-code.

The subroutine HandleSubproblem(i) consists of the following steps:

1. Build the model from stored data or reuse existing LP solver representation if
possible.

2. Load warm start information into solver, if available.

3. Solve the subproblem.

4. If the subproblem is feasible, store warm start and necessary data and compute
optimality cut coefficients.

5. If the subproblem is infeasible, and no feasibility cut was generated so far, generate
a feasibility cut (14).

6. If dir = forward call CutConsolidation(i)

The subroutine AggregateOptimalityCut(i) consists of the following steps:

1. For each partition of the descendants of node i

(a) Initialize optimality cut coefficients with zero.
(b) For each partition member

i. Add the already computed optimality cut coefficients.

(c) Add the computed optimality cut (15) to the node, if it is not redundant.

The subroutine CutConsolidation(v) consists of the following steps:

1. Gather data necessary for aggregation scheme.

2. Let CutConsolidation scheme decide which cuts to consolidate.

3. Consolidate cuts and remove old cuts from the problem while adding the newly
aggregated ones.

4. Resolve the problem and store optimal basis.

4.3. Warm start strategies

The algorithm benefits from the capabilities of modern solvers to start the LP solution
method from a given basis. Two possibilities exist. Either the optimal basis from the
previous solve of the subproblem can be used as a warm start for the current solve. Or
the optimal basis of another subproblem already solved within this iteration can be used
as a warm start. Our experiments show that the superior warm start strategy is problem
dependent. The default is to store a warm start for every subproblem.

4.4. LP solver strategies

State-of-the art LP solvers offer three algorithmic choices for the solution of the
LP subproblems, namely the primal simplex algorithm, the dual simplex algorithm and
an interior point method. The advantage of the simplex methods is the warm start
capability, i.e. restarting the simplex algorithm from a previously stored basis. When
cuts are added to a problem a previously optimal basis loses primal feasibility but remains
dual feasible. Therefore only a small number of pivots may be needed by the dual simplex
algorithm to reach a new optimal solution, compared with a solution process without a
warm start. An interior point method usually solves problems faster than the simplex
methods, but it has no warm-start capability and delivers non-basic solutions. Due
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to the iterative nature of the Nested Benders algorithm that changes subproblems in
each iteration by addition of new cuts or new right hand side values, the warm-start
capability of the simplex solvers is of paramount importance. Due to this capability
we did not explore other possibilities like bunching procedures which were implemented
by Gassmann (1990) for example. We decided to use the dual simplex method, due
to the mentioned advantages. A technical point in addition: the dual values that are
needed for the cut generation depend on the algorithmic choice and on the use of a warm
start basis, for problems with multiple optimal (and/or degenerate) dual solutions. Each
method may reach different optimal dual solutions, so different cuts can be generated
depending on the LP solution method, which then leads to different numbers of iterations
of the algorithm.

5. Computational results

5.1. Setting and test models

In order to evaluate our algorithm, we assembled a test set of 48 two-stage and 42
multi-stage problems. An overview of the problems with their main characteristics is
given in the appendix in Tables A.2 and A.3, respectively. We included problems from
the following test sets (excluding all problems that solve in under 0.2 seconds by the
deterministic equivalent solver to prevent outliers):

• the POSTS test set (Holmes, 1995) containing two- and multi-stage problems,

• the WATSON test set (Consigli & Dempster, 1998) containing multi-stage stochas-
tic linear problems with up to 2688 scenarios and ten stages,

• the Slptestset collection (Ariyawansa & Felt, 2004),

• some random problems using the generator genslp (Kall & Mayer, 1998) and

• an integrated strategic production planning and financial hedging problem (Kober-
stein et al., 2012).

The problems from the Slptestset collection were also used in the solver study by Zverovich
et al. (2010). The problems 20-term, gbd, LandS, storm and ssn are two-stage problems
with a huge number of scenarios, up to 6 · 1081. Linderoth et al. (2006)2 solved these
problems with a Sample Average Approximation (SAA) method on a cluster. Trukhanov
et al. (2010) sampled versions of the 20-term, ssn and storm problems with 1000, 2000
and 3000 scenarios each. We did the same for the sake of comparison. In addition we
were able to solve gbd and LandS directly, as they only contain up to 1000000 scenar-
ios. The random problems are two-stage stochastic linear programs with up to 10000
scenarios and a relatively dense matrix with up to 10% density. The problems taken
from Koberstein et al. (2012) consider location, product allocation, capacity and finan-
cial hedging decisions under exchange rate uncertainty. The first-stage contains binary
variables, all variables at later stages are continuous.

2http://pages.cs.wisc.edu/~swright/stochastic/sampling/
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We conducted our test runs on an Intel i5-750 processor with four cores and 12 GB
RAM, running on Windows 7 64-bit. If not mentioned otherwise, the algorithm uses
all of the four cores. Cplex 12.3 64-bit was employed to solve the linear problems and
deterministic equivalent problems. The interior point method (IPM) uses all four threads,
whereas the dual simplex can only use one thread, so we chose IPM as the solver for the
deterministic equivalent, without crossover. A time limit of three hours was imposed on
all solution runs. We use one solver instance for every thread and an additional instance
for the first stage problem.

We present wall clock solution times for different problems. Due to the possibility of
setting several parameters, we define a base case algorithm (BC ), which uses all cores
available, single-cut aggregation, FFFB sequencing protocol, and no cut consolidation.
The dual simplex method is used to solve all the subproblems. It uses the warm start
capability and stores an optimal basis at every node. If no warm start basis is available
for a problem, e.g. in the first iteration, the algorithm uses an optimal basis of another
subproblem, if available. The remainder of this section is devided into two parts, the
first is devoted to cut consolidation, the second to sequencing protocols.

5.2. Cut consolidation

In this section, we evaluate the cut consolidation strategy described in Section 3.2. In
particular, we investigate its interaction with the hybrid algorithm devised by Trukhanov
et al. (2010). For this purpose, we compare solution times of five different variants of our
implementation of the Benders decomposition algorithm, namely, the base-case multi-
cut algorithm (Multi), the base-case multi-cut algorithm with cut consolidation (Multi-
CC ), the base-case single-cut algorithm (Single), the base-case algorithm with number
of aggregates set to 10% of the number of childs of the root node (Hybrid) and the same
but with cut consolidation (Hybrid-CC ). As an additional information, we also include
the deterministic equivalent solved with Cplex IPM (DEQ). All algorithms were run in
parallel mode with four cores.

The results are visualized in Figure 1 as a performance profile3. It clearly shows that
cut consolidation leads to a significant improvement in performance. Furthermore, the
two hybrid methods outperform the single and multi-cut version of the algorithms, which
confirms the results of Trukhanov et al. (2010). Among the hybrid variants the one with
cut consolidation (Hybrid-CC ) strictly dominates all other methods, i.e., it is able to solve
the biggest fraction problems within a certain multiple τ of the best possible solution
time for all meaningful τ . Surprisingly, on our testset, the single cut method (Single)
outperforms both variants of the multi-cut method. We think, that this is in part due to
the parallelization of the algorithm. The single cut method performs the greatest number
of iterations compared to the other algorithms. Therefore more problems in the second

3Performance profiles were introduced by Dolan & Moré (2002) and allow for an easy visual compar-
ison of different solution methods with regard to a given set of test problems. Method A outperforms
method B if the A’s graph is strictly above and left of B’s graph. Formally, a performance profile is de-
fined as the distribution function of a performance metric. We measured the wall clock solution time tp,m
for every method m ∈ M and problem p ∈ P . The minimal solution time tminp = min{tp,m : m ∈ M}
is used as a baseline for comparing the different methods via a performance ratio rp,m =

tp,m
tminp

. The

distribution function for a method is then defined as ρm(τ) =
|{p∈P |rp,m≤τ}|

|P | . Thus ρm(τ) denotes the

percentage of problems method m can solve within a factor τ of the fastest method for these problems.
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Figure 1: Performance Profile of the methods tested on our test set. Multi is the base-case multi-cut
algorithm, Multi-CC is the base-case multi-cut algorithm with Cut Consolidation. Single is the base-
case single-cut algorithm. Hybrid is the base-case algorithm with number of aggregates set to 10% of
the number of childs of the root node. Hybrid-CC is the same but with Cut Consolidation. DEQ is
the deterministic equivalent solved with Cplex IPM. All algorithms were run in parallel mode with four
cores.

stage have to be solved, repeatedly. The speed-up of the second stage and cut generation
is nearly linear. The single-cut method can therefore benefit more from parallelization
than the multi-cut method. A detailed tabular presentation of the results is given in the
appendix in Table A.4.

In order to investigate the interaction between cut aggregation and consolidation,
we conducted further test runs with different fixed number of aggregates on a selected
subset of the test problems. Detailed results are given in the appendix in Table A.5.
Table A.6 displays results for the problem instance rand2 10000, where the effect of the
number of aggregates is pronounced, due to the large number of scenarios. BC denotes
the base case algorithm without and CC the version with cut consolidation. Again, it
can be seen, that cut consolidation reduces the running times considerably in most cases.
Furthermore, it can be observed that cut consolidation is particularly useful for many
aggregates, but is already superior for aggregate sizes starting with 50. If a problem is
solved with a lower number of aggregates, cuts may get aggregated that the algorithm
would have used otherwise. The results show that the usage of cut consolidation eases the
ex ante choice of the “right” number of aggregates. The running times for the problems
with cut consolidation do not vary as much compared to the base case algorithm. Any
choice between 100 and 500 for the problem 20 term 1000 (cf. Table A.5) for example
leads to similar running times, whereas the same does not hold for the BC -algorithm.

Figure 2 further details the results of the CC -algorithm from Table A.6 in the ap-
pendix. It can be observed that a higher number of aggregates leads to fewer iterations,
but not in general to a decrease in overall solution time. The time that is spent in the
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Figure 2: Computational results for rand2 10000 problem with different number of aggregates without
and with CutConsolidation. The trade-off in terms of absolute time spent in solving first- and second-
stage problems can be seen via the bars.

first stage master problem increases with the number of aggregates as it becomes harder
to solve. The time that is spent in the second stage subproblems decreases with the num-
ber of aggregates, mostly because the number of iterations decreases. The parallelization
effect mentioned above is also present in this case.

We investigate the impact of the threshold variable ConsecInactive for the rand2 10000
problem in Figure 3. The efficacy of cut consolidation depends upon the removal of cuts
that are of no more use to the algorithm. If cuts are removed late, the first-stage problem
grows bigger and is harder to solve. If cuts are removed early, the algorithm needs more
iterations overall. Cut consolidation is influenced by the number of aggregates the algo-
rithm uses, as can be seen in Figure 3. For a low number of aggregates, cut consolidation
has an adverse effect on the running time, that is more pronounced when the threshold
is small. On the other hand, for a higher number of aggregates, a smaller threshold is
advantageous.

5.3. Dynamic sequencing

In this section, we compare the sequencing strategy developed in Section 3.1 to other
existing protocols. Most multi-stage problems in our test set only have up to sixteen child
nodes, one problem has forty child nodes. As in preliminary tests, the use of scenario
aggregation did not influence the solution time much on our test set, we set the number
of aggregates to only 10% of the average number of child nodes in the scenario tree (but
at least to 1).

Figure 4 shows the performance profile with regards to the 42 multi-stage problems
in our test set. The dynamic protocol significantly outperforms all other protocols. To
be more specific, it is the fastest protocol on half of the problems and it is able to solve
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all problems within a τ of three. Overall the FastForwardFastBack protocol is the second
best protocol, but in the worst case it is twelve time slower than the best protocal (τ=12).
ε−FF is also able to solve all problems, but is slower than the other two protocols. FB
and ε−FB are both unable to solve the financial hedging problems (Koberstein et al.,
2012) in our test suite. The ε-variants are superior to their non-epsilon variants. The
DEQ solution times show, that the usage of a specialized solution method for multi-stage
stochastic programs is preferable to a general purpose solver. Detailed results on all 42
problems are listed in the appendix in Table A.7.

In Figure 5 we analyse the impact of the dynamic sequencing protocoll for different
numbers of scenarios on the strategic network design problems with integrated financial
hedging (Koberstein et al., 2012). In this figure, we present solution times only for the
single-cut method, as it was the best aggregate choice for these problems. The use of the
dynamic sequencing protocol (Dynamic) leads to a significant reduction in solution time
for all problem instances, except for the smallest problem with 1024 scenarios and five
stages compared with the FFFB method. The ε−FB and FB protocol can not be applied
to this problem, as the upper bound becomes zero during the solution process which leads
to a not-ending algorithm, see Section 3 for a further discussion. With growing number
of scenarios, the predominance of the dynamic protocol increases considerably.

5.4. Overall assessment

We compared our algorithm against the deterministic equivalent problem, where the
root node is solved with the Cplex barrier method. The dual simplex is not competitive
on our test set, as it is not parallelized and can thus not take advantage of the four cores.
Selected results are presented in Table 1. Only the instances of one problem class, the
20 term problems, are solved faster with Cplex barrier than with the Parallel Nested
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Table 1: Wall clock solution times for the deterministic equivalent solved with Cplex barrier (using all
cores) and the best solution time for parallel Nested Benders (PNB) with dynamic sequencing protocol,
problem dependent number of scenario aggregates and Cut Consolidation.

Problem DEQ (s) Best PNB (s) PNB/DEQ (%)

storm-1000 26.35 4.51 17
storm-2000 64.08 9.58 15
storm-3000 135.77 14.16 10

ssn-1000 33.15 12.25 37
ssn-2000 83.86 28.11 34
ssn-3000 135.68 41.44 31

20 term-1000 11.53 62.25 542
20 term-2000 23.61 128.77 545
20 term-3000 40.30 191.11 474

SCDP-1024 3.49 4.03 115
SCDP-4096 34.75 4.44 13

SCDP-16384 398.36 11.22 3
SCDP-65536 5335.34 34.51 1
SCDP-64000 578.97 9.28 2
pltexpA5 16 752.24 8.87 1
rand2 10000 648.80 130.35 20

Benders (PNB) with the Dynamic sequencing protocol and Cut Consolidation enabled.
The most significant advantage achieves PNB when solving the mixed-binary first stage
SCDP problems. These results confirm that the use of specialized solution methods for
stochastic linear programs with recourse is justified for two-stage problems (Zverovich
et al., 2010) and for multi-stage problems as opposed to the use of the deterministic
equivalent. This holds true especially for problems with a huge number of scenarios that
can not be solved via the deterministic equivalent because of memory constraints.

6. Conclusions and further work

In this paper we presented and evaluated a cut consolidation technique and a dynamic
sequencing protocol to speed up the solution of two- and multi-stage stochastic program-
ming problems via solution algorithms based on Benders’ decomposition. We showed on
a test set of 47 two-stage and 42 multi-stage problems, that both of these techniques lead
to significant speed ups in computation time. Contrary to what the literature suggested
(Birge & Louveaux, 1997), FastForwardFastBack is not the fastest protocol. The removal
of optimality cuts from the problem makes the right choice of an aggregation level less
critical. It also speeds up the solution process due to smaller subproblems, contrary to
what was previously observed (Trukhanov et al., 2010). In addition it reduces memory
requirements. The acceleration techniques presented here can also be useful for sampling
methods such as SAA (Kleywegt et al., 2002), as they involve the solution of multi-stage
stochastic programs. The effect of cut aggregation on other methods that are based upon
Benders decomposition, e.g. regularized decomposition (Ruszczyński, 1986), trust region
(Linderoth & Wright, 2003) or level decomposition (Fábián & Szőke, 2006), should also
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be investigated in the future. It is not yet clear how to choose an ideal number of aggre-
gates for a specific problem a priori. Also the partitioning of the descendant nodes into
aggregates can be guided via more sophisticated methods than the static partitioning we
used.

Appendix A.

Table A.2: Test set: two-stage problems

Cols Rows Cols Rows NZ
Instanz Scenarios Cols Rows 2nd st. 2nd st. DEQ DEQ DEQ

4node-256 4 256 52 14 186 74 47,668 18,958 120,063
4node-512 4 512 52 14 186 74 95,284 37,902 239,871

4node-1024 4 1,024 52 14 186 74 190,516 75,790 479,487
4node-2048 4 2,048 52 14 186 74 380,980 151,566 958,719
4node-4096 4 4,096 52 14 186 74 761,908 303,118 1,917,183
4node-8192 4 8,192 52 14 186 74 1,523,764 606,222 3,834,111

4node-16384 4 16,384 52 14 186 74 3,047,476 1,212,430 7,667,967
4node-32768 4 32,768 52 14 186 74 6,094,900 2,424,846 15,335,679

env-1200 4 1,200 49 48 49 48 58,849 57,648 172,932
env-1875 4 1,875 49 48 49 48 91,924 90,048 270,132
env-3780 4 3,780 49 48 49 48 185,269 181,488 544,452
env-5292 4 5,292 49 48 49 48 259,357 254,064 762,180
env-loose 4 5 49 48 49 48 294 288 852
env-lrge 4 8,232 49 48 49 48 403,417 395,184 1,185,540

env-xlrge 4 32,928 49 48 49 48 1,613,521 1,580,592 4,741,764
phone 4 32,768 8 1 85 23 2,785,288 753,665 9,863,176

phone-int 4 32,768 8 1 85 23 2,785,288 753,665 9,863,176
stormG2 27 5 27 121 185 1,259 528 34,114 14,441 90,903

stormG2 125 5 125 121 185 1,259 528 157,496 66,185 418,321
stormG2 1000 5 1,000 121 185 1,259 528 1,259,121 528,185 3,341,696

20term-1000 6 1,000 63 3 764 124 764,063 124,003 4,488,063
20term-2000 6 2,000 63 3 764 124 1,528,063 248,003 8,976,063
20term-3000 6 3,000 63 3 764 124 2,292,063 372,003 13,464,063

SSN-1000 6 1,000 89 1 706 175 706,089 175,001 2,373,089
SSN-2000 6 2,000 89 1 706 175 1,412,089 350,001 4,746,089
SSN-3000 6 3,000 89 1 706 175 2,118,089 525,001 7,119,089

storm-1000 6 1,000 121 185 1,259 528 1,259,121 528,185 3,341,696
storm-2000 6 2,000 121 185 1,259 528 2,518,121 1,056,185 6,682,696

4Ariyawansa & Felt (2004)
5Holmes (1995)
6Linderoth et al. (2006)
7Kall & Mayer (1998)
8Koberstein et al. (2011)
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Table A.2: (continued)

Cols Rows Cols Rows NZ
Problem Scenarios Cols Rows 2nd st. 2nd st. DEQ DEQ DEQ

storm-3000 6 3,000 121 185 1,259 528 3,777,121 1,584,185 10,023,696
rand0 2000 7 2,000 100 50 50 25 100,100 50,050 754,501
rand0 4000 7 4,000 100 50 50 25 200,100 100,050 1,508,501
rand0 6000 7 6,000 100 50 50 25 300,100 150,050 2,262,501
rand0 8000 7 8,000 100 50 50 25 400,100 200,050 3,016,501

rand0 10000 7 10,000 100 50 50 25 500,100 250,050 3,770,501
rand1 2000 7 2,000 200 100 100 50 200,200 100,100 3,006,001
rand1 4000 7 4,000 200 100 100 50 400,200 200,100 6,010,001
rand1 6000 7 6,000 200 100 100 50 600,200 300,100 9,014,001
rand1 8000 7 8,000 200 100 100 50 800,200 400,100 12,018,001

rand1 10000 7 10,000 200 100 100 50 1,000,200 500,100 15,022,001
rand2 2000 7 2,000 300 150 150 75 300,300 150,150 6,758,501
rand2 4000 7 4,000 300 150 150 75 600,300 300,150 13,512,501
rand2 6000 7 6,000 300 150 150 75 900,300 450,150 20,266,501
saphir 1000 8 1,000 53 32 3,924 8,678 3,924,053 8,678,032 22,733,103
saphir 500 8 500 53 32 3,924 8,678 1,962,053 4,339,032 11,366,603
saphir 100 8 100 53 32 3,924 8,678 392,453 867,832 2,273,403
saphir 50 8 50 53 32 3,924 8,678 196,253 433,932 1,136,753

Table A.3: Test set: multi-stage problems. †denotes instances
where the scenario tree is not symmetric.

Scen Bin/
Problem St Scen St 1st St Cols Rows Cols DEQ Rows DEQ NZ DEQ

sgpf3y5 9 5 625 3 0 87 38 39,867 30,458 103,090
sgpf3y6 9 5 3,125 4 0 87 38 199,242 152,333 515,590
sgpf3y7 9 5 15,625 5 0 87 38 996,117 761,708 2,578,090
sgpf5y5 9 5 625 5 0 139 62 61,759 49,202 165,570
sgpf5y6 9 5 3,125 6 0 139 62 308,634 246,077 828,070
sgpf5y7 9 5 15,625 7 0 139 62 1,543,009 1,230,452 4,140,570

pltexpA3 16 10 16 256 3 0 188 62 74,172 28,350 150,801
pltexpA4 6 10 6 216 4 0 188 62 70,364 26,894 143,059

pltexpA4 16 10 16 4,096 4 0 188 62 1,188,284 454,334 2,415,889
pltexpA5 6 10 6 1,296 5 0 188 62 422,876 161,678 859,747

9Ariyawansa & Felt (2004)
10Holmes (1995)
11Consigli & Dempster (1998)
12Koberstein et al. (2012)
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Table A.3: (continued)

Scen Bin/
Problem St Scen St 1st St Cols Rows Cols DEQ Rows DEQ NZ DEQ

pltexpA5 16 10 16 65,536 5 0 188 62 19,014,076 7,270,078 38,657,297
pltexpA6 6 10 6 7,776 6 0 188 62 2,537,948 970,382 5,159,875
pltexpA7 6 10 6 279,936 7 0 188 62 15,228,380 5,822,606 30,960,643
SCDP-1024 12 4 1,024 6 6 95 49 55,939 41,397 248,801
SCDP-4096 12 4 4,096 7 6 95 49 223,811 165,621 1,000,929

SCDP-16384 12 4 16,384 8 6 95 49 895,299 662,517 4,009,441
SCDP-65536 12 4 65,536 9 6 95 49 3,581,251 2,650,101 16,043,489
SCDP-64000 12 40 64,000 4 6 83 45 2,448,923 1,910,325 10,574,919

WAT C 10 64 11 † 64 10 0 15 11 28,097 15,101 72,648
WAT C 10 128 11 † 128 10 0 15 11 49,153 26,237 128,648
WAT C 10 256 11 † 256 10 0 15 11 82,177 43,517 218,888
WAT C 10 512 11 † 512 10 0 15 11 128,001 67,069 350,728
WAT C 10 768 11 † 768 10 0 15 11 191,994 100,598 526,078

WAT C 10 1024 11 † 1,024 10 0 15 11 255,987 134,127 701,428
WAT C 10 1152 11 † 1,152 10 0 15 11 287,949 150,869 789,028
WAT C 10 1536 11 † 1,536 10 0 15 11 383,927 201,155 1,052,028
WAT C 10 1920 11 † 1,920 10 0 15 11 479,905 251,441 1,315,028
WAT C 10 2304 11 † 2,304 10 0 15 11 575,883 301,727 1,578,028
WAT C 10 2688 11 † 2,688 10 0 15 11 671,861 352,013 1,841,028

WAT I 10 64 11 † 64 10 0 15 11 28,097 15,101 72,648
WAT I 10 128 11 † 128 10 0 15 11 49,153 26,237 128,648
WAT I 10 256 11 † 256 10 0 15 11 82,177 43,517 218,888
WAT I 10 512 11 † 512 10 0 15 11 128,001 67,069 350,728
WAT I 10 768 11 † 768 10 0 15 11 191,994 100,598 526,078

WAT I 10 1024 11 † 1,024 10 0 15 11 255,987 134,127 701,428
WAT I 10 1152 11 † 1,152 10 0 15 11 287,949 150,869 789,028
WAT I 10 1536 11 † 1,536 10 0 15 11 383,927 201,155 1,052,028
WAT I 10 1920 11 † 1,920 10 0 15 11 479,905 251,441 1,315,028

fxm3 6 10 6 36 3 0 114 92 9,492 6,200 54,589
fxm3 16 10 16 256 3 0 114 92 64,162 41,340 370,839
fxm4 6 10 6 216 4 0 114 92 30,732 22,400 248,989

fxm4 16 10 16 4,096 4 0 114 92 517,282 386,940 4,518,039

Table A.4: Evaluation of cut consolidation on two-stage problems.

Problem Multi Multi-CC Single Hybrid Hybrid-CC DEQ

4node-256 0.91 0.75 1.37 0.60 0.56 0.70
4node-512 1.41 1.25 2.68 1.48 1.23 1.51

4node-1024 4.84 2.85 6.61 1.93 3.09 3.39
4node-2048 9.98 6.94 15.02 4.80 5.36 8.08
4node-4096 32.29 19.02 33.07 6.04 6.16 18.97
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Table A.4: (continued)

Problem Multi Multi-CC Single Hybrid Hybrid-CC DEQ

4node-8192 45.70 41.70 75.05 12.15 11.85 35.58
4node-16384 731.92 294.63 162.85 23.52 21.48 68.47
4node-32768 4244.80 2071.07 371.82 84.09 68.38 86.31

env-1200 29.06 3.08 0.44 3.00 0.66 7.51
env-1875 91.11 10.00 0.90 7.78 1.25 3.37
env-3780 196.27 21.94 1.61 15.60 2.44 9.65
env-5292 426.89 38.09 2.25 31.20 3.46 14.67
env-lrge 774.39 78.54 3.38 64.20 6.09 420.64

env-xlrge 5146.58 813.10 12.78 285.04 28.51 1253.88
env-first 0.23 0.18 0.16 0.16 0.16 7.56

phone 7.36 7.41 4.09 3.31 3.32 25.55
phone-int 47.54 47.72 6.80 6.93 6.87 224.27

stormG2 27 0.16 0.18 0.25 0.21 0.24 1.10
stormG2 125 0.63 0.63 1.03 0.51 0.53 2.73

stormG2 1000 8.31 7.89 8.17 3.59 3.59 27.17
20term-1000 343.47 92.31 241.98 102.06 153.20 11.35
20term-2000 1836.42 284.58 448.67 225.78 174.92 23.61
20term-3000 3079.14 550.19 612.13 563.05 178.39 40.30

SSN-1000 24.44 16.20 500.30 22.44 19.05 33.15
SSN-2000 83.43 49.73 967.30 45.50 32.30 86.86
SSN-3000 162.42 95.89 1341.00 72.13 48.34 135.68

storm-1000 9.52 8.82 8.70 4.56 4.38 26.35
storm-2000 26.96 24.69 15.90 10.03 9.62 64.08
storm-3000 53.84 46.90 23.46 15.85 14.77 135.77
rand0 2000 24.03 23.80 4.46 2.40 2.18 10.32
rand0 4000 68.60 68.69 7.40 5.72 5.01 22.20
rand0 6000 705.30 687.44 17.37 12.62 10.42 41.45
rand0 8000 388.46 381.43 24.81 22.60 18.13 42.69

rand0 10000 716.77 692.26 56.88 42.71 30.74 66.92
rand1 2000 175.78 140.19 71.38 14.66 11.27 31.21
rand1 4000 587.00 476.14 163.67 39.83 26.95 73.38
rand1 6000 1157.05 951.99 194.64 66.60 45.29 139.62
rand1 8000 2376.99 1916.89 286.94 112.45 75.19 183.18

rand1 10000 3415.44 2677.04 361.09 171.22 109.68 476.45
rand2 2000 460.74 334.45 396.74 56.21 36.91 79.05
rand2 4000 1044.44 785.92 360.98 93.02 63.40 187.41
rand2 6000 2341.80 1825.06 623.22 159.32 106.79 304.90
rand2 8000 3609.11 2847.64 752.73 226.33 151.48 463.59

rand2 10000 6718.72 5200.79 1389.76 417.33 248.80 648.84
saphir-1000 319.59 336.58 483.48 313.53 262.19 975.46
saphir-500 139.83 131.31 202.67 147.35 139.69 406.82
saphir-100 37.30 31.18 45.24 40.35 34.55 42.05
saphir-50 23.59 18.36 32.19 30.55 25.10 16.44
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Table A.4: (continued)

Problem Multi Multi-CC Single Hybrid Hybrid-CC DEQ

Sum 41730.51 24163.42 10345.41 3592.33 2213.97 6990.21
Arithmetic mean 869.39 503.40 215.53 74.84 46.12 145.63
Geometric mean 108.43 62.54 33.24 19.69 13.14 40.82

Table A.5: Comparison of hybrid Benders’ algorithm with (CC)
and without (BC) cut consolidation. Wall clock solution times in
seconds with different number of aggregates.

Problem # Agg. BC # It. CC # It. CC/BC(%)

20 term-1000 1 250.22 1727 250.22 1727 100
20 term-1000 5 198.38 1036 222.68 1279 112
20 term-1000 10 157.24 792 181.49 1010 115
20 term-1000 25 163.31 629 139.92 729 86
20 term-1000 50 117.51 412 111.63 535 95
20 term-1000 100 103.15 287 75.07 333 73
20 term-1000 200 122.55 219 62.25 231 51
20 term-1000 500 187.79 144 74.49 166 40
20 term-1000 1000 343.66 99 86.24 97 25

20 term-2000 1 459.07 1751 460.16 1751 100
20 term-2000 5 395.47 1154 405.76 1244 103
20 term-2000 10 338.62 810 245.68 870 73
20 term-2000 25 291.59 664 255.62 757 88
20 term-2000 50 178.96 419 188.20 531 105
20 term-2000 100 220.29 363 157.21 396 71
20 term-2000 200 236.53 262 170.70 343 72
20 term-2000 500 346.15 183 128.77 183 37
20 term-2000 1000 611.31 127 162.44 139 27
20 term-2000 2000 1969.59 111 426.85 113 22

20 term-3000 1 706.44 1752 705.46 1745 100
20 term-3000 5 442.52 995 567.99 1243 128
20 term-3000 10 466.60 908 514.54 1093 110
20 term-3000 25 453.16 744 449.73 957 99
20 term-3000 50 266.91 465 361.31 711 135
20 term-3000 100 356.78 424 310.10 563 87
20 term-3000 200 298.13 309 223.70 360 75
20 term-3000 500 450.20 208 191.11 224 42
20 term-3000 1000 849.95 167 243.78 168 29
20 term-3000 2000 1330.06 139 368.68 152 28
20 term-3000 3000 6137.71 117 685.65 102 11

ssn-1000 1 503.82 2877 503.72 2877 100
23



Table A.5: (continued)

Problem # Agg. BC # It. CC # It. CC/BC(%)

ssn-1000 5 178.05 767 234.20 1024 132
ssn-1000 10 102.25 396 102.76 442 100
ssn-1000 25 54.67 184 48.67 191 89
ssn-1000 50 33.06 104 27.99 99 85
ssn-1000 100 22.74 62 19.88 68 87
ssn-1000 200 18.82 45 13.53 44 72
ssn-1000 500 18.28 29 12.25 30 67
ssn-1000 1000 24.29 24 16.80 24 69

ssn-2000 1 952.84 2897 953.45 2897 101
ssn-2000 5 397.62 939 409.86 1012 103
ssn-2000 10 248.03 524 236.84 543 93
ssn-2000 25 124.67 233 129.57 257 104
ssn-2000 50 81.98 138 73.17 137 89
ssn-2000 100 53.58 81 47.59 84 89
ssn-2000 200 45.61 56 33.40 54 73
ssn-2000 500 41.95 36 28.11 39 67
ssn-2000 1000 51.03 30 28.86 27 57
ssn-2000 2000 85.61 24 55.14 24 64

ssn-3000 1 1341.18 2899 1342.64 2899 100
ssn-3000 5 581.09 938 615.00 1020 106
ssn-3000 10 385.22 565 399.90 606 104
ssn-3000 25 203.24 261 203.78 284 100
ssn-3000 50 132.17 158 122.59 159 93
ssn-3000 100 93.24 98 78.46 97 84
ssn-3000 200 71.22 64 57.74 68 81
ssn-3000 500 67.49 42 41.44 41 61
ssn-3000 1000 80.13 33 48.61 34 61
ssn-3000 2000 97.13 28 58.44 28 60
ssn-3000 3000 162.66 25 107.63 24 66

storm-1000 1 8.95 59 8.95 59 100
storm-1000 5 7.15 44 6.95 42 97
storm-1000 10 6.14 36 6.18 36 101
storm-1000 25 5.12 29 5.25 30 103
storm-1000 50 4.79 25 4.69 25 98
storm-1000 100 4.59 22 4.51 22 98
storm-1000 200 4.97 20 4.70 20 95
storm-1000 500 6.62 17 5.91 17 89
storm-1000 1000 9.70 14 8.75 14 90

storm-2000 1 16.29 52 16.35 52 100
storm-2000 5 15.32 48 14.67 45 96
storm-2000 10 14.13 44 13.63 42 97
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Table A.6: Wall Clock solution times and iteration numbers for problem rand2 10000 with different
number of aggregates. The time is split between first and second stage wall clock solution time. BC is
the algorithm without cut consolidation, CC the algorithm with cut consolidation.

#Agg. BC(s) 1.St.(s) 2.St.(s) #It. CC(s) 1.St.(s) 2.St.(s) #It.

1 1386.69 27.02 1361.26 995 1386.69 27.02 1361.26 995
5 563.80 23.06 539.34 360 625.12 12.98 610.76 422

10 348.03 15.58 331.07 210 347.89 8.75 337.75 213
25 230.92 15.99 213.55 117 225.65 7.90 216.37 119
50 177.98 18.61 158.00 77 165.46 7.54 156.54 77

100 147.26 26.27 119.62 53 130.50 9.61 119.50 52
500 231.15 141.74 88.01 31 156.30 67.09 87.84 32

1000 417.33 334.49 80.26 26 249.12 167.08 80.65 26
2000 912.34 839.81 71.15 22 550.51 478.09 71.06 22
5000 2720.01 2655.22 63.40 17 1885.22 1820.67 63.17 18

10000 6718.72 6656.01 61.33 15 5202.05 5139.82 60.86 15

Table A.5: (continued)

Problem # Agg. BC # It. CC # It. CC/BC(%)

storm-2000 25 10.99 31 11.05 31 101
storm-2000 50 10.67 30 10.63 30 100
storm-2000 100 10.57 27 10.67 28 101
storm-2000 200 10.16 23 9.58 23 94
storm-2000 500 12.58 20 11.17 20 89
storm-2000 1000 15.19 16 13.37 16 88
storm-2000 2000 26.97 14 23.53 14 87

storm-3000 1 23.50 53 23.50 53 100
storm-3000 5 21.25 47 23.55 53 111
storm-3000 10 19.11 42 19.54 42 102
storm-3000 25 17.92 38 17.50 37 98
storm-3000 50 16.20 33 16.13 33 100
storm-3000 100 14.82 28 15.06 29 102
storm-3000 200 14.85 25 14.66 26 99
storm-3000 500 15.61 19 14.16 19 91
storm-3000 1000 22.28 18 19.24 18 86
storm-3000 2000 29.08 16 26.64 16 92
storm-3000 3000 53.73 14 44.59 14 83
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Table A.7: Comparison of different sequencing protocols for the
Parallel Nested Benders decomposition. Wall clock solution times
in seconds. ‡ denotes a solution run that took longer than the time
limit of three hours. † denotes a solution run that took more than
the maximal number of iterations (=5000).

Problem DEQ FFFB FF FB ε-FF ε-FB Dynamic

sgpf3y5 0.22 0.09 0.22 0.08 0.11 0.09 0.08
sgpf3y6 1.23 0.55 1.45 0.44 0.63 0.42 0.53
sgpf3y7 41.42 2.17 13.38 174.71 3.27 2.36 2.17
sgpf5y5 0.30 0.07 0.10 0.07 0.10 0.06 0.07
sgpf5y6 3.24 0.35 0.59 0.27 0.55 0.32 0.37
sgpf5y7 19.59 1.36 2.90 1.39 2.90 1.33 1.51
fxm3 6 0.23 0.20 0.23 0.21 0.21 0.21 0.20

fxm3 16 1.24 0.92 1.00 0.90 0.90 0.92 0.91
fxm4 6 0.67 0.26 0.37 0.18 0.26 0.23 0.21

fxm4 16 17.80 26.15 2.49 0.96 2.47 2.13 1.44
pltexpA3 16 0.97 0.14 0.33 0.07 0.13 0.06 0.05
pltexpA4 6 0.59 0.19 3.89 0.14 0.58 0.10 0.09

pltexpA4 16 26.26 1.97 36.15 0.56 6.65 0.60 0.59
pltexpA5 6 5.90 0.83 124.28 6.18 6.05 0.40 0.90

pltexpA5 16 740.46 39.70 4373.22 10.53 202.32 10.02 8.83
pltexpA6 6 49.51 5.30 9263.15 17.47 55.16 2.02 1.81
pltexpA7 6 403.93 30.20 ‡ † 411.36 12.01 11.06

WAT C 10 64 0.41 0.82 10.13 1.86 1.33 0.84 0.35
WAT C 10 128 0.74 0.35 3.89 0.95 0.52 0.52 0.40
WAT C 10 256 1.15 0.63 7.77 1.67 0.88 0.73 0.65
WAT C 10 512 1.87 0.30 2.75 1.81 0.36 0.37 0.86
WAT C 10 768 2.96 1.32 18.88 3.28 1.90 1.53 1.32

WAT C 10 1024 4.52 1.82 40.88 6.09 2.43 1.86 1.83
WAT C 10 1152 5.55 1.81 32.32 4.46 2.78 2.00 1.97
WAT C 10 1536 7.52 2.54 26.55 8.41 3.10 2.93 2.59
WAT C 10 1920 10.46 2.98 81.29 10.62 4.25 3.74 3.53
WAT C 10 2304 12.96 4.70 111.78 17.64 6.06 5.05 4.22
WAT C 10 2688 14.75 4.63 111.81 17.03 6.18 5.35 4.26

WAT I 10 64 0.41 0.28 2.78 1.73 0.37 0.42 0.31
WAT I 10 128 0.78 0.49 7.58 2.45 0.69 0.51 0.43
WAT I 10 256 1.12 0.75 8.40 2.85 1.10 0.91 0.73
WAT I 10 512 2.01 0.98 14.64 3.06 1.28 1.14 0.96
WAT I 10 768 3.43 1.45 19.75 4.74 1.84 1.64 1.31

WAT I 10 1024 4.61 2.22 29.89 8.67 2.55 2.30 1.79
WAT I 10 1152 5.55 4.75 18.49 13.44 4.88 5.39 5.07
WAT I 10 1536 7.67 6.16 29.55 21.04 6.12 6.66 5.77
WAT I 10 1920 10.18 6.91 28.73 25.36 7.10 7.42 6.58

scdp-1024 3.49 2.63 8.10 † 4.47 † 2.01
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Table A.7: (continued)

Problem DEQ FFFB FF FB ε-FF ε-FB Dynamic

scdp-4096 34.75 6.33 37.97 † 20.08 † 3.17
scdp-16384 398.36 21.34 101.00 † 68.54 † 9.95
scdp-65536 5335.34 66.69 474.86 † 362.31 † 31.85
scdp-64000 578.97 15.34 40.92 9.02 28.50 10.93 8.77

Sum13 1587.23 141.48 14472.53 380.34 366.51 83.51 73.46
Arithmetic mean13 42.90 3.82 391.15 10.28 9.91 2.26 1.99
Geometric mean13 3.85 1.22 10.19 2.33 1.79 1.03 0.95
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Aranburu, L., Escudero, L., & Gaŕın, M. (2011). A so-called Cluster Benders Decomposition approach
for solving two-stage stochastic linear problems. TOP , (pp. 1–17).

Ariyawansa, K., & Felt, A. (2004). On a new collection of stochastic linear programming test problems.
INFORMS Journal on Computing, 16 , 291–299.

Benders, J. F. (1962). Partitioning procedures for solving mixed-variables programming problems. Nu-
merische Mathematik , 4 , 238–252.

Birge, J. R. (1985). Decomposition and Partitioning Methods for Multistage Stochastic Linear Programs.
Operations Research, 33 , 989–1007.

Birge, J. R., Dempster, M., Gassmann, H. I., Gunn, E., King, A. J., & Wallace, S. W. (1987). A standard
input format for multiperiod stochastic linear programs. COAL newsletter , 17 , 1–19.

Birge, J. R., Donohue, C. J., Holmes, D. F., & Svintsitski, O. G. (1996). A parallel implementation
of the nested decomposition algorithm for multistage stochastic linear programs. Mathematical Pro-
gramming, 75 , 327–352.

Birge, J. R., & Louveaux, F. V. (1988). A multicut algorithm for two-stage stochastic linear programs.
European Journal of Operational Research, 34 , 384–392.

Birge, J. R., & Louveaux, F. V. (1997). Introduction to Stochastic Programming. Springer Verlag.
Consigli, G., & Dempster, M. (1998). Dynamic Stochastic Programming For Asset-liability Management.

SSRN Electronic Journal , .
Dempster, M., & Consigli, G. (1998). Dynamic stochastic programming for asset-liability management.

Annals of Operations Research, 81 , 131 – 161.
Dempster, M., & Thompson, R. (1998). Parallelization and Aggregation of Nested Benders Decomposi-

tion. Annals of Operations Research, 81 , 163–188.
Dempster, M., & Thompson, R. (1999). EVPI-based importance sampling solution proceduresfor multi-

stage stochastic linear programmeson parallel MIMD architectures. Annals of Operations Research,
90 , 161–184.
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