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In Situ Measurements of Lens Fluorescence and
Its Interference With Visual Function
Joseph A. Zuclich,* Randolph D. Glickman,*f and Arthur R. Menendez}:

Irradiation of the primate lens by near-ultraviolet wavelengths results in a blue fluorescence, which can
be an intraocular source of veiling glare. This study quantitated the fluorescence intensity as a function
of exciting intensity and wavelength. As the exciting wavelength was increased from 360 to 430 nm, the
decreasing fluorescence intensity (for equal radiant exposures) was partially offset by a shift in the
fluorescence spectrum to wavelengths of greater luminous efficiency so the luminance of the lens
fluorescence remained approximately constant. The measured luminance of the lens fluorescence was
high enough to imply degradation of visual function as a result of reduced contrast of the retinal image.
To obtain an objective measure of visual deficit associated with the fluorescent glare, the visual evoked
potential (VEP) elicited by counterphased sine-wave gratings was recorded while the subject eye was
continuously exposed to the 413 nm emission from a krypton laser. The VEP amplitude was reduced in
the presence of the exciting laser even at levels defined as "safe" (ie, where exposure levels are
insufficient to induce an acute ocular lesion). Because the direct glare effect of the exciting radiation
was negligible in this experiment, the VEP response loss is attributed to the effect of the lens fluores-
cent glare. Invest Ophthalmol Vis Sci 33:410-415,1992

The ocular lens of the primate fluoresces in the blue
when irradiated by near-ultraviolet (UV) wave-
lengths. This phenomenon, although usually unno-
ticed, is nevertheless present with exposure to the am-
bient solar environment. In the aging lens, the near-
UV absorption band broadens and encroaches into
the blue, while the fluorescence intensifies and mi-
grates toward longer wavelengths.1'2 Weale has esti-
mated3 that the reciprocal ratio between the lumi-
nance of a patch of sky and that of the fluorescence it
induces is ~ 0.002 for the normal lens of a 30-year-old
human (generally unnoticeable) but increases to
0.017 for a 60 year old (generally noticeable) and to
0.121 for an 80 year old. In the latter case, the fluores-
cence can be an intraocular source of "veiling glare,"
covering the entire field of view and intensity enough
to impair visual function. With certain disease pro-

From *KJIUG Life Sciences, Inc., San Antonio Division, San
Antonio, Texas; the tDepartment of Ophthalmology, University of
Texas Health Science Center at San Antonio, San Antonio; and the
JLaser Branch, Directed Energy Division, Occupational and Envi-
ronmental Health Directorate, U.S. Air Force Armstrong Labora-
tory, Brooks AFB, Texas.

Supported in part by Contract F33615-88-C-0631 (JAZ and
RDG), let by the Laser Branch, Directed Energy Division, Director-
ate of Occupational and Environmental Health, United States Air
Force Armstrong Laboratory, Brooks Air Force Base, Texas.

Submitted for publication: June 19, 1991; accepted September
26, 1991.

Reprint requests: Dr. Joseph A. Zuclich, KRUG Life Sciences
Inc., San Antonio Division, P.O. Box 790644, San Antonio, TX
78279-0644.

cesses, including diabetes, lens optical aging may be
accelerated.4

Our concern is with the fluorescence-associated
glare induced by UV- and blue-wavelength lasers and
conditions where otherwise "safe" laser exposures (in-
sofar as inducing acute ocular tissue damage) might
still result in a debilitating veiling glare. In this regard,
we have conducted experiments to quantitate the in
situ lens fluorescence as a function of exciting inten-
sity and to get an objective measure of visual deficit
associated with the fluorescence glare.

The expected wavelength dependence is summa-
rized by the data in Table 1. When exciting near the
lens absorption maximum at 360 nm,5 the broad fluo-
rescence is peaked at 440 nm but ranges from ~380
to beyond 500 nm.6 With an excitation wavelength of
406.7 nm (krypton laser), a fluorescence peak of
~480 nm has been reported, while argon laser excita-
tion at 457.9 nm has yielded a fluorescence peaked at
~520 nm.7 Because the fluorescence spectrum shifts
toward wavelengths of higher luminous efficiency as
the exciting wavelength increases from 360 nm to
blue wavelengths (Table 1), the apparent brightness
(luminance) of the fluorescing lens would increase sig-
nificantly if the same number of photons were emit-
ted. In fact, the fluorescence yield decreases as the
excitation wavelength is increased above 360 nm.
Therefore, it was necessary to quantitate this fall-off
in fluorescence yield vs the enhancement in luminous
efficiency to identify the wavelength or wavelengths
capable of inducing the most prominent veiling glare.
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Table 1. Lens fluorescence as a function
of excitation wavelength

Exciting
wavelength, \,

(nm)

360
406.7
457.9
488.0

Fluorescence
peak, X2

(nm)

440
489
528
538

Luminous
efficiency at \2

(nm)

0.023
0.208
0.83
0.93

Materials and Methods

Fluorescence spectra were recorded from isolated
lenses suspended in saline in a cuvette and in situ
from the lenses of anesthetized rhesus monkeys (Ma-
caca mulatto). All animals used in this study were
treated in accordance with the Animal Welfare Act;
the "Guide for the Care and Use of Laboratory Ani-
mals," prepared by the Institute of Laboratory Ani-
mal Resources - National Research Council; and the
ARVO Resolution on the Use of Animals in Re-
search. All experiments involving animals used ap-
propriate levels of anesthesia so the subjects did not
experience unusual pain or distress.

The excitation source for wavelength-dependent
studies was an Oriel (Stratford, CT) 1000-W xenon
arc lamp directed through a grating monochromator
to yield ~ 10 nm bandwidths. Additional studies were
performed using the 413 nm output of a Coherent
(Palo Alto, CA) krypton-ion laser (the laser optics ac-
tually yielded a triplet emission at 406.7, 413.1, and
415.4 nm with the 413.1 nm emission being the stron-
gest). The lens fluorescence was recorded using a
Photo Research (Burbank, CA) Pritchard spectrora-
diometer/photometer, Model 1980B, which yielded
printouts of the integrated radiance (W/Ster • m2) and
luminance (photopic cd/m2) of the fluorescence, as
well as hard copies of the fluorescence spectra.

Because the Pritchard 1980B is a telephotometer, it
allowed detection from selected spots on the irra-
diated lens. In general, the telephotometer (for in vi-
tro or in vivo measurements) was targeted just behind
the irradiated spot on the anterior lens surface and
along an axis, making an angle of ~ 30° with the excit-
ing light (which was directed along the visual axis).
The telephotometer detector head typically was
placed ~ 18" from the fluorescing lens with an aper-
ture chosen to yield a 20' arc field of view. This al-
lowed the targeted area for the in vivo measurements
to be fully within a portion of the lens seen through
the dilated pupil while avoiding overlap with the sec-
tions of cornea and lens directly irradiated by the excit-
ing light. The bandwidth of the monochromator in
the telephotometer head was set at a nominal value of
10 nm.

Visual evoked potentials (VEPs) were recorded
from anesthetized rhesus monkeys with scalp elec-
trodes placed approximately at T5 and T6, which, in
the rhesus monkey, lie over the foveal projection area
of the visual cortex. Details of the instrumentation for
data collection and data analysis techniques are pub-
lished elsewhere.8 A schematic diagram for the experi-
ments reported here is shown in Figure 1. The anesthe-
tized subject, with a dilated pupil, viewed the stimulus
monitor as projected to the eye from a pellicle beam-
splitter set in front of a fundus camera. The center of
the projected stimulus field was prealigned along the
optic axis of the fundus camera. The subject's fundus
was viewed on a TV monitor using only the infrared
component of the fundus camera viewing light (so the
dark-adaptation state would not be disturbed). The
multi-dimensional, translational-rotational stage on
which the subject was mounted was adjusted as neces-
sary to keep the fovea positioned on the optic axis of
the fundus camera and, therefore, centered on the
stimulus field.

During the VEP recording sessions, the 413 nm
krypton laser radiation was introduced by directing
the collimated beam through the pupil at an angle of
45° to the optic axis of the fundus camera (and the
subject's visual axis). The small percentage of laser
radiation transmitted through the ocular medium9

was incident on the peripheral retina at a spot well off
the field of view seen through the fundus video moni-
tor. Laser power incident at the cornea varied from
~0.5 mW to 1.5 mW in a 5 mm diameter beam.

The visual stimuli were monochromatic sine-wave
gratings presented over an 8° visual field. The sine-

F.C.

V . C . I.I.
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Eye
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VEP
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Data Display

Fig. 1. Schematic diagram of lens fluorescence-VEP experiment.
Abbreviations: F.C.: fundus camera; I.I.: Xybion IRO-01 image
intensifier; Laser: Kxypton-ion cw laser emitting at 413.1 nm, 5-
mm beam diameter at eye; M: first surface mirror; P: pellicle
beamsplitter; V.C: Cohu 4815 video camera; VEP: visual evoked
potential recorded from scalp of rhesus monkey.
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wave gratings were presented at a spatial frequency of
4 cycles per degree, a space-averaged luminance of 60
cd/m2, and counterphased at 6 Hz (12 reversals/s).
VEP recordings were made for 60 s and averaged into
a 1 s window. The amplitude of the VEP response was
determined from the averaged records by Fourier anal-
ysis and was taken as the sum of the components oc-
curring at the reversal frequency and the next two
higher even harmonics. The grating contrast was var-
ied from 20% to 100%, and the VEP amplitude was
recorded at each of several contrast levels with and
without the continuous-wave (cw) laser radiation.

Results

The fluorescence spectrum recorded from an ex-
cised rhesus monkey lens excited with arc-lamp radia-
tion centered at 360 nm is shown in Figure 2. The
trailing edge of the excitation envelope is seen at the
left edge of the figure. Figure 3 illustrates the fluores-
cence from the in situ rhesus monkey lens when ex-
cited with the 413 nm radiation from a krypton-ion
laser. Note that the fluorescence peak is shifted from
~440 nm when exciting at 360 nm to ~480 nm with
413 nm excitation.

Table 2 lists the fluorescence intensities (in terms of
integrated radiance and luminance) recorded from
the excised rhesus lens when exciting with arc-lamp
radiation at several wavelengths. After equating for
equal radiant exposures, little variation exists in either
the lens radiance or luminance as the exciting wave-
length is varied from 360 to 430 nm. As the exciting
wavelength is increased above 430 nm, the fluores-
cence intensity drops precipitously, and the greater
overlap between the excitation and emission bands
(the exciting intensity now being relatively much

Excised Lens

In Situ Lens
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Fig. 3. In situ fluorescence of rhesus lens excited by 413-nm laser
radiation.

greater) makes quantitative assessment of the fluores-
cence intensity problematic. Likewise, measurements
of the in situ lens fluorescence indicate little variation
in fluorescence luminance with exciting wavelengths
between 360 and 430 nm but a rapid drop-offin lumi-
nance with longer exciting wavelengths.

For the in situ case with 413 nm laser excitation, we
examined the scaling of fluorescence intensity with
excitation intensity. Figure 4 shows, plotted as a func-
tion of cw-laser power, the peak spectral radiance (ra-
diometric measure) and the luminance (photometric
measure) of the fluorescence. Both curves exhibit a
slope of 1.0 (dashed lines) with no sign of saturation of
the fluorescence emitted. Higher exciting intensities
were not used for the in situ case because of the poten-
tial for inducing thermal damage to the retina. How-
ever, with the excised lens, the cw-laser intensity was
taken as high as 100 mW, which yielded a lens lumi-
nance of ~2000 cd/m2, without sign of the fluores-
cent chromophore being saturated. At still higher cw-
laser powers, we were unable to complete the fluores-
cence measurements because of thermal damage to
the excised lens. The threshold observed for a ther-
mally induced opacity in the lens is consistent with
previously reported thermal damage thresholds.10'"

Fig. 2. Fluorescence of excised rhesus lens excited by 360-nm
radiation from arc-lamp source.

Table 2. Fluorescence
excised lens

Excitation parameters

Wavelength
(nm)

350
360
400
430

Radiant
exposure

(mW/cm2)

0.019
0.092
0.054
0.064

intensities measured

Emission

Radiance
(W/Sr/m2)

4.5 X 10'"
9.6 X 10""
5.3 X 10""
6.2 X 10""

from

Luminance
(cd/m2)

0.034
0.16
0.13
0.18
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Fig. 4. Peak spectral radiance (circles) and luminance (squares) of
lens fluorescence as a function of cw laser power. The slopes of both
regression lines fit to the radiance and luminance data approximate
I (actual: radiance = 0.984, r = 0.999; luminance = 0.956, r
= 0.999).

Figure 5 depicts the VEP amplitude plotted as a
function of stimulus contrast with and without cw-
laser radiation (1.5 mW), as described in Materials
and Methods. In general, the presence of the laser radi-

ation resulted in a decreased VEP amplitude for all
values of grating contrast. Similar results were gener-
ated in each of three VEP recording sessions with two
rhesus subjects. The inset in the upper part of Figure 5
shows the predicted luminance of the direct veiling
glare induced by a laser source (413 nm) at various
angular separations from the grating stimulus, calcu-
lated from the Vos glare function.12 At a separation of
45°, indicated by "0" (at arrow in the inset), the pre-
dicted luminance of the veiling glare produced by this
wavelength and incident power is less than 0.5 cd/m2.
The VEP responses, indicated by the label "+laser" in
the lower two figures, have been plotted against con-
trast values adjusted for the effect of direct veiling
glare. In the absence of any additional effect of lens
fluorescence, the "normal" and "+laser" response
curves should coincide. That they do not overlap is,
therefore, attributed to the fluorescence emission.

Discussion

The fluorescence spectra from the excised lens (Fig.
2) and the in situ lens (Fig. 3) exhibit one broad, basi-

Predicted Veiling Glare Luminance As
Function ol Laser-Grating Separation
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Rh 597Z Rh 607Z
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Percent Stimulus Contrast Percent Stimulus Contrast

Fig. 5. Effect of laser-induced lens fluorescence on VEP. Top inset: predicted equivalent background luminance of a 413-nm, 1.5-mW
incident power at cornea, laser source at various angular separations from a grating stimulus. Theta (at arrow) indicates the separation of 45°
used in these experiments. Lower figures: VEP amplitudes with (+laser)and without (normal) presence of 413-nm laser. Results of recording
sessions from two animals. Points indicate mean of two measurements; error bars indicate high and low values.
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cally featureless peak. The in situ spectrum is some-
what broader even though it is excited with a laser
source. This may reflect that it is recorded in an "opti-
cally noisy" environment—ie, in the presence of scat-
tering of the exciting and the emitted radiation while
passing through several media (tear layer, cornea,
aqueous, and part of the lens) and reflections at the
media interfaces. Also, a visible fluorescence (rela-
tively weak) is noted at the corneal surface. All of
these features may add to the veiling glare effect for
the in situ case.

The data of Table 2 indicate the luminance of the
fluorescing lens shows little change as the exciting
wavelength is varied from 350 to 430 nm (for equal
radiant exposures). In fact, the absorption of the pri-
mate lens, while strong, is relatively slowly varying
throughout the near-UV and into the short-blue wave-
lengths but falls off very rapidly with further increase
in wavelength.13 Because the fluorescence emission
becomes increasingly red-shifted as the exciting wave-
length is increased, the higher luminous efficiency (Ta-
ble 1) acts to offset the decreasing lens absorption
from ~360 nm to ~420 nm, meaning that the lens
luminance is a slowly varying function within that
wavelength range. However, for longer wavelengths,
the rapidly decreasing lens absorbance dominates the
equation. Our conclusion from these data is that the
potential for a veiling glare problem associated with
lens fluorescence would be just as great for exposures
to short-blue wavelengths (up to ~430 nm) as for UV
exposures near the lens absorption peak at ~360 nm.
As the primate lens ages and the lens absorption shifts
further into the blue,14 the lens veiling glare could be-
come a problem for exposures to even longer wave-
lengths than indicated in this report. Indeed, several
recent reports have indicated that visual performance
may be improved by filters that block short, visible
wavelengths, thereby reducing intraocular light scat-
ter and lens fluorescence.1516

The data shown in Figure 4 imply that even at mod-
est exposure levels (of the order of 1 mW), the mea-
sured luminance of the lens fluorescence is high
enough to degrade visual function by decreasing the
contrast of the retinal image. The VEP experiments
were undertaken to obtain an objective measure of
this visual effect.

The consistent decrease in VEP amplitude with the
presence of the cw-laser radiation demonstrates that,
for the conditions chosen, the laser beam passing
through the pupil results in a measurable visual defi-
cit. The laser exposure conditions were chosen to ap-
proximate the case of a laboratory alignment laser
(~ 1 mW) striking the eye at close range. This is gener-
ally considered an eye-safe exposure because the laser
intensity is insufficient to result in an acute retinal

lesion.1718 There could be, however, a very significant
direct glare effect (ie, glare associated with the inci-
dent or exciting wavelength as opposed to glare asso-
ciated with the induced fluorescence) from exposure
to a 1 mW visible wavelength laser. For the case stud-
ied here, the transmission of the 413 nm krypton radi-
ation through the ocular medium is low,913 and the
luminous efficiency of the incident radiation is
~0.002 compared to, for example, 0.235 for a red
(HeNe) alignment laser or nearly 0.6 for the 514.5
green argon laser line. Therefore, the direct glare ef-
fect would be attenuated by about two orders of mag-
nitude relative to that for the most common visible
wavelength lasers. Moreover, we directed the krypton
laser beam 45° off of the visual axis to minimize fur-
ther the direct glare effect. Using the Vos glare func-
tion,12 the predicted direct glare effect in our case (1.5
mW, 413 nm collimated beam, 45° off the visual axis)
would be negligible, as shown in the inset at the top of
Figure 5. Therefore, we attribute the decrease in VEP
amplitude to the veiling glare associated with the lens
fluorescence.

As the cw-laser intensity is increased above ~1.5
m W or as the beam is directed closer to the visual axis,
the increased fluorescence glare and the direct glare
effect would act to deny useful vision to the lased sub-
ject for the duration of the exposure. We further specu-
late, based on the absence of saturation of fluores-
cence intensity as the exciting intensity is increased,
that intense short-pulsewidth exposures to UV and
blue laser sources may, in a low-light environment,
cause significant flashblindness, even for cases where
vision is not otherwise compromised by an acute le-
sion or the direct flashblindness effect of the incident
laser beam. In this case, the lens fluorescence-induced
flashblindness could cause a visual deficit that persists
for some time (seconds or longer) beyond the actual
exposure duration.1920 An additional speculation is
that lens fluorescence, because of its emission peak in
the blue-green portion of the visible spectrum, may
present a greater flashblinding stimulus to the scoto-
pic system than to the photopic system. It would be
.difficult, however, to demonstrate this effect directly
with the VEP, which is essentially a photopic re-
sponse.

Key words: fluorescence, glare, laser, lens, visual evoked po-
tential (VEP)
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