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Generalized Analysis of Stability and Numerical
Dispersion in the Discrete-Convolution FDTD
Method

William A. Beck, Member, IEEEand Mark S. Mirotznik Member, IEEE

Abstract—A simple technique is described for determining the [2], [3]. Others have studied numerical dispersion and stability
stability and numerical dispersion of finite-difference time-domain in |ossy dielectrics [6] and dispersive dielectrics [7]-[12].
(FDTD) calculations that are linear, second-order in space and Weedon and Rappaport [10] implemented a general analysis

time, and include dispersion by the discrete convolution method. f di . d stabilit . Padé imation
The technique is applicable to anisotropic materials. Numerical Or dispersion and stability using a Fade approximation for

examples demonstrate the accuracy of the technique for several the frequency-dependent permittivity or conductivity. Their

anisotropic and/or dispersive materials. procedure can be used to form a finite-difference approximation
Index Terms—FDTD methods, numerical dispersion, stability for arbitrary dispersive properties obtained from measured
analysis. data if enough terms are included. Also, the coefficients of

the Padé approximation can be chosen to partially emulate
other methods, including the discrete convolution method.
However, their method is not applicable to the complex discrete
N 1966, Yee [1] introduced the finite-difference time-doeonvolution used to describe Lorentz dispersion [4] (although
main (FDTD) method using the leapfrog approximation aheir method can be used to treat Lorentz materials modeled
Maxwell’s two time-dependent curl equations for isotropic lossssing differential equation-based methods).
less materials. Since then, the method has been extended to m@ this paper, we present a technique for determining numer-
terials that are lossy, anisotropic, and dispersive [2], [3] and higal dispersion by simple substitution into the continuous (non-
been extensively used to solve a wide range of practical prafimerical) dispersion relation. The procedure is applicable to
lems. all anisotropic and dispersive materials whose dispersion is sim-
Two important issues for all FDTD calculations are numeuslated by discrete convolution. We then present a simple tech-
ical dispersion and stability. Numerical dispersion is introducatique for evaluating stability using the numerical dispersion re-
by the discretization of Maxwell’s equations and causes eldation. Several numerical examples are presented to demonstrate
tromagnetic waves to propagate with different wavelength agite accuracy of the techniques.
attenuation in the FDTD grid than in continuous space. It also
results in anisotropic propagation, even when the material prop-
erties are isotropic. Stability analysis is necessary because the
FDTD algorithms are only conditionally stable. They typicallyA. Continuous Dispersion

converge when the time step is smaller than some critical valueysing meter-kilogram-second-ampere (MKSA) units, the

but diverge exponentially for larger time steps. “Maxwell curl equations that are solved by the FDTD procedure
The original FDTD technique has given rise to many varigge

tions, introduced to include loss, dispersion, and nonlinear mate-
rial properues aswell as tp improve accuracy and/or stability for 0B = o[l + PO H = -V x E— - H (1)
particular types of materials. However, there are now so many
variations that a fully general analysis of dispersion and stability 9D =gl +x(w)]HE=VxH-0-E (2)
may not be possible. We focus our analysis here on FDTD pro- o ) o . )
cedures that are linear, use second-order finite differences ¥fredr indicates the partial derivative with respect to tinae,
include dispersion by the method of discrete convolution [3f the angular frequenc¥, is the electric fieldH is the mag-
[4]. Such FDTD programs are widespread, for example in tietic field, D is the electric flux densityB is the magnetic flux
commercial program XFDTD [5]. density,y(w) and(w) are electric and magnetic susceptibili-

The numerical dispersion and stability of the original FDTH€S, respectivelyy is the conductivity, and; is an equivalent
procedure for lossless nondispersive materials are well knofignetic resistivity. The material propertigg.), /(w), 7, and

o may be tensors in the case of anisotropic materials. Both
, , , _ ando are assumed to be independentof
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whereV represent® or H, k is the propagation vectar,is the the continuous relation,V = jwV andV x V = —j(k x
position, and is the time. In this case, (1) and (2) can be writteV) transform into the finite-difference expressiony = jw
as sinc (#,)V andé x V = —j(R x V), respectively, where
kg = kg sinc(03), 0, = wA, /2,03 = kgAg/2,and sin¢x) =
wii(w)Hy = (k x Eo) (4) sin(x)/z. Use of these finite-difference operators in (1) and (2)
wé(W)Eg = — (k x Hy) (5) s equivalent to replacing in (4) and (5) byk’, whose compo-
nents are
where
. kjy — kg sinc(6s)/sinc (6,). (10)
@) = polt + ()] - 21 (6)

B 2) Time Shifting of; - H ando - E: Time shifting ofy - H
éw) =eo[l + x(w)] — J9 (7) ando - E is needed since a straightforward discretization of
w (1) and (2) does not yield proper time staggerindgoand H.
are the complex permeability and permittivity, respectivelyiherefore, these fields must be replaced by some combination
Both /; andé may be tensors. Equations (4) and (5) can then I6é properly staggered fields. Letting" represent the electric

solved for the continuous dispersion relatiofk). field at time step:, Taflove [2] proposed using the average of
For isotropic material properties, the continuous dispersionf&'+! andE™ as a reasonable estimatelsf+1/2. On the other
the scalar equation hand, Kunz and Luebbers [3] proposed usEigH! to improve
stability when lossy materials are used. Like Pertdd.[6], we
éw)i(w)w? = k2 (8) refer to these as the time-average (TA) and time-forward (TF)

_ _ S _ ~approaches, respectively. It can be shown that the effect of the
For anisotropic (nonmagnetic) dielectrics, the three-dimefime shifting is equivalent to replacingando by i/ = 7g(6;)
sional (3-D) dispersion is the solution of the determinant equgand s/ — og(6,), respectively, withy(6,) defined for the two

tion [13] in (9), shown at the bottom of the page. approaches as
Solutions are also available for anisotropic magnetic proper-
ties. Although the result may be complicated, the continuous exp(jb:) (TF)
dispersion relation is generally already known for the materials (6,) = sinc(f;) ’ (11)
being simulated in an FDTD problem. g\ = cos(6;) (TA)

sind6;)

3) Use of Discrete ConvolutionFinally, the frequency-do-

Consider how the continuous dispersion is altered by the aRzin susceptibilities(«) and(w) are replaced by discrete

proximations made in the FDTD procedure. Three approxima-_ - . N ; p )
tions are used in the common version of FDTD that we ha\f/?(g\ne domain convolutions’(w) and+’(w), given by [3]

B. Numerical Dispersion Analysis

analyzed: replacement of continuous derivatives by finite dif- o

ferences, evaluation ef- H ands - E in (1) and (2) at shifted x(w) = / x(7) exp(—jwr) dr

times, and replacement of the frequency-dependent susceptibil- o

ities by discrete convolutions in the time domain. We consider — xX'(w) = Z exp(—jwAym)xm 12)
each of these in turn. m=0

In the following discussiony; is the full time step between
successive values @& (or H) andAg is the full spatial step in
the 3 direction(3 = z, v, z). Where both primed and unprimed (m+1)A,
variables are used, the primed and unprimed versions are to be Xm = /
used in the numerical and continuous dispersion relations, re- "

spectively. o ~and the analogous forms f@r'(w). In many cases (including

1) Use of Finite Differencesiet 63 indicate the finite-dif- he important cases of Debye, Drude, and Lorentz dispersion),
ference operatafs f. = (fut1/2 = fn1/2)/Dp, WhereAgis . can be expressed in the recursive form [3]
the step size for the spatial varialifeand similarly leté, f,,, =
(fmt1/2 = fm—1/2)/A¢. Also letéx indicate the finite-differ- xm = Re [C: exp(—imA,)]. (14)
ence curl operator obtained from the continuous curl operator
by replacement of each of the derivatives with respect to cathere Re indicates the real paff,is a complex function that
ordinate3 by 6. Using this notation, it is easy to show thatepends om,, but not orvm and% is a complex frequency. In

with

x(t) dt (13)
1Ay

WQIioém - kg - k,g WQNOéa;y + kxky WQNOéJ,‘Z + kxkz
0= w2u0éym + koky w2u0éyy S e w2u0éyz + kyk- 9)
w2u0ézm + kackz w2u0ézy - kykz w2u0ézz - ki - ki
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these cases, we can evaluate the sum in (12) to obtain the exptieitivatives with finite differences leads to the modifi&d

form whose deviation fromk is determined bywA, and kgAg.
. This results in a simple (direction-dependent) scaling of the
X' (w) :1 G _ dispersion relation along thé&-axis, but no change in the
2 | 1 —exp[—(jw + 0)Aq] spectral shape. Second, the use of time-shifted fields to evaluate
Ve the loss terms in (1) and (2) leads to scalingnond o by
+ - — (15) g¢(6:), again determined byA,. As shown elsewhere [6], the
1 —exp[—(jw +0 )At]] associated error in the real partagfv) is proportional tau7,,

(gvherero = £/o is the relaxation time of the medium. Third,

approximation ofy (w) and(w) by discrete convolutions leads

| to the modified values in (15), with the deviation determined by
th wA, andvA,. Both the second and third effects change

he spectral shape of the dispersion relation. Therefore, to

where x indicates complex conjugation. A similar procedur
yields an analogous expression fgi(w).

4) Net Effect on Numerical Dispersiorincorporating al
three of the approximations, the discrete versions of (4) and

are .
accurately represent the problem, the spatial sttpsmust
wi'(W)Hy = (K’ x Eop) (16) be small compared tdv/k and the time steph, must be small
W' (W)Eo = — (K x Ho) 17) compared to all three time scalégw, 7, and1/|5|.
with C. General Stability Analysis
ing(6,) Consider a region of FDTD grid that is homogeneously filled
i (w) = po[l + 9/ (w)] — SR (18) with a possibly dispersive and anisotropic material. The instan-
i ‘(”9 ) taneous fields at any timein that region can be written as a
&(w) =eo[l + x'(w)] — JO9T) (19) Fourier sum over the normal modes of the grid, which are plane
W

waves withreal k and with|ks| < 27/Ag. Note that because
Note that the discrete equations (16) and (17) have exaatliythe spatial interleaving dE andH, the maximumg is the
the same form as the continuous equations (4) and (5), excspétial Nyquist frequency corresponding to a spacing gf2
for the modified parametei® (w), £ (w), andk’. and is twice the Nyquist frequency for the individdaland H
Therefore, to determine the numerical dispersion relation, iields. Similarly, the maximum temporal frequency2is/A,,
first evaluate the numerical susceptibility using (15) if the disorresponding to twice the temporal Nyquist frequency for the
persion can be written in the recursive form (14) or, otherwismdividual fields.
by numerically evaluating the sumin (12). If eithigw) or é(w) Since the numerical dispersion relation yield&) for any
are tensors, we perform the appropriate substitution for eachikesmode of the FDTD grid, the problem will be absolutely stable
the components. We then substitute the modifiéd), ¢’(w), if and only if Iim[w(k)] < 0 for all normal modes. Otherwise,
andk’ into the continuous dispersion relation (e.g., (8) for anumerical noise due to finite precision arithmetic will eventually
isotropic material or (9) for an anisotropic dielectric) to obtaiexcite anyk-mode associated willim[w(k)] > 0 andthe mode
the numerical dispersion relation. This substitution method pevill grow without limit.
mits evaluation of numerical dispersion even for complicated 1) Stability for Isotropic Materials: Consider isotropic ma-

materials with dispersive anisotropic properties. terial properties. We first present a graphical treatment using
For isotropic material properties, the numerical version of (8}ability diagrams to show the mathematical basis of the anal-
is again a scalar equation that can be written as ysis. Based on this analysis, we then present a simple set of rules
) ) o1/ for evaluating stability.
A (w)w” =k (20) It is convenient to define the normalized scalar variable
wheren/(w) is the complex numerical refractive index defined ) N sin®(6) N
by ey O/ L @
A AZ
=1 8 g=1 — 8
~12 _ o ~t
W (w) = €'(w)ir' (w)/omo (21)  \whereN is the dimensionality of the problem and also the func-

andc is the speed of light. tion
When yx/(w) and+’(w) are generated bsecursivediscrete WA 1 Ny

convolution, so that (15) applies, the functiff?(w) has two fw) = sin® < t) ﬁ/ > = (23)

interesting properties that will be useful for stability analysis. 2 Ay B=1 Aj

First, it can be shown that'(w) andé’(w) are both real at the

temporal Nyquist frequencyy, = 7/A; and soi/*(wny)

so that we can rewrite (20) as

is also real. Second/(w) andé’(w) are both conjugate-sym- A2 (W) f(w) = B2 (w). (24)
metric aroundvyy, i.e.,& (wny +w) = € (wyy, — w) and so
7/2(w) is also conjugate-symmetric arouag,, . Equation (24) can be viewed as a transformation between the

It is interesting that the three approximations used in tl@mplex plane of, values and the complex plane &f values.
FDTD procedure are each associated with a different time Dine upper half of thes-plane represents unstable solutions; the
length scale. First, replacement of continuous space and tiloeer half and the real axis represent stable solutions. In the
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#2-plane, the normal modes of the grid fall along a line segment
on the real axis witl) < z2 < 1.

To evaluate stability, we map the unstable upper half of the
w-plane into thek2-plane. We obtain the boundary of this re-
gion by mapping the real- axis into thei2-plane. We need
only considell < w < 2wy, which maps to a closed loop in
the ~2-plane, beginning at the origin, crossing the realaxis TN Normal modes
whenw = wy,, and returning to the origin when = 2wy, of grid
The values of? inside the closed loop correspond to stable so-
lutions, while those outside the loop are unstable. The FDTD 00 050 10 15 20 25
problem will be absolutely stable if, and only if, all normal Re(k)
modes of the grid lie inside the stability loop.

For a simple example, consider a Debye material with Fig. 1. Stability loop for a Debye material (water) with = 81.0, ¢, = 1.8,
andt, = 9.4 x 10~'2 s, cell size of 37.5¢m, and Courant time step. Shaded
areas are unstable. All normal modes are inside the loop, indicating that the

z—f(w) =e+ Cs _bEOO ) (25) region containing this material should be stable.
1+ jwr.

Using typical parameters for water, = 81.0,e., = 4 S L NN B
1.8,7. = 9.4 x 10~2s and a cell size of 37.bm, the one-di- 3E Unstabl 3
mensional (1-D) Courant time step is 1.2510°'2 s. Fig. 1 2B ev:rs;,tzh;e S
shows the corresponding stability diagram. All normal modes 1E
are in the stable region inside the loop, so the region containing < 3
this material would be stable. E 0 E

“,;4

Fig. 1 illustrates two general properties of stability loops that
derive from the previously mentioned symmetriesitf(w). -2
First, sincen’?(wy,) is real, the stability loop crosses the real

Normal modes
of grid

|
w
T I

axis whenw = wyy,. Second, becaus#?(w) and f(w) are E

conjugate-symmetric and symmetric, respectively, arauag e

the stability loop has mirror symmetry across the bxis. 0 1 2 3 4
Fig. 2 shows a more complicated stability diagram for a Re(x)

Lorentz material with
Fig. 2. Stability loop for a Lorentz material with, = 4.0 x 10%¢ Hz, 6, =

(5 _e ) 0.28 x 10'% Hz, ., = 2.25,¢, = 1.0, cell size of 12 nm, and Nyquist time
é(w) L S M= Y a— (26) step. All modes are associated with[¢'(w)] > 0 so FDTD problem will be
w2 + 2jwé, — w? unstable.
wp = 4.0x10'% Hz,6, = 0.28x 1016 Hz, 2., = 2.25, ande, = 0.2 oo

1.0, a cell size of 12 nm, and the corresponding Courant time
step of 4.0x 10~'7 s. In this case, there is no stable region; the
unstable upper half of the-plane maps to the entiw?-plane. 0.1
Therefore, all modes, including the normal modes of the grid,
are unstable. However, as shownin Fig. 3, reducing thetime step &
to ~0.7 x 10717 s yields absolute stability of all normal modes. £

The stability diagram is informative because it explicitly
shows any overlap between the states in the unstable upper -0.1
half of the w-plane and the normal modes of the grid in the
#2-plane. However, we can evaluate stability at a givanby
direct examination of the properties &t, without plotting the
stability diagram. First note that mecessarycondition for all
normal modes of the grid to lie inside the stability loop is that
#%*(wny) > 1 and therefore, sinc(wny) = 1,7 2(w)ny, > 1. _ . T -

. . .- . Fig. 3. Stability loop for the same Lorentz material as in Fig. 2, but with time

We refer to this as the Nyquist stability requirement. Thge, reducedto 0.% 10-'7 s. All normal modes are stable.
critical time step corresponding to this condition is called
the Nyquist time step, indicated by, which one can i, ever the Nyquist requirement is rtfficientto ensure
obtain sw_nply by substituting the temporal and spatial _Nyqu'§{ability, as demonstrated by the Lorentz example in Fig. 2.
frequenciesw = wy, andks = kgny = 7/Dp IO o yq example]m[7/'2(w)] > 0 at low frequencies (Fig. 4)
the numerical dlsperS|_on _relatlon and solving . It is such that the stability loop is “folded” across the réataxis
easy to show Tthat this yields the usual Courant value gfy qoes not enclose any stable region. Stability requires that
Ay = [ey/N X1, (1/A3)]7 whend/(w) = 1. there exist a frequenay., in the ranged < w. < wyy, for

-02 00 02 04 06 08 10 12
’ Re(x)
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which Im[7/2(w)] < 0 at all frequencies less than. and also 4 l , T , .
that #?(w.) > 1. For simple dispersive properties like those 21 4
of the Debye material in Fig. ). = wpny, SO this require- o™ — —
ment is equivalent to the Nyquist requirement. However, for the e - Y
L . : - 24— x10 .

Lorentz material in Figs. 2 and 4, a band of frequencies with < A
Im[A'?(w)] > O persists neaww = 0, such that the normal E-4r 40x107"s
modes with lowes#? are unstable until the time step is reduced -6 — — 15x10 s
below~0.7 x 10717 s, Y 07x10™ s

A practical procedure to find the largest stable time step is ~10 , L l ‘ .
to first computeA, y,,. If Im[#’?(w)] < 0forall 0 < w < 0 1 2 3 4 5 6
wny WhenA, y, is used, then the largest stable time step is o (1016 Hz)

A¢ny. If not, thenA, should be reduced belog, -, until the

more general stability requirement in the previous paragraplFig. 4. Im[i"2(w)] for the same Lorentz material as in Figs. 2 and 3 for three
satisfied values ofA,, including Nyquist value of 4.& 10~*7 s. Positivdm[//?(w)] at
. . . . . . low frequencies for the larger twf, indicates instability at these frequencies,
2) Stability for Anisotropic Materials:For anisotropic ma- spA, must be reduced below 07 10-7 s for absolute stability.

terial properties, the situation is more complicated. In this case

/%2 is nqt useful_ and we must deal directly with the numeric%sults of Peredet al.[6], except for the factofl + oA, /2c0¢,.)
dispersion relation betweenandk. Instead of each reaimap- ;| (28) versug1— oA, /2e0¢,) in Peredzt al. Pereda confirms

ping to a singlgpointin the&2-plane, as before, each reahow [14] that the factor should bl + o A, /2¢0e,.)
maps to two polarizatiosurfacesn k-space. The transform of We determine the maximum time step from the Nyquist sta-

the realw line segmend < w < 2w, Is a solid region in ll)ility requirement by substituting the Nyquist frequencies-

k-space instead of a loop. Stability requires that the rectangu A, andk A into (28) and (29). vieldin
block of k-space containing the normal modes of the grid be g = /Ay into (28) (29), yielding

fully contained within that stability region. To rigorously de- HOEQE R 1

termine if a particulard, is stable, we must evaluate the two AZ = Z A_% (30)

solutions forw at each of the normal modes of the grid and de- p=ay,z |

termine if any of the solutions haven[w(k)|] > 0. Although for the TA approach and

somewhat laborious, this procedure will usually be faster than

performing repeated FDTD runs to find a stable oco <ET 4 %) % _ Z Ai% (31)
B=z,y,z

D. Isotropic Nondispersive Lossy Dielectric

To compare with previous results, we compute the numerid8f the TF approach. These results are also in agreement with
dispersion relation and stability time step for an isotropic losdyeredaet al. The TA result is the same stability limit as for

dielectric with relative dielectric constaat and conductivity & 0Ssless material with the samge In other wordso has no
o. The continuous dispersion relation is effect on stability when the TA approach is used. On the other
hand, the TF result implies a longer permissible time step than
j for a lossless material with the sa
HoE0 <E7, — i) UJQ = ](,'2. (27) e

gow . . .

E. Debye and Drude Dispersive Materials

Inthis casgi’(w) = fi(w) = poandé’(w) = er—jog(fi)/w,  |fwe treat a Drude material as a Debye material with nonzero

so use of (11), (21), and (24) yields the numerical dispersie@nqdyctivity [3], both materials have the continuous suscepti-

relations bility function
O—At jO—At 2 . 1
Hogo {ET <1 + 2505,,> 20 tan(ﬁt)} W sinc’(6:) x(w) = 11,2 (32)
= Y kjsinc(6p) (28) Ve
f=eux with
for the TF approach and 2(w) = £0o + (€5 — £00)x(@) (33)
L JoA | e = 2 gj for the Debye material and
ftoco {ET 2gq tan(et)} ¢ Smczwt) a @_z:y o Smcz(e,ﬁ) Y
B=z,y,z R o
(29) Ew) = oo — (wp/ve) x(w) + (34)

for the TA approach. Note that both forms converge to the cofor the Drude material (witlhy = Eowg/vc)- The discrete sus-
tinuous dispersion relation as,, A,, A, — 0andA; — 0, ceptibility corresponding to (32) is [3]

and that for lossless material they converge to the well-known

dispersion relations [2], [3] . They are also in agreement with the Xm = exp(—mu.Ap)[1 — exp(—veAy)] (35)
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so that the numerical susceptibility from (15) is 41— 8
1 — exp(—v.Ay) —~ AF ]
"(w) = . 36 < 2r -
The resultant numerical dispersion relation for the isotropic & O: o L = ’ 4
Debye material is L, 3 7
C -2
1 — exp(—veAy) 2 G - 1 =
o+ (6. — £ , sinc(# -4 ]
ko[ (e o) P s : 03
= 3 K3 siné(6,). (37) aly S
B=x,y,% -8 - - -2
The relation for the Drude material is 101_ Jd-4
1 —exp(—v.A E ]
I’LOEO EOO — (wp/ruc)Q XpF t) _12 | I I ] I | I T I | I T | I i1 1 1 _6
1= exp[—(jw +ve) Ad] 00 50 10 5 20
WA [ o
2 cos(6) | |2 siné(6,)
2jv. | sind6y) . . , . . . .
Fig. 5. Predicted numerical dispersion for Lorentz material with
_ 2 o g, = l,ée = O,w, = 10,6, = 1,andA, = 0.0001. Time steps
- Z kﬂ Sln(:2(9’g) (38) are6,A, = 0.0001 (heavy lines),6,A, = 0.1 (long-dashed lines), and
B=z,y,% 6,A, = 0.3 (short-dashed lines).
for the TF approach and
1- eXp(_UcAt) .
2
oo T c . 1-— —_ 7 3 A
Hogo {s (wp/ve) 1= exp[=(joo + 00) ] eXP[/ (o +J/1i) ] } ) (43)
N [1 — exp[—(jw + ap + 7 Bp) Ad]]
wrAy [exp(j6;) .
+ 23—1} [W w? sinc(6;) The dispersion relation and stability can then be determined
‘ straightforwardly as in the previous examples.
Z k% sinc(65) (39) As an example, Fig. 5 shows the effectivé(w) for a 1-D
Pl Lorentz material witle, = 1,e., = 0, w, = 10, ands, = 1. A

small spatial step correspondingkd, = 0.0001 was used to
The maximum Nyquist time step can again be determined animize spatial discretization effects and emphasize temporal

substitution of the temporal and spatial Nyquist frequencies in? ectsb'lg)rtl)eogme;toe%t_\r/\r/]as vanletd LO yleltc:] r?nos OTP.Atb?e;j. ¢
(37)-(39). A numerical example is given in Section IlI-B. ween ©. ando.s. The result snows that appreciable distor-

tion occurs wherd, A, > 0.03.

for the TA approach.

F. Lorentz Dispersive Material

The continuous (w) for a second-order Lorentz material can IIl. NUMERICAL RESULTS
be written as [3] In this section, we compare the predicted dispersion and sta-
(€5 — €00) bility properties to those obtained from actual FDTD runs. The
x(w) = w2 + 2jwb, — w? FDTD calculations were performed by custom code written
P

Yol either ip MATLAB or FOF\’.TRAN-. The examplgs incIupIe a
= (02 + 72) + 2jway, — o2 (40) comparison of numerlcal_dlspersmn for a_materlal that_ is both
pore P anisotropic and dispersive and evaluations of stability for
eo)/ B isotropic Drude and Lorentz materials.

whereq, = 6,3, = /w2 — 62, andy, = wl(e, —
Furthermore, from [3, eq. (8.42)] we can identify the compo- . . . R . . .
nents of (14) as A. Dispersion for Anisotropic Dispersive Dielectric
To demonstrate the procedure with a material that is

Ve = 0 — JPp (41) anisotropically dispersive, we modeled the situation shown in

Fig. 6. A TM-polarized plane wave is incident from vacuum

and . in they = 0 plane at an angle of incidence from the normal
A —J]7 . . ial i -
G = f) {1 — exp[—(ap — 33,) Al } (42) 0;. Thel matepal in the_Iovx{er half_ plane was assumed to have
ap — JPp lossy dielectric properties in thedirection withe,. = 2.0 and

0. = 0.01 siemens/m. In the-direction, the material has lossy
Debye dispersion with, = 2.0,¢,, = 1.0, . = 10° Hz, and

I 1 —exp[—(op — JBp)A] o, = 0.01 siemens/m. Periodic boundary conditions (BC's)
2 = jPyp) { [1— exp[—(jw + ap — jB3,)A,]]  Were imposed at the sides of the space to simulate an infinite

so that (15) yields

X'(w) = —
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interface. Perfectly matched layer (PML) BC'’s [2] were used
at the top and bottom.

The incident plane wave generates both a reflected wave in
vacuum and a decaying transmitted wave in the anisotropic ma-
terial. We predicted the compléx for the transmitted wave and
compared to the value obtained in FDTD runs. First consider -
the predicted value. The continuous dispersion relation for TM £, =8~80—‘&+me L (®)
waves in they = 0 plane in the material is determined by the @ "
solution of the determinant equation [13]

Vacuum
e =g =1

(e, —¢.)

D)=¢
Koere ()= & 1+ jodt,

_ w?poéy — k2 k.k.

O=1" "k wPuos. — k2| (44)

Fig. 6. Geometry for anisotropic dispersive experiment.

Since k, Iis preserved across the interface, it is
easily computed from the free-space wavelength as 10"
kr = (27/Xo)cos(6;). Then (44) becomes a polynomial
equation that yields two values &f for eachw, representing
forward and reverse solutions. To then determine the numerical
dispersion relation, we simply substituted the modifigdk’,
andxpepye(w) into (44), and solved fok. as a function of..

We determined “experimental” values for the complex
using a two-dimensional (2-D) FDTD calculation with the
TF method. The cell size was 0.05 m in both directions. The
time step was 1.178% 107! s. The FDTD problem was
run until stability was obtained (5000 time steps), and then Solid: [Re}
a Simplex method was used to determitie Fig. 7 shows Open: |Im|
comparisons among the continuous, modeled, and FDTD qofl v ey ]
values forf; = = /4. Although the FDTD values differ from 0.0 0.50 1.0 1.5
the continuous values by up to 10 percent, the FDTD and
model differ by less than about 0.1% over the full range of
Wavel.engths' This re_S|du:_:1I .error is an upper limit to the .aCtu[—allg. 7. Comparison of relative error . for FDTD versus continuous and
error in the model, since it is comparable to the uncertainty bTp versus model in anisotropic situation shown in Fig. 6 ith= /4.
the fitting procedure used to extract the FDTD values. Residual difference between model and FDTD is less than 0.1%.

z

/
" FDTD vs. continuous

LEURERLL]
Lol

103

f

Fractional errorin %

10*

Wavelength (m)

B. Stability with Drude Material TABLE |
, . ) COMPARISON OFPREDICTED AND ACTUAL TIME STEP REDUCTION NEEDED
We next determined the maximum stable time step for @rDrube MATERIAL (w, = 4.1699 x 105 Hz AND v, = 1.4373 x 1015

Drude material with isotropic properties, = 4.1699 x 10 Hz) USING TA UPDATE EQUATIONS
Hz andv, = 1.4373 x 10%° Hz. A 2-D isotropic grid was used.

The dispersion and stability analysis (with two dimensions) in-
dicated that TF update equations would be stable in an analys

Time-step reduction

using the 3-D Courant time stef.34. The FDTD calculation Grid Predicted Yielded Yielded

was indeed stable. However, when TA update equations wer  Spacing reduction stable unstable

used, analysis indicated that the problem would be unstable ¢ A, =4, required FDTD FDTD

A.sq and require a time-step reduction that varied with the grid (nm)

spacingA, = A,. We then performed FDTD runs using time 1.700 0.88608 0.8859 0.8861

steps surrounding the predpted values. As shown in Table | 15.07 0.39320 03931 0.3633

the agreement between predicted and achieved values was ve

good. 42.81 0.15957 0.1594 0.1595
78.65 0.08842 0.0883 0.0885

C. Stability with Lorentz Material

Finally, consider the stability of the previously discussed
Lorentz material in Figs. 2—4. The Courant time step of 4/fy lossless dielectric. As expected, the problem was unstable
x 107'7 s is smaller than the Nyquist requirement. Howeveat the Courant time step in all cases. The time step required to
a further time step reduction to 07 10~17 s is required to achieve stability decreased as the permittivity of the surrounding
satisfylm[7/?(w)] < 0 for 0 < w < wy,, and achieve absolute dielectric was increased and was always greater than the abso-
stability at all spatial frequencies. lute stability time step mentioned above.

To test the actual FDTD stability, we modeled a slab of the This behavior is apparently associated with formation of
Lorentz material surrounded on both sides either by vacuumaavity modes inside the Lorentz slab. The spatial frequencies
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at whichIm[7'?(w)] > 0 possess optical gain armdn result

in instability, depending on the overall structure surrounding
the material. The situation is analogous to a laser in whic
oscillation depends both on gain and on the presence of a

reflecting cavity.

IV. CONCLUSION

We have presented simple techniques for predicting numer-
ical dispersion and stability in FDTD calculations involving

possibly dispersive and anisotropic materials. The techniques
are applicable to the common case of linear FDTD calculation§l0]
that are second order in both space and time, use either the TA
or TF approach to incorporate conductivity, and use discretg 1
convolution to incorporate dispersion. To our knowledge, this

is the first such general procedure for computing numeric

dispersion and stability in the discrete-convolution FDTD
method.
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Microwave Guided Lettvol. 8, pp. 245-247, July 1998.

S. A. Cummer, “An analysis of new and existing FDTD methods for
isotropic cold plasma and a method for improving their accurdEB§gE
Trans. Antennas Propagatol. 45, pp. 392—-400, Mar. 1997.

C. Hulse and K. André, “Dispersive models for the finite-difference
time-domain method: Design, analysis, and implementatidnOpt.
Soc. Amer. Avol. 11, pp. 1802-1811, 1994.

P. G. Petropoulos, “Stability and phase error analysis of FD-TD in
dispersive dielectrics,JEEE Trans. Antennas Propagatol. 42, pp.
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Numerical dispersion is calculated by a simple substitutior4] J- A- Pereda, private communication, 1998.

into the continuous dispersion relation. Stability is then deter-
mined from the numerical dispersion relation. For isotropic ma-

terial properties, one can easily evaluate stability by first findi
the Nyquist time step and then, if necessary, reducing from t
value untillm[A/2(w)] < 0for0 < w < wny. FOr anisotropic
material properties, the stability can still be evaluated, but
quires evaluation of the multiple complex solutionsdaat each
of the normal modes of the grid.

Excellent agreement was achieved between predicted

FDTD-computed numerical dispersion of an anisotropic, dil -
persive material, and stability of isotropic Drude and Loren{z... rements. From 1
materials.

ACKNOWLEDGMENT

The authors would like to thank R. Luebbers and D. Kelle
for pointing out some of the previous work in this area.

REFERENCES

[1] K. S. Yee, “Numerical solution of initial boundary value problems in

volving Maxwell's equations in isotropic medid FEE Trans. Antennas

Propagat, vol. AP-14, pp. 302-307, 1966.
[2] A. Taflove, Computational Electrodynamics: The Finite-Differenc
Time-Domain Methad Boston, MA: Artech House, 1995.

William A. Beck (M'99) received the B.S. degree
in physics from Rensselaer Polytechnic Institute,
Troy, NY, in 1974, and the M.S. and Ph.D. degrees
in physics from the University of Maryland, College
Park, in 1980 and 1986, respectively.

Since September 1995, he has been with the
U.S. Army Research Laboratory, Adelphi, MD.
His research interests include computational
electromagnetics, device and system modeling for
quantum well and thermal infrared detectors, and
mobility spectrum analysis of magnetotransport
974 to 1995, he worked at Martin Marietta Laboratories,

Baltimore, MD, on a variety of infrared detectors and materials.

Mark Mirotznik was born in Sycamore, IL, in 1965.
He received the B.E. degree from Bradley University,
Peoria, IL, in 1988, and the M.S.E.E. and Ph.D. de-
grees from The University of Pennsylvania, Philadel-
phia, in 1991 and 1992, respectively.

Since September 1992, he has been with the
Department of Electrical Engineering and Computer
Science, The Catholic University of America, Wash-
ington, DC, as an Assistant Professor (1992-1998)
and as an Associate Professor (1998-present). His
research interests include computational electro-

[3] K. S. Kunz and R. J. Luebber3he Finite Difference Time Domain magnetics with applications in the fields of biomedical engineering, diffractive

Method in Electromagnetics Boca Raton, FL: CRC, 1993.

optics, and infrared devices. He has been a member of the IEEE Committee

[4] R. J. Luebbers and F. Hunsberger, “FDTD fdith-order dispersive on Radiation and Man and is currently an Associate Editor of the International
media,” IEEE Trans. Antennas Propagatvol. 40, pp. 1297-1301, Journal of Modeling and Simulation. In 1997 he was awarded the Distinguished
1992. Young Engineer Award from the Maryland Science Center.



