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Generalized Analysis of Stability and Numerical
Dispersion in the Discrete-Convolution FDTD

Method
William A. Beck, Member, IEEE,and Mark S. Mirotznik, Member, IEEE

Abstract—A simple technique is described for determining the
stability and numerical dispersion of finite-difference time-domain
(FDTD) calculations that are linear, second-order in space and
time, and include dispersion by the discrete convolution method.
The technique is applicable to anisotropic materials. Numerical
examples demonstrate the accuracy of the technique for several
anisotropic and/or dispersive materials.

Index Terms—FDTD methods, numerical dispersion, stability
analysis.

I. INTRODUCTION

I N 1966, Yee [1] introduced the finite-difference time-do-
main (FDTD) method using the leapfrog approximation of

Maxwell’s two time-dependent curl equations for isotropic loss-
less materials. Since then, the method has been extended to ma-
terials that are lossy, anisotropic, and dispersive [2], [3] and has
been extensively used to solve a wide range of practical prob-
lems.

Two important issues for all FDTD calculations are numer-
ical dispersion and stability. Numerical dispersion is introduced
by the discretization of Maxwell’s equations and causes elec-
tromagnetic waves to propagate with different wavelength and
attenuation in the FDTD grid than in continuous space. It also
results in anisotropic propagation, even when the material prop-
erties are isotropic. Stability analysis is necessary because the
FDTD algorithms are only conditionally stable. They typically
converge when the time step is smaller than some critical value,
but diverge exponentially for larger time steps.

The original FDTD technique has given rise to many varia-
tions, introduced to include loss, dispersion, and nonlinear mate-
rial properties as well as to improve accuracy and/or stability for
particular types of materials. However, there are now so many
variations that a fully general analysis of dispersion and stability
may not be possible. We focus our analysis here on FDTD pro-
cedures that are linear, use second-order finite differences and
include dispersion by the method of discrete convolution [3],
[4]. Such FDTD programs are widespread, for example in the
commercial program XFDTD [5].

The numerical dispersion and stability of the original FDTD
procedure for lossless nondispersive materials are well known
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[2], [3]. Others have studied numerical dispersion and stability
in lossy dielectrics [6] and dispersive dielectrics [7]–[12].
Weedon and Rappaport [10] implemented a general analysis
of dispersion and stability using a Padé approximation for
the frequency-dependent permittivity or conductivity. Their
procedure can be used to form a finite-difference approximation
for arbitrary dispersive properties obtained from measured
data if enough terms are included. Also, the coefficients of
the Padé approximation can be chosen to partially emulate
other methods, including the discrete convolution method.
However, their method is not applicable to the complex discrete
convolution used to describe Lorentz dispersion [4] (although
their method can be used to treat Lorentz materials modeled
using differential equation-based methods).

In this paper, we present a technique for determining numer-
ical dispersion by simple substitution into the continuous (non-
numerical) dispersion relation. The procedure is applicable to
all anisotropic and dispersive materials whose dispersion is sim-
ulated by discrete convolution. We then present a simple tech-
nique for evaluating stability using the numerical dispersion re-
lation. Several numerical examples are presented to demonstrate
the accuracy of the techniques.

II. A NALYSIS

A. Continuous Dispersion

Using meter-kilogram-second-ampere (MKSA) units, the
Maxwell curl equations that are solved by the FDTD procedure
are

(1)

(2)

where indicates the partial derivative with respect to time,
is the angular frequency, is the electric field, is the mag-
netic field, is the electric flux density, is the magnetic flux
density, and are electric and magnetic susceptibili-
ties, respectively, is the conductivity, and is an equivalent
magnetic resistivity. The material properties , and

may be tensors in the case of anisotropic materials. Both
and are assumed to be independent of.

To determine the dispersion relation, we consider harmonic
plane wave solutions of the form

(3)
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where represents or is the propagation vector,is the
position, and is the time. In this case, (1) and (2) can be written
as

(4)

(5)

where

(6)

(7)

are the complex permeability and permittivity, respectively.
Both and may be tensors. Equations (4) and (5) can then be
solved for the continuous dispersion relation .

For isotropic material properties, the continuous dispersion is
the scalar equation

(8)

For anisotropic (nonmagnetic) dielectrics, the three-dimen-
sional (3-D) dispersion is the solution of the determinant equa-
tion [13] in (9), shown at the bottom of the page.

Solutions are also available for anisotropic magnetic proper-
ties. Although the result may be complicated, the continuous
dispersion relation is generally already known for the materials
being simulated in an FDTD problem.

B. Numerical Dispersion Analysis

Consider how the continuous dispersion is altered by the ap-
proximations made in the FDTD procedure. Three approxima-
tions are used in the common version of FDTD that we have
analyzed: replacement of continuous derivatives by finite dif-
ferences, evaluation of and in (1) and (2) at shifted
times, and replacement of the frequency-dependent susceptibil-
ities by discrete convolutions in the time domain. We consider
each of these in turn.

In the following discussion, is the full time step between
successive values of (or and is the full spatial step in
the direction . Where both primed and unprimed
variables are used, the primed and unprimed versions are to be
used in the numerical and continuous dispersion relations, re-
spectively.

1) Use of Finite Differences:Let indicate the finite-dif-
ference operator , where is
the step size for the spatial variableand similarly let

. Also let indicate the finite-differ-
ence curl operator obtained from the continuous curl operator
by replacement of each of the derivatives with respect to co-
ordinate by . Using this notation, it is easy to show that

the continuous relations and
transform into the finite-difference expressions

sinc and , respectively, where
sinc , , and sinc
. Use of these finite-difference operators in (1) and (2)

is equivalent to replacing in (4) and (5) by , whose compo-
nents are

sinc sinc (10)

2) Time Shifting of and : Time shifting of
and is needed since a straightforward discretization of
(1) and (2) does not yield proper time staggering ofand .
Therefore, these fields must be replaced by some combination
of properly staggered fields. Letting represent the electric
field at time step , Taflove [2] proposed using the average of

and as a reasonable estimate of . On the other
hand, Kunz and Luebbers [3] proposed using to improve
stability when lossy materials are used. Like Peradaet al.[6], we
refer to these as the time-average (TA) and time-forward (TF)
approaches, respectively. It can be shown that the effect of the
time shifting is equivalent to replacingand by
and , respectively, with defined for the two
approaches as

sinc
(TF)

sinc
(TA)

(11)

3) Use of Discrete Convolution:Finally, the frequency-do-
main susceptibilities and are replaced by discrete
time-domain convolutions, and , given by [3]

(12)

with

(13)

and the analogous forms for . In many cases (including
the important cases of Debye, Drude, and Lorentz dispersion),

can be expressed in the recursive form [3]

Re (14)

where Re indicates the real part,is a complex function that
depends on , but not on and is a complex frequency. In

(9)
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these cases, we can evaluate the sum in (12) to obtain the explicit
form

(15)

where indicates complex conjugation. A similar procedure
yields an analogous expression for .

4) Net Effect on Numerical Dispersion:Incorporating all
three of the approximations, the discrete versions of (4) and (5)
are

(16)

(17)

with

(18)

(19)

Note that the discrete equations (16) and (17) have exactly
the same form as the continuous equations (4) and (5), except
for the modified parameters and .

Therefore, to determine the numerical dispersion relation, we
first evaluate the numerical susceptibility using (15) if the dis-
persion can be written in the recursive form (14) or, otherwise,
by numerically evaluating the sum in (12). If either or
are tensors, we perform the appropriate substitution for each of
the components. We then substitute the modified
and into the continuous dispersion relation (e.g., (8) for an
isotropic material or (9) for an anisotropic dielectric) to obtain
the numerical dispersion relation. This substitution method per-
mits evaluation of numerical dispersion even for complicated
materials with dispersive anisotropic properties.

For isotropic material properties, the numerical version of (8)
is again a scalar equation that can be written as

(20)

where is the complex numerical refractive index defined
by

(21)

and is the speed of light.
When and are generated byrecursivediscrete

convolution, so that (15) applies, the function has two
interesting properties that will be useful for stability analysis.
First, it can be shown that and are both real at the
temporal Nyquist frequency and so
is also real. Second, and are both conjugate-sym-
metric around , i.e., and so

is also conjugate-symmetric around .
It is interesting that the three approximations used in the

FDTD procedure are each associated with a different time or
length scale. First, replacement of continuous space and time

derivatives with finite differences leads to the modified,
whose deviation from is determined by and .
This results in a simple (direction-dependent) scaling of the
dispersion relation along the-axis, but no change in the
spectral shape. Second, the use of time-shifted fields to evaluate
the loss terms in (1) and (2) leads to scaling ofand by

, again determined by . As shown elsewhere [6], the
associated error in the real part of is proportional to ,
where is the relaxation time of the medium. Third,
approximation of and by discrete convolutions leads
to the modified values in (15), with the deviation determined by
both and . Both the second and third effects change
the spectral shape of the dispersion relation. Therefore, to
accurately represent the problem, the spatial stepsmust
be small compared to and the time step must be small
compared to all three time scales, , , and .

C. General Stability Analysis

Consider a region of FDTD grid that is homogeneously filled
with a possibly dispersive and anisotropic material. The instan-
taneous fields at any timein that region can be written as a
Fourier sum over the normal modes of the grid, which are plane
waves withreal and with . Note that because
of the spatial interleaving of and , the maximum is the
spatial Nyquist frequency corresponding to a spacing of
and is twice the Nyquist frequency for the individualand
fields. Similarly, the maximum temporal frequency is ,
corresponding to twice the temporal Nyquist frequency for the
individual fields.

Since the numerical dispersion relation yields for any
-mode of the FDTD grid, the problem will be absolutely stable

if and only if for all normal modes. Otherwise,
numerical noise due to finite precision arithmetic will eventually
excite any -mode associated with and the mode
will grow without limit.

1) Stability for Isotropic Materials:Consider isotropic ma-
terial properties. We first present a graphical treatment using
stability diagrams to show the mathematical basis of the anal-
ysis. Based on this analysis, we then present a simple set of rules
for evaluating stability.

It is convenient to define the normalized scalar variable

(22)

where is the dimensionality of the problem and also the func-
tion

(23)

so that we can rewrite (20) as

(24)

Equation (24) can be viewed as a transformation between the
complex plane of values and the complex plane of values.
The upper half of the -plane represents unstable solutions; the
lower half and the real axis represent stable solutions. In the
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-plane, the normal modes of the grid fall along a line segment
on the real axis with .

To evaluate stability, we map the unstable upper half of the
-plane into the -plane. We obtain the boundary of this re-

gion by mapping the real- axis into the -plane. We need
only consider , which maps to a closed loop in
the -plane, beginning at the origin, crossing the real-axis
when , and returning to the origin when .
The values of inside the closed loop correspond to stable so-
lutions, while those outside the loop are unstable. The FDTD
problem will be absolutely stable if, and only if, all normal
modes of the grid lie inside the stability loop.

For a simple example, consider a Debye material with

(25)

Using typical parameters for water
s and a cell size of 37.5m, the one-di-

mensional (1-D) Courant time step is 1.2510 s. Fig. 1
shows the corresponding stability diagram. All normal modes
are in the stable region inside the loop, so the region containing
this material would be stable.

Fig. 1 illustrates two general properties of stability loops that
derive from the previously mentioned symmetries of .
First, since is real, the stability loop crosses the real
axis when . Second, because and are
conjugate-symmetric and symmetric, respectively, around,
the stability loop has mirror symmetry across the real-axis.

Fig. 2 shows a more complicated stability diagram for a
Lorentz material with

(26)

Hz, Hz, , and
, a cell size of 12 nm, and the corresponding Courant time

step of 4.0 10 s. In this case, there is no stable region; the
unstable upper half of the-plane maps to the entire -plane.
Therefore, all modes, including the normal modes of the grid,
are unstable. However, as shown in Fig. 3, reducing the time step
to s yields absolute stability of all normal modes.

The stability diagram is informative because it explicitly
shows any overlap between the states in the unstable upper
half of the -plane and the normal modes of the grid in the

-plane. However, we can evaluate stability at a givenby
direct examination of the properties of, without plotting the
stability diagram. First note that anecessarycondition for all
normal modes of the grid to lie inside the stability loop is that

and therefore, since .
We refer to this as the Nyquist stability requirement. The
critical time step corresponding to this condition is called
the Nyquist time step, indicated by , which one can
obtain simply by substituting the temporal and spatial Nyquist
frequencies and into
the numerical dispersion relation and solving for . It is
easy to show that this yields the usual Courant value of

when .

Fig. 1. Stability loop for a Debye material (water) with" = 81:0," = 1:8,
andt = 9:4� 10 s, cell size of 37.5�m, and Courant time step. Shaded
areas are unstable. All normal modes are inside the loop, indicating that the
region containing this material should be stable.

Fig. 2. Stability loop for a Lorentz material with! = 4:0� 10 Hz, � =
0:28� 10 Hz, " = 2:25; " = 1:0, cell size of 12 nm, and Nyquist time
step. All modes are associated withIm["̂ (!)] > 0 so FDTD problem will be
unstable.

Fig. 3. Stability loop for the same Lorentz material as in Fig. 2, but with time
step reduced to 0.7� 10 s. All normal modes are stable.

However, the Nyquist requirement is notsufficientto ensure
stability, as demonstrated by the Lorentz example in Fig. 2.
In that example, at low frequencies (Fig. 4)
such that the stability loop is “folded” across the real-axis
and does not enclose any stable region. Stability requires that
there exist a frequency , in the range for
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which at all frequencies less than and also
that . For simple dispersive properties like those
of the Debye material in Fig. 1, , so this require-
ment is equivalent to the Nyquist requirement. However, for the
Lorentz material in Figs. 2 and 4, a band of frequencies with

persists near , such that the normal
modes with lowest are unstable until the time step is reduced
below s.

A practical procedure to find the largest stable time step is
to first compute . If for all

when is used, then the largest stable time step is
. If not, then should be reduced below until the

more general stability requirement in the previous paragraph is
satisfied.

2) Stability for Anisotropic Materials:For anisotropic ma-
terial properties, the situation is more complicated. In this case

is not useful and we must deal directly with the numerical
dispersion relation betweenand . Instead of each realmap-
ping to a singlepoint in the -plane, as before, each realnow
maps to two polarizationsurfacesin -space. The transform of
the real- line segment is a solid region in

-space instead of a loop. Stability requires that the rectangular
block of -space containing the normal modes of the grid be
fully contained within that stability region. To rigorously de-
termine if a particular is stable, we must evaluate the two
solutions for at each of the normal modes of the grid and de-
termine if any of the solutions have . Although
somewhat laborious, this procedure will usually be faster than
performing repeated FDTD runs to find a stable.

D. Isotropic Nondispersive Lossy Dielectric

To compare with previous results, we compute the numerical
dispersion relation and stability time step for an isotropic lossy
dielectric with relative dielectric constant and conductivity

. The continuous dispersion relation is

(27)

In this case and ,
so use of (11), (21), and (24) yields the numerical dispersion
relations

sinc

sinc (28)

for the TF approach and

sinc sinc

(29)

for the TA approach. Note that both forms converge to the con-
tinuous dispersion relation as and ,
and that for lossless material they converge to the well-known
dispersion relations [2], [3] . They are also in agreement with the

Fig. 4. Im[n̂ (!)] for the same Lorentz material as in Figs. 2 and 3 for three
values of� , including Nyquist value of 4.0� 10 s. PositiveIm[n̂ (!)] at
low frequencies for the larger two� indicates instability at these frequencies,
so� must be reduced below 0.7� 10 s for absolute stability.

results of Peredaet al.[6], except for the factor
in (28) versus in Peredaet al.. Pereda confirms
[14] that the factor should be .

We determine the maximum time step from the Nyquist sta-
bility requirement by substituting the Nyquist frequencies

and into (28) and (29), yielding

(30)

for the TA approach and

(31)

for the TF approach. These results are also in agreement with
Peredaet al.. The TA result is the same stability limit as for
a lossless material with the same. In other words, has no
effect on stability when the TA approach is used. On the other
hand, the TF result implies a longer permissible time step than
for a lossless material with the same.

E. Debye and Drude Dispersive Materials

If we treat a Drude material as a Debye material with nonzero
conductivity [3], both materials have the continuous suscepti-
bility function

(32)

with

(33)

for the Debye material and

(34)

for the Drude material (with . The discrete sus-
ceptibility corresponding to (32) is [3]

(35)
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so that the numerical susceptibility from (15) is

(36)

The resultant numerical dispersion relation for the isotropic
Debye material is

sinc

sinc (37)

The relation for the Drude material is

sinc
sinc

sinc (38)

for the TF approach and

sinc
sinc

sinc (39)

for the TA approach.
The maximum Nyquist time step can again be determined by

substitution of the temporal and spatial Nyquist frequencies into
(37)–(39). A numerical example is given in Section III-B.

F. Lorentz Dispersive Material

The continuous for a second-order Lorentz material can
be written as [3]

(40)

where , and .
Furthermore, from [3, eq. (8.42)] we can identify the compo-
nents of (14) as

(41)

and

(42)

so that (15) yields

Fig. 5. Predicted numerical dispersion for Lorentz material with
" = 1; " = 0; ! = 10; � = 1, and� = 0:0001. Time steps
are � � = 0:0001 (heavy lines),� � = 0:1 (long-dashed lines), and
� � = 0:3 (short-dashed lines).

(43)

The dispersion relation and stability can then be determined
straightforwardly as in the previous examples.

As an example, Fig. 5 shows the effective for a 1-D
Lorentz material with , , and . A
small spatial step corresponding to = 0.0001 was used to
minimize spatial discretization effects and emphasize temporal
effects. The time step was varied to yield ratios of be-
tween 0.0001 and 0.3. The result shows that appreciable distor-
tion occurs when .

III. N UMERICAL RESULTS

In this section, we compare the predicted dispersion and sta-
bility properties to those obtained from actual FDTD runs. The
FDTD calculations were performed by custom code written
either in MATLAB or FORTRAN. The examples include a
comparison of numerical dispersion for a material that is both
anisotropic and dispersive and evaluations of stability for
isotropic Drude and Lorentz materials.

A. Dispersion for Anisotropic Dispersive Dielectric

To demonstrate the procedure with a material that is
anisotropically dispersive, we modeled the situation shown in
Fig. 6. A TM-polarized plane wave is incident from vacuum
in the plane at an angle of incidence from the normal

. The material in the lower half-plane was assumed to have
lossy dielectric properties in the-direction with and

siemens/m. In the-direction, the material has lossy
Debye dispersion with , Hz, and

siemens/m. Periodic boundary conditions (BC’s)
were imposed at the sides of the space to simulate an infinite
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interface. Perfectly matched layer (PML) BC’s [2] were used
at the top and bottom.

The incident plane wave generates both a reflected wave in
vacuum and a decaying transmitted wave in the anisotropic ma-
terial. We predicted the complex for the transmitted wave and
compared to the value obtained in FDTD runs. First consider
the predicted value. The continuous dispersion relation for TM
waves in the plane in the material is determined by the
solution of the determinant equation [13]

(44)

Since is preserved across the interface, it is
easily computed from the free-space wavelength as

. Then (44) becomes a polynomial
equation that yields two values of for each , representing
forward and reverse solutions. To then determine the numerical
dispersion relation, we simply substituted the modified ,
and into (44), and solved for as a function of .

We determined “experimental” values for the complex
using a two-dimensional (2-D) FDTD calculation with the
TF method. The cell size was 0.05 m in both directions. The
time step was 1.1785 10 s. The FDTD problem was
run until stability was obtained (5000 time steps), and then
a Simplex method was used to determine. Fig. 7 shows
comparisons among the continuous, modeled, and FDTD
values for . Although the FDTD values differ from
the continuous values by up to 10 percent, the FDTD and
model differ by less than about 0.1% over the full range of
wavelengths. This residual error is an upper limit to the actual
error in the model, since it is comparable to the uncertainty in
the fitting procedure used to extract the FDTD values.

B. Stability with Drude Material

We next determined the maximum stable time step for a
Drude material with isotropic properties
Hz and Hz. A 2-D isotropic grid was used.
The dispersion and stability analysis (with two dimensions) in-
dicated that TF update equations would be stable in an analysis
using the 3-D Courant time step . The FDTD calculation
was indeed stable. However, when TA update equations were
used, analysis indicated that the problem would be unstable at

and require a time-step reduction that varied with the grid
spacing, . We then performed FDTD runs using time
steps surrounding the predicted values. As shown in Table I,
the agreement between predicted and achieved values was very
good.

C. Stability with Lorentz Material

Finally, consider the stability of the previously discussed
Lorentz material in Figs. 2–4. The Courant time step of 4.0

10 s is smaller than the Nyquist requirement. However,
a further time step reduction to 0.7 10 s is required to
satisfy for and achieve absolute
stability at all spatial frequencies.

To test the actual FDTD stability, we modeled a slab of the
Lorentz material surrounded on both sides either by vacuum or

Fig. 6. Geometry for anisotropic dispersive experiment.

Fig. 7. Comparison of relative error ink for FDTD versus continuous and
FDTD versus model in anisotropic situation shown in Fig. 6 with� = �=4.
Residual difference between model and FDTD is less than 0.1%.

TABLE I
COMPARISON OFPREDICTED AND ACTUAL TIME STEP REDUCTION NEEDED

FORDRUDE MATERIAL (! = 4:1699� 10 Hz AND v = 1:4373� 10
Hz) USING TA UPDATE EQUATIONS

by lossless dielectric. As expected, the problem was unstable
at the Courant time step in all cases. The time step required to
achieve stability decreased as the permittivity of the surrounding
dielectric was increased and was always greater than the abso-
lute stability time step mentioned above.

This behavior is apparently associated with formation of
cavity modes inside the Lorentz slab. The spatial frequencies
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at which possess optical gain andcan result
in instability, depending on the overall structure surrounding
the material. The situation is analogous to a laser in which
oscillation depends both on gain and on the presence of a
reflecting cavity.

IV. CONCLUSION

We have presented simple techniques for predicting numer-
ical dispersion and stability in FDTD calculations involving
possibly dispersive and anisotropic materials. The techniques
are applicable to the common case of linear FDTD calculations
that are second order in both space and time, use either the TA
or TF approach to incorporate conductivity, and use discrete
convolution to incorporate dispersion. To our knowledge, this
is the first such general procedure for computing numerical
dispersion and stability in the discrete-convolution FDTD
method.

Numerical dispersion is calculated by a simple substitution
into the continuous dispersion relation. Stability is then deter-
mined from the numerical dispersion relation. For isotropic ma-
terial properties, one can easily evaluate stability by first finding
the Nyquist time step and then, if necessary, reducing from that
value until for . For anisotropic
material properties, the stability can still be evaluated, but re-
quires evaluation of the multiple complex solutions forat each
of the normal modes of the grid.

Excellent agreement was achieved between predicted and
FDTD-computed numerical dispersion of an anisotropic, dis-
persive material, and stability of isotropic Drude and Lorentz
materials.
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