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Abstract

We derive a sufficient condition for stability in probability of an equilibrium of a randomly perturbed
map in Rd. This condition can be used to stabilize weakly unstable equilibria by random forcing. Ana-
lytical results on stabilization are illustrated with numerical examples of randomly perturbed linear and
nonlinear maps in one- and two-dimensional spaces.

1 Introduction

The idea of stabilizing unstable equilibria of dynamical systems by noise originates from the pioneering
work of Khasminskii on stochastic stability in the nineteen-sixties [22]. Stochastic stabilization has im-
portant implications for control theory [7, 26, 5, 6] and for numerical methods for stochastic differential
equations [28, 29, 17, 18, 12]. Furthermore, the interplay of stability and noise is important for understand-
ing many dynamical phenomena in applied science including stochastic synchronization [1, 14, 27, 16],
stochastic resonance [25, 24, 15], and noise-induced dynamics [8, 13, 19].

In this paper, we study the following difference equation in Rd

xn+1 = (A+B)xn + q(xn), (1.1)

where q(x) = O(|x|2) is a smooth function, A and B are deterministic and stochastic d × d matrices
respectively. We assume that the spectral radius ofA is slightly greater than 1, ρ(A) = 1+ε, 0 < ε� 1 and
ask how to choose mean-zero matrix B = B(ε) to stabilize the equilibrium at the origin. Our motivation
for considering (3.1) is two-fold. On one hand, we want to understand how to tame weak instability in
general d-dimensional maps by noise. Eventually, we want to apply these results to stabilize periodic orbits
of randomly perturbed stochastic ordinary differential equations in Rd+1. In this case, (3.1) represents a
Poincare map [20]. Stochastic stabilization of period orbits remains largely unexplored area of research
with many promissing applications.
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For scalar difference equations, stabilization was studied by Appleby, Mao, and Rodkina [6] and by
Appleby, Berkolaiko, and Rodkina [4] (see also [2, 11, 3, 9]). Certain higher-dimensional models similar to
(3.1) were analyzed in the context of stability of finite-difference schemes (see [12] and references therein).
In this paper, we show that one can achieve stability with high probability in a general d-dimensional model
(3.1) under fairly general assumptions on B. The key requirement for stabilization is that matrix A−1B
must be diagonally dominant in the mean square sense.

The organization of this paper is as follows. In the next section, we prove a sufficient condition for
stability (in probability) of an equilibrium in a d-dimensional map (cf. Theorem 2.4). To prove this theorem,
we use the Strong Law of Large Numbers to show that the Lyapunov exponent of a typical trajectory is
negative. The rest of the proof follows an argument developed for deterministic dynamical systems [23].
In §3 we apply Theorem 2.4 to the problem of stabilization. In §4, we illustrate our results with several
numerical examples using one- and two-dimensional systems.

2 Stochastic stability

Consider an initial value problem for the following difference equation

xn = Mnxn−1 + q(xn−1), n ≥ 1. (2.2)

where (Mn) are independent copies of a d × d random matrix M ; q : Rd → Rd is a continuous function
such that

|q(x)| ≤ C1|x|2, x ∈ Bδ = {x : |x| < δ} (2.3)

for some C1, δ > 0. The initial condition x0 is assumed to be deterministic.

Definition 2.1. [22] The equilibrium at the origin of (2.2) is said to be stable in probability if for any ε > 0

lim
x0→0

P{sup
n≥1
|xn| > ε} = 0.

Theorem 2.2. Suppose
0 < λ = −E log ‖M‖ <∞. (2.4)

Then the equilibrium at the origin of (2.2) is stable in probability.

Remark 2.3. In (2.4), ‖·‖ is an arbitrary matrix norm. The same matrix norm is used throughout this section.

Condition (2.4) guarantees that the largest Lyapunov exponent of a generic trajectory is negative. This
implies stability of xn ≡ 0 with high probability. Theorem 2.2 is a stochastic counterpart of the result of
Koçak and Palmer for deterministic maps [23, Theorem 4]. It follows immediately from the proof of the
following lemma, which also shows that the rate of convergence of (xn) to the origin is exponential.

Lemma 2.4. Under the assumptions of Theorem 2.2, the following holds: for any 0 < ε < 1 there exists
0 < η ≤ δ such that

|xi| ≤ ηµi, i = 0, 1, 2, . . . (2.5)

with probability at least 1− ε provided |x0| is sufficiently small.
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Proof: Denote λk := log ‖Mk‖. By the Strong Law of Large Numbers [10, Theorem 22.1],

1

n

n∑
k=1

λk
a.s.−→ E log ‖M‖ = −λ < 0 as n→∞.

Thus, for every ε > 0 there exists n0 such that

P

 ⋃
n≥n0

{∣∣∣∣∣ 1n
n∑
k=1

λk − (−λ)

∣∣∣∣∣ > ε

} <
ε

2
. (2.6)

In the remainder of the proof, we assume that 0 < ε < min{1, λ} is arbitrary but fixed. By (2.6),

− λ− ε ≤ 1

n

n∑
k=1

λk ≤ −λ+ ε (2.7)

holds for all n > n0 on the set of probability at least 1− ε/2. From now on, we consider realizations (Mk)
for which (2.7) holds.

Using (2.7), for any n > k ≥ n0, we have

n∏
j=k+1

‖Mj‖ =

∏n
j=1 ‖Mj‖∏k
j=1 ‖Mj‖

≤ exp{n(−λ+ ε)− k(−λ− ε)} = µn−ke2kε.

Further, for every 0 ≤ j < n0

n∏
i=j+1

‖Mi‖ =

n0∏
i=j+1

‖Mi‖
n∏

i=n0+1

‖Mi‖ ≤

 n0∏
i=j+1

‖Mi‖

µn−n0e2n0ε

≤ µn−je2n0ε max
j<n0


n0∏

i=j+1

‖Mi‖

 .

Since maxj<n0

{∏n0
i=j+1 ‖Mi‖

}
is an integrable random variable, there exists C2 = C2(ε) such that

P

e2n0ε max
j<n0


n0∏

i=j+1

‖Mi‖

 > C2

 ≤ e2n0ε

C2
E

max
j<n0

n∏
i=j+1

‖Mi‖

 ≤ ε

2
.

It then follows that on the set of probability at least 1− ε, for all n ≥ k ≥ 1 we have

n∏
i=k

‖Mi‖ ≤ C2µ
n−k+1. (2.8)
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Let 0 < η ≤ δ be arbitrary but fixed. Choose δ1 > 0 such that

C2µδ1 + C1δ
2
1 ≤ η, (2.9)

δ1 exp{C1C2η/µ
2(1− µ)} ≤ η. (2.10)

Next, we prove that
|xi| ≤ ηµi, i = 1, 2, . . . , (2.11)

provided |x0| ≤ δ1.

We prove (2.11) by induction. The statement in (2.11) clearly holds for i = 1 (cf. (2.2), (2.8), (2.9)).
Assume that (2.11) holds for 0 ≤ i < p for p ≥ 1. We need to show that in this case (2.11) holds for i = p
as well. To this effect, we note that

xp =

(
p−1∏
k=0

Mp−k

)
x0 +

p+1∑
j=2

(
p−j∏
k=0

Mp−k

)
q(xj−2), (2.12)

as follows by iterating (2.2).

Using the triangle inequality, submultiplicativity of the operator norm, and (2.3), from (2.13) we obtain

|xp| ≤

(
p−1∏
k=0

‖Mp−k‖

)
|x0|+ C1

p+1∑
j=2

(
p−j∏
k=0

‖Mp−k‖

)
|xj−2|2. (2.13)

Here, we are also using the induction hypothesis, which implies that xj ∈ Bδ, j = 0, 1, . . . , p − 1 so that
(2.3) is applicable. Using (2.8) , we further derive

|xp| ≤ µp|x0|+ C3

p+1∑
j=2

µp−j+1|xj−2|2, C3 = C1C2. (2.14)

By applying the induction hypothesis to the quadratic term on the right-hand side of (2.14), for

zi = µi|xi|, i = 0, 1, 2, . . . , (2.15)

we have

zp ≤ z0 + C3η

p+1∑
j=2

µj−3zj−2 = z0 +
C3η

µ2

p∑
j=1

µjzj−1. (2.16)

Using the discrete Gronwall’s inequality (cf. Lemma 2.5), from (2.16) we have

zp ≤ z0 exp{C3η/µ
2

p∑
k=1

µk} ≤ z0 exp{C3η/µ
2(1− µ)} ≤ η,

where we used (2.10) to derive the last inequality. Thus, |xp| ≤ ηµp (cf. (2.15)).
�
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Lemma 2.5. (cf. [23]) Let {zk}∞k=0and {µk}∞k=1 be two nonnegative sequences such that

zk ≤ B +

k∑
j=1

µjzj−1, k ∈ [p], (2.17)

for some p ∈ N. Then for k ∈ [p]

zk ≤ B exp


k∑
j=1

µj

 .

3 Stabilization

Consider the following difference equation in Rd:

xn+1 = (A+B(ε))xn + f(xn), n = 0, 1, 2, . . . , (3.1)

where f(x) = O(|x|2), A ∈ Rd×d is an invertible matrix with the spectral radius

ρ(A) := max{|λ| : λ is an eigenvalue of A} = 1 + ε, 0 < ε� 1. (3.2)

(Bn(ε)) are independent copies of a random matrix B(ε) ∈ Rd×d depending on a small parameter ε. We
assume that the entries of B are mean zero (possibly dependent) random variables (RVs). Specifically, we
let B = AG, where the entries (gij) of G are arbitrarily dependent, mean zero, non–degenerate RVs with
finite third moments. In particular, we have

∃K > 0 (E|gij |3)1/3 ≤ Kσij , 1 ≤ i, j ≤ d, (3.3)

where we have set σ2ij := var(gij), (i, j) ∈ [n]2. We also let σ := (σ11, σ22, . . . , σnn) and assume that
limε→0 |σ(ε)| = 0.

We want to identify conditions on B that would stabilize the weakly unstable equilibrium in (3.1) with
high probability. In the light of Theorem 2.4, stabilization will be achieved if

E log ‖A+B‖ < 0. (3.4)

Recall that it is sufficient to establish (3.4) in any matrix norm (see Remark 2.3). In the remainder of this
section, we will use a matrix norm that satisfies

ρ(A) ≤ ‖A‖ ≤ ρ(A) + κ, (3.5)

where κ > 0 is arbitrary but fixed. Such norm always exists (cf. [21, Lemma 5.6.10]).

Lemma 3.1. Suppose A and B satisfy the assumptions of this section. In addition, let

1

2
|σ(ε)|2 − ε > 0 (3.6)

and
lim
ε→0

σij
σ2ii

= 0, i 6= j. (3.7)

Then (3.4) holds for sufficiently small ε > 0.
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Proof: Using the submultiplicativity of the matrix norm, (3.2), and (3.5), we have

log ‖A+ σB‖ = log ‖A(I +G)‖ ≤ ln(1 + ε+ κ) + ln ‖I +G‖. (3.8)

We rewrite the second term on the right-hand side of (3.8) as follows

diag(1 + gii) + G̃,

where all off–diagonal terms of I +G are collected in G̃. By Gershgorin Theorem (cf. [21]),

‖I +G‖ ≤ ρ(I +G) + κ ≤ max
i

(
|1 + gii|+

∑
j 6=i
|gij |

)
+ κ.

By the monotonicity of the logarithm,

log ‖I +G‖ ≤ max
i

log(|1 + gii|+
∑
j 6=i
|gij |+ κ) ≤

∑
i

log(|1 + gii|+
∑
j 6=i
|gij |+ κ).

Taking expectations on both sides we get

E log ‖I +G‖ ≤
d∑
i=1

E log
(
|1 + gii|+

∑
j 6=i
|gij |+ κ

)
.

For each i

E log
(
|1 + gii|+

∑
j 6=i
|gij |+ κ

)
≤ E log(1 + gii +

∑
j 6=i
|gij |+ κ)I|gii|<1

+ E log
(

1 + |gii|+
∑
j 6=i
|gij |+ κ

)
I|gii|≥1. (3.9)

By expanding the logarithm in the first term and using the fact that Egii = 0 we get

E

gii +
∑
j 6=i
|gij |+ κ−

(gii +
∑

j 6=i |gij |+ κ)2

2
+O((|gii|+

∑
j 6=i
|gij |+ κ)3)

 I|gii|<1

= E

gii +
∑
j 6=i
|gij |+ κ− 1

2
(gii +

∑
j 6=i
|gij |+ κ)2 +O((|gii|+

∑
j 6=i
|gij |+ κ)3)


−E

gii +
∑
j 6=i
|gij |+ κ− 1

2
(gii +

∑
j 6=i
|gij |+ κ)2 +O((|gii|+

∑
j 6=i
|gij |+ κ)3)

 I|gii|≥1

=
∑
j 6=i

E|gij |+ κ− 1

2
Eg2ii −

∑
j 6=i

Egii|gij | −
1

2
E(
∑
j 6=i
|gij |+ κ)2 + EO((|gii|+

∑
j 6=i
|gij |+ κ)3)

+O(

3∑
m=1

E(|gii|+
∑
j 6=i
|gij |+ κ)mI|gii|≥1).
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Note that since log(1 + x) ≤ x, a bound on the big ’Oh’ term will also give a bound on (3.9).

We estimate the terms above as follows∑
j 6=i

E|gi,j | =
∑
j 6=i

O(σi,j) = o(σ2i,i), (by (3.7))

∣∣∑
j 6=i

Egi,i|gi,j |
∣∣ ≤ σi,i

∑
j 6=i

σi,j = o(σ2i,i), (by the Cauchy-Schwarz inequality and (3.7))

E(
∑
j 6=i
|gi,j |+ κ)2 = O(κ2) +

∑
j 6=i

O(σ2i,j) = o(κ) + o(σ2i,i),

E(|gi,i|+
∑
j 6=i
|gi,j |+ κ)3 = O(E|gii|3) +

∑
j 6=i

O(E|gij |3) +O(κ3),

E(|gi,i|+
∑
j 6=i
|gi,j |+ κ)mI|gii|>1 = O(E|gi,i|mI|gi,i|>1) +

∑
j 6=i

O(E|gi,j |m) +O(κmP (|gii| > 1)).

For m = 1, 2 and j 6= i, E|gi,j |m = o(σ2ij) as verified above. Further, for 1 ≤ m ≤ 3

E|gii|mI|gii|>1 ≤ E|gii|3I|gii|>1 ≤ E|gii|3, κmP (|gii| > 1) ≤ κmE|gii|3.

Hence, by (3.3) for all 1 ≤ i, j ≤ d,

E|gij |3 = O(σ3ij) = o(σ2i,j) = o(σ2ii).

Plugging all of this into (3.8) and using ln(1 + ε+ κ) ≤ ε+ κ we obtain that

ln ‖A+ σB‖ ≤ ε+ κ(1 + o(κ))− 1

2

d∑
i=1

(σ2i,i + o(σ2i,i)).

This quantity can be made negative by choosing of κ = κ(ε) sufficiently small and using (3.6)).
�

4 Examples

In this section, we illustrate our analysis of stabilization with several numerical examples.

4.1 One-dimensional maps

We consider first a scalar difference equation

xn+1 = f(xn) + ξn+1xn, n = 0, 1, 2, . . . , (4.1)

7



a 0 500 1000 1500 2000
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0.08

0.1

0.12

0.14

0.16

b 0 500 1000 1500 2000
0

50

100

150

200

250

Figure 1: a) Timeseries generated by the stochastic one-dimensional system defined in Example 4.1. The
values of parameters are ε = 0.005, ρ = 4. b) The timeseries generated by the underlying deterministic
system (ρ = 0) is included for comparison.

where f : R → R is a smooth function, f(0) = 1 + ε, and (ξn) are independent copies of a RV ξ with
σ2 := var(ξ) <∞.

Lemma 3.1 yields
σ2

2
− ε > 0 (4.2)

as a sufficient condition for stabilization provided ε and σ are small enough.

Example 4.1. Let f(x) = (1 + ε)x, σ2 = ρε, and ξ ∈ N (0, σ2).

The results of numerical simulations of (4.1) with the linear map above with small positive initial condi-
tion are shown in Figure 1. Plot a shows that the trajectory of the random system with noise intensity subject
to (4.2) after a brief explosion converges to the origin. The deterministic trajectory in b grows exponentially.

Example 4.2. Next, we consider a nonlinear map f(x) = λx(1− x). For λ = 1 + ε > 1, the logistic map
f has two fixed points: x̄1 = 0 and x̄2 = ε(1 + ε)−1. For 0 < ε � 1, the former is unstable, while the
latter is stable. All trajectories of the deterministic map x 7→ f(x) starting from x0 ∈ (0, 1) converge to x̄2
(see Fig. 2b). In the presence of noise, however, the iterations of (4.1) with high probability converge to x̄1,
provided (4.2) holds and ε is small enough (see Fig. 2a).

4.2 Two-dimensional maps

We next turn to the 2D case. To this effect, we consider

xn+1 = (A+B)xn, n = 0, 1, 2, . . . , (4.3)

where A is a 2× 2 deterministic matrix and

B = σ

(
ξ11 εξ12
εξ12 ξ22

)
, ξij ∈ N (0, 1), σ2 = ρε. (4.4)
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a 0 100 200 300 400 500 600 700 800 900 1000
−0.005

0

0.005

0.01

0.015
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0.025

0.03

0.035

0.04

0.045

b 0 100 200 300 400 500 600 700 800 900 1000
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Figure 2: a) Timeseries generated by the randomly perturbed logistic map (see Example 4.2). Here,
ξ ∈ N (0, ρε) and the values of parameters are ε = 0.05, ρ = 3. b) The timeseries generated by the
underlying deterministic system (ρ = 0) is included for comparison.

a 0 200 400 600 800 1000 1200 1400
0

0.002

0.004

0.006

0.008

0.01

0.012

b 0 200 400 600 800 1000 1200 1400
0

1000

2000

3000

4000

5000

6000

7000

8000

Figure 3: a) Timeseries |xn| generated by the stochastic two-dimensional system defined in Example 4.3.
The values of parameters are ε = 0.01, ρ = 5. b) The timeseries generated by the underlying deterministic
system (σ = 0) is included for comparison.
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a 0 100 200 300 400 500 600 700 800 900 1000
0

0.005

0.01

0.015
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0.025

0.03

0.035

0.04

a 0 100 200 300 400 500 600 700 800 900 1000
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

b 0 100 200 300 400 500 600 700 800 900 1000
0

5000

10000

15000

Figure 4: a) Timeseries |xn| generated by the stochastic two-dimensional system defined in Example 4.4.
The values of parameters are ε = 0.01, ρ = 5. b) The same as in a but with ρ = 10. c) The timeseries
generated by the underlying deterministic system (σ = 0) is included for comparison.

Example 4.3. Consider (4.3) with matrix B defined in (4.4) and

A =

(
1 + ε 0

0 0.5

)
, 0 < ε� 1.

Figure 3a shows a typical trajectory of the randomly perturbed system. The noise keeps the trajectory
from diverging from the origin which takes place in the deterministic system (Figure 3b).

Example 4.4. In this example, we consider a nonnormal matrix with multiple eigenvalues

A =

(
1 + ε 0.1

0 1 + ε

)
, 0 < ε� 1.

Figure 4 shows the results of the stabilization by noise for this case. The experiments with the noise intensity
in plots a and b show that stronger (albeit small) noise results in a more robust stabilization.
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