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Product Design Selection With
Preference and Attribute
Variability for an Implicit Value
Function

An important aspect of engineering product design selection is the inevitable presence of
variability in the selection process. There are mainly two types of variability: variability
in the preferences of the decision maker (DM) and variability in attribute levels of the
design alternatives. We address both kinds of variability in this paper. We first present a
method for selection with preference variability alone. Our method is interactive and
iterative and assumes only that the preferences of the DM reflect an implicit value func-
tion that is differentiable, quasi-concave and non-decreasing with respect to attributes.
The DM states his/her preferences with a range (due to the variability) for marginal rate
of substitution (MRS) between attributes at a series of trial designs. The method uses the
range of MRS preferences to eliminate “dominated designs” and then to find a set of
“potentially optimal designs.” We present a payload design selection example to demon-
strate and verify our method. Finally, we extend our method for selection with preference
variability to the case where the attribute levels of design alternatives also have vari-
ability. We assume that the variability in attribute levels can be quantified with a range of
attribute levels. [DOI: 10.1115/1.2216728]
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1 Introduction

Often in engineering design selection there is no one design
alternative that is better in terms of all attributes, and the preferred
designs are dependent on the preferences of the decision maker
(DM). In addition, there is always uncontrollable variability,
which is mainly of two types, that has to be accounted for [1-3].
The first type, preference variability, is caused due to the DM’s
lack of information on end users’ needs or due to the DM’s own
inherent inability to state the preferences with certainty [4,5]. The
second type, attribute variability, is caused due to uncontrollable
engineering design parameters like material properties, manufac-
turing errors, or due to different usage situations of the product
[1]. Both types of variability are inevitable in engineering design,
as acknowledged widely [6,7]. If the variability is not accounted
for, the preferred designs found might be erroneous.

Multi-attribute decision making (MADM) is a popular tech-
nique that is used for engineering design selection [1,8]. MADM
methods for product design selection assume that the DM places a
value on design alternatives in accordance with an unexpressed
implicit value function of the attributes [9]. It is a convention to
use the term utility function when there is variability in the at-
tribute levels of alternatives and the term value function otherwise
[9]. However, for simplicity (and to avoid confusion), we only use
the term value function in this paper.

Many of the existing MADM methods make assumptions about
the DM’s value function to simplify the selection problem. The
most common assumption is that the value function is additive
with respect to the attributes [10-14]. Significant research has
been reported in the MADM literature for selection with variabil-
ity in preferences alone. Some researchers propose to assume dif-
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ferent probability distributions for preferences and then study the
effect of these distributions on the preferred designs [15,16]. An-
other way (popularly known as selection with partial information)
for accounting preference variability in selection is to ask the DM
to provide some constraints on the preferences [17-24]. Typical
constraints could be some ranges on the preferences, like relative
importance of attribute a; is between 0.3 and 0.4. The ranges on
preferences are then used in finding the “non-dominated” and “po-
tentially optimal designs™ [18,23]. When there is variability in
attributes of alternatives alone, many researchers have proposed to
use lottery techniques and expectations to find the preferred de-
signs [1,9,25]. Some research has also been reported for selection
with variability in both the preferences and the attribute levels of
alternatives. Methods for selection are proposed when the prob-
ability distributions governing the variability in attributes and
some constraints on the preferences are known [26-28]. Recently,
some work has been reported to find non-dominated and poten-
tially optimal designs when the variability in attributes and pref-
erences is expressed in the form of ranges [29-32].

However, to the best of our knowledge, existing methods for
preference and/or attribute variability in the literature are appli-
cable only when the DM’s value function is presumed known
(e.g., additive, multiplicative). It is well known that presuming a
form for the value function is restrictive and applicable only to
special cases [33-35]. In this paper, we first present a method for
selection with preference variability alone when the DM’s value
function is implicit and unknown. We then extend this method
further for selection with preference and attribute variability.

Our method for selection with preference variability is iterative
and assumes only that the DM’s value function is differentiable,
quasi-concave and non-decreasing with respect to the attributes.
In this method, we assume that the DM gives a range for the
marginal rate of substitution (MRS) (refer to Sec. 2.3) between the
attributes at a series of trial designs (each a particular design un-
der consideration). Using the range of MRS preferences and gra-
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dient properties of the value function, we eliminate some design
alternatives as dominated designs with respect to the trial designs.
However, it is possible that some of the non-eliminated designs
are not potentially optimal. So, we propose an approach that is
based on some approximations to identify the potentially optimal
designs from the set of non-eliminated designs. An advantage of
the proposed method is that it does not need the probability dis-
tributions governing the MRS preferences, which are usually dif-
ficult to obtain.

In our method for selection with preference and attribute vari-
ability, we assume that the variability in the attribute levels can be
quantified with a known range for each attribute of a design alter-
native. Using the ranges of attributes and the ranges of MRS
preferences, we then eliminate some design alternatives as domi-
nated designs.

The organization of this paper is as follows. In Sec. 2 we pro-
vide some definitions for the main terminology used in the paper.
In Sec. 3 we present our method for selection with preference
variability alone. Next, in Sec. 4 we discuss our method for selec-
tion with preference and attribute variability. Section 5 describes
the application of our selection method with preference variability
and our selection method with preference and attribute variability
in a payload design selection problem. Finally, we conclude with
a summary in Sec. 6.

2 Definitions

In this section we give definitions and some pertinent properties
for the important terms used throughout the paper.

2.1 Selection Problem. The set of “n” discrete design alter-
natives from which the most preferred is to be selected is
{Di,....D;, ...,D,}. Each alternative D; is represented by the set
of attributes [ay;, ...,a,,;] in the m-dimensional design attribute
space. Let the value function, V(D j) be an implicit value function
of attributes [ay;, ...,a,,;] that represents the DM’s preferences.
Here, we assume that there is a single DM. Note that, for the
application of the method developed in this paper, it is not impor-
tant how the design alternatives for selection are generated.

When there is no variability in attributes, a;; would be exact
(deterministic or fixed). However, when there is variability in the
attributes, we assume that the ranges of attribute levels for each
design alternative are known. We use the symbol A to represent
the lower bound, A to represent the upper bound and Aj;
represent the range [Al], U] of the i attribute of design D;. We
use the symbol a;; to represent a variable attribute level that be-
longs to the range A;;. (Note that a, ; could be fixed or variable
depending on whether or not the i attribute level of design D;is
deterministic.)

2.2 Quasi-Concave Function. A function V defined on a
non-empty convex domain is said to be quasi-concave [36,37] if

VL6X, + (1 - 0)X,] = min[ V(X ), V(X;)] (1)
for all X;, X, that belong to the domain of V and #e[0,1].

2.3 Marginal Rate of Substitution (MRS). At trial design
Dy, let Aa; be the amount DM will compromise in attribute a; in
order to gain an amount Ag; in attribute @; while maintaining
constant value (i.e., remain indifferent [9] with respect to Dy). The
MRS, s;i, between attributes a; and a; at Dy is the ratio
—Aa;/Aa;. Note that the location of the design alternative in the
de51gn attrlbute space can influence the DM’s MRS [9]. If the
MRS preferences are consistent, it can be shown that s;7
=w;p/wjr, where w;y and w;p are the gradient coefficients of the
value function V at Dy with respect to attributes a; and a;, (i.e.,
dV/da; and dV/da;), respectively [13,35].

When there is no variability in preferences, both Aa; and s;;7
would be exact (or deterministic). However, if there is variability
in preferences, the DM would give a range for Aa; (for a fixed
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Design alternatives in Cg
(shaded region) are eliminated

Fig. 1 Illlustration of gradient cut

Aa;) thus leading to a range of MRS. We use the symbol S, i O
represent the lower bound, the symbol S r to represent the upper
bound, and the symbol S to represent the range [S; jT,SfJ/T] of
MRS preferences between two attributes a; and a;, at trial design
Dy. We use the symbol s;;7 to represent a variable MRS that
belongs to the range S;;7. (Note that s;;7 could be fixed or variable
depending on whether or not MRS is deterministic.)

2.4 Gradient Cut. The gradient cut [33] is the half space Cg
bounded by the normal to the gradient of a value function V at a
point Dy, VV, with the gradient pointing in the outward direction
from Cg; see Fig. 1. C does not include the boundary line /i in
Fig. 1.

If the value function, V, is differentiable and quasi-concave,
then it can be shown that for all D € Cg, V(D)< V(D7) [33,35,37].
That is, any design alternative in Cg has lower value than Dz, and

can be eliminated. If the gradient of V at D7 is

VVri[wir, oo ,Wyrl, then a design D, :[ay,, ...,a,.] is in Cg of
DT:[alT’ ,amT] if [37]
m

> wir- (@ = ai) <0 (2)
i=1

(Here [Wi7s oo s Wirls [@145 o » @i )s [@175 .. s a,,7] are determin-

istic). Note that design alternatives that are not in C; might have
either higher value or lower value than D [37]. The gradient of
the value function at Dy can be obtained from the deterministic
MRS preferences by solving an optimization problem. The details
of the formulation for that optimization problem are not presented
here and the interested reader can refer to the literature [35].

2.5 Dominated Design. When there is no variability in the
attribute levels, but there is variability in MRS preferences, a de-
sign D, is said to be dominated by another design Dy, if D, has
lower value than Dy (i.e., V(D,) < V(Dy)) for the whole range of
MRS preferences, S;jr, at Dy. If the attribute levels also have
variability, then D, is said to be dominated by Dy if V(D,)
<V(Dy) for the whole range of S;;; and the whole range of at-
tribute levels A;, and A;; (where i=1 to m).

2.6 Potentially Optimal Design. When there is no variability
in the attribute levels, but there is variability in MRS preferences,
a design D, is said to be potentially optimal if D, has the highest
value among all design alternatives for some subset of Sj;p. If the
attribute levels also have variability, then D, is potentially optimal
if D, is the highest valued design alternative for some subsets of
Sii1> Aiy and Ay (where d=1 to n).

Note that, from the above definition, a design which is not
potentially optimal cannot be most preferred for any realization of
MRS that belongs to the range of preferences and/or for any re-

Transactions of the ASME

Downloaded From: https://mechanicaldesign.asmedigitalcollection.asme.org on 06/28/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



. 0y, REGION OF
a : LINEAR *V’
2 SETOF DESIGNS |  Pick a trial e o5y’ A
design Dy N SMALL REGION, O, t oy 4 V)= ;wi‘l‘atj
AROUND TRIAL DESIGN, Dy = . '
r 3
a,
A
@ Queries ELIMINATE DOMINATED
Uodate D 23956 | | DESIGNS BASED ON RANGE
pdate Dr SN 3 :‘ Range of preferences OF MRS
Range of 5
Range of MRS = aa
Yes
FIND A NEW TRIAL DESIGN 7>
SET OF NON-ELIMINATED Heuristic | POTENTIALLY OPTIMAL
TRIAL DESIGNS, Dyrp, approach DESIGNS

Fig. 2 Flow chart of our method for selection with preference variability

alization of attribute levels that belongs to the range of attributes.
Eum et al. [30] gave similar definitions for dominated design and
potentially optimal design when the value function is assumed to
be additive. Here we have extended their definitions for the more
general case of an implicit value function.

3 Selection with Preference Variability

Figure 2 shows the flow chart of our method for selection with
preference variability. Since we assume the DM’s value function
to be non-decreasing with respect to attributes, for selection, it is
enough to consider only those designs that are Pareto optimal
from the original set of design alternatives [33].

In this method (see Fig. 2), we start by picking an initial trial
design, Dy, from the set of design alternatives. We choose trial
design Dy either as an alternative that would have maximum value
if the value function were linear with equal importance to the
attributes, or as a random pick. In a small region O around D we
then approximate the value function to be linear with respect to
the attributes. The gradient of V at Dy is VVy=[w 7, ...,w,z]. The
general form for a linear approximation of V(D)) in Oy would be
(considering only the differences between V for design alterna-
tives near Dy):

V(Dj) = E Wir - ajj (3)
i=1

Note that our method does not do a “piecewise linear approxima-
tion” of the value function at a trial design. The linear approxima-
tion is only used to obtain the gradient of the value function at a
trial design, which is then used to eliminate dominated designs
with respect to the trial design.

To obtain the gradient coefficients, w;7, we query the DM for
the MRS preferences at the trial design. We ask the DM to provide
the MRS between attributes a; and a;,; (i=1,...,/m—1) and the
MRS between attribute a,, and attribute a; (if m>2). As men-
tioned earlier, when there is variability in preferences, the DM
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gives a range for MRS preferences, S;;r. For example, in the se-
lection of a cordless power tool, the DM might say: “I would give
up 40-50 operations per battery to reduce the weight by 0.1
pounds.”

When the DM gives a range for MRS preferences, the gradient
coefficients (which are a function of MRS preferences [9,35]),
w;r, will also have a range. Because of this, the gradient cut
shown in Fig. 1 is not applicable for eliminating dominated de-
signs. So, we use a modified version of gradient cut for eliminat-
ing dominated designs based on the range of MRS preferences
(see Sec. 3.1 for details).

Next, we try to find a new trial design from the non-eliminated
design alternatives. If a new trial design is found, we repeat the
above steps (recall Fig. 2), referred to as an “iteration” from here
on. Otherwise, we stop the process and collect the non-eliminated
trial designs in a set, Dypp. All the designs that are not in Dyrp
are dominated by at least one design in the original set of design
alternatives as per our definition in Sec. 2.5.

However, it is possible that the elements of the set Dyrp are not
all potentially optimal (i.e., they might be dominated by some
designs belonging to Dyrp, see Sec. 3.1 for a detailed explana-
tion). So, we present a heuristic approach to test whether or not
the elements of Dypp are potentially optimal. This heuristic ap-
proach is based on a linear approximation and the gradient prop-
erties of the quasi-concave value function (see Sec. 3.2 for de-
tails).

In the next two sections, we discuss the individual components
of our method for selection with preference variability. In Sec.
3.1, we present our approach for eliminating dominated designs
based on a range of MRS preferences. In Sec. 3.2, we present the
heuristic approach to find potentially optimal designs from the set
of non-eliminated trial designs Dyrp. Our approach for finding a
new trial design is not presented here due to space restrictions and
the interested reader can refer to [35].
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Fig. 3 lllustration of approach for eliminating dominated de-
signs based on range of MRS preferences

3.1 Eliminating Dominated Designs Based on a Range of
MRS Preferences. As mentioned earlier, when the DM gives a
range of MRS at a trial design D7, the corresponding gradient
coefficients at Dy, w;z, also have a range. Due to this, some de-
signs might lie only in the gradient cuts of some part of the range
and not in the gradient cuts of some other part of the range, e.g.,
D:- in Fig. 3. Le., D= is guaranteed to have a lower value than Dy
only for some part of the range of MRS preferences. So, we adopt
a conservative approach and eliminate, as dominated designs,
those designs that lie in all possible gradient cuts for the entire
range of w;r (e.g., Dy in Fig. 3).

Note that, the ranges of gradient coefficients at Dy, w;z, in fact
result in a hyper-cone of gradients with Dy as the apex. In two
attribute space, the gradients corresponding to the extremes of
MRS range (i.e., Sil;T and Sl-LjT) define this hyper-cone. Hence, in a
two attribute space, the hyper-cone can be viewed as a range of
gradient and a design is said to be dominated by Dy if and only if
Eq. (2) is satisfied for both extremes of the range of the gradient
(recall Fig. 3). But, when the number of attributes is more than
two, there is no easy (general) way to define the hyper-cone using
the gradients corresponding to the extremes of MRS range and a
simple check of Eq. (2) is not enough to determine whether or not
a design is dominated. (For simplicity, we continue to use the term
range of gradient in the rest of the paper for referring to the hyper-
cone of gradients.)

Below, we present a formulation that uses the range of MRS
preferences, Sz, directly (i.e., without mapping them to a range
of gradient coefficients) for checking whether or not a design
D.:la,,..,a,,] is dominated by Dy:[a,r, ... ,a,r]. This linear
programming (LP) problem is simple to solve by any LP solver
(e.g., “linprog” from the mMaTLAB® optimization toolbox). In this

formulation, w;; are the variables and [a,, ... ,dys], [a17s oo sG]
are deterministic.
m
Maximize Z = E wir- (az, — a;p) (4a)
i=1
m
subject t0: >, wip=1; w;;=0 (4D)
i=1
L Wir U .« » ;
Sir< — < 8;;73“m— 17 such constraints (4¢)
T
jT

The objective function Z* in the above formulation, Eq. (4a), is
used to check whether or not D, is dominated by Dy (recall Fig.
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3). If there exists a vector VVy:[wr, ...,w,,r] from the possible
range of gradient at Dy for which D, does not lie in the corre-
sponding gradient cut, then the value of Z" in Eq. (4a) will be
non-negative (recall Eq. (2)) otherwise Z" will be negative. So, if
the maximum value of Z* is negative then we can conclude that
D, lies in the gradient cuts of all the gradients for the given range
of MRS preferences at Dy. Hence D, is dominated by Dy.

Equation (4b) is a normalization constraint on the gradient co-
efficients, w;7. We impose the constraint that the gradient coeffi-
cients, w;r, are non-negative because we assume that the value
function is non-decreasing with respect to the attributes.

Equation (4c) imposes the constraint that the MRS preferences
si7=w;r/w;r should belong to the range of MRS S,-J-T:[Sij,SgT]
given by the DM at Dy. Note that the condition s;;7=w;r/w;r
holds when the MRS preferences are assumed to be exact and
consistent, i.e., Eq. (5) is satisfied [13].

Syr= 2T and SiT Sjkr = =T (5)
wir Wit

Since m—1 MRS values are independent when they are consistent,
we use only m—1 constraints for the bounds on s;jr=w;r/w;r (re-
call Eq. (4c)). However, if one feels that the exactness and con-
sistency assumption is not appropriate, then Eq. (4) can be easily
modified by adding two more constraints as given by Eq. (6).

2
E [s,«ﬂ— W—'T} <g, where ¢ is arbitrarily small (6a)
ij Wir
2
Wi
E |:sijT' Sikr— W_T] <e (6b)
kT

ijok
Equation (6a) would be used to check how close the siTSj’s are to
the w;7’s and Eq. (6b) would be used to check that s, are con-
sistent. However, note that adding the constraints in Eq. (6)
(which are non-linear and non-convex) to the formulation in Eq.
(4) would increase the computational burden in eliminating the
dominated designs. Also we obtain only m MRS preferences (in-
stead of the possible m-(m—1)/2) in our method to reduce the
question burden on the DM. Note, however, that Egs. (4) and (6)
can be easily modified if the DM provides more than m MRS
preferences.

Note that Eq. (4) should be applied to each design D, (that
belongs to the original set of design alternatives) to check whether
or not that design is dominated by D7. Based on the definition of
Sec. 2.5, for a design D,, if Z* in Eq. (4) is negative then it is
guaranteed that D, is dominated by the trial design Dy. However,
it is possible that D, might be dominated by Dy even if Z* is
positive. This is because of the property of the quasi-concave
value function. Recall that design alternatives not in the gradient
cut Cg, i.e., above the hyper-plane, iy, (recall Fig. 1) might have
either higher or lower value than Dy, i.e., gradient cut does not
eliminate all designs that have lower value than Dy . Added to that,
for eliminating dominated designs when the MRS preferences
have a range, we use a worst case (i.e., conservative) approach
and eliminate only those designs that are in all possible gradient
cuts (recall Fig. 3).

Because Eq. (4) cannot guarantee that all dominated designs
with respect to a trial design are eliminated, it is possible that
some designs in the set of non-eliminated designs Dypp are domi-
nated. We present, in the next section, a heuristic to identify domi-
nated designs from Dytp, and hence find the set of potentially
optimal designs.

3.2 Heuristic Approach to Find Potentially Optimal
Designs. Figure 4 illustrates our heuristic approach in a two at-
tribute space. Let Dy and Dy, be two non-eliminated trial designs
(e, they belong to Dyrp). Let Sz :[Sijl,Sng] and
Sijn:[S,-Ljn,Sgn] be the range of MRS preferences between at-
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tributes a; and a; at Dy and Dy, respectively. Recall that for a
two attribute space the range of gradient corresponding to the
range of the MRS preferences at the trial designs can be repre-
sented using the extremes of gradient. Let VV%, and VVY, be the
extremes of the range of gradient at Dy and VVIT‘2 and VV;}2 be
the extremes of the range of gradient at Dp,.

Lines hél and h?l pass through Dy and are perpendicular to the
extremes of the range of gradient, VV4, and VVY,, respectively.
Lines h%a and h% pass through D and are perpendicular to the
extremes of the range of gradient, VV%2 and VVY, respectively.
Oy is the region around Dy, in which we approximate the value
function to be linear (recall Fig. 2), i.e., at every point inside Oy,
the range of MRS preferences is the same as the range of MRS
preferences given by the DM at Dy [35,37]. Note that neither of
the two trial designs Dyjor Dy is dominated by the other (recall
Fig. 3).

As shown in Fig. 4, all points in the shaded region of Oz, have
a higher value than D7, for the entire range of gradient at Dy
(i.e., those points dominate D). For the case shown in Fig. 4, all
the lines that lie between the extremes ks, and hY, at Dy, pass
through the shaded region of O|. Hence Dy, dominates some
points (recall Fig. 3) in the shaded region of Oy, that have higher
value than Dp;. Hence Dy dominates Dy;.

Note that in Fig. 4, D7 lies in the gradient cuts of the gradients
perpendicular to the lines in the range h% and h% So it is enough
to check that Dy dominates D, for the other part of the range,
i.e., hk, and hY%. Let hyy be a line that lies between A%, and hY, at
Drpy. Let hp, be a line that lies between hIT‘2 and h% at Dp,. Also,
let pzll o be the perpendicular distance from Dryto the intersection
of hy; and hyp,. If the maximum p,f]lhz is less than R (i.e., radius of
Ory, typical value of R is 0.1) then all lines between h%z and h%
pass through the shaded region of O7; and hence D7, dominates
Dyy. Equation (7) states the condition mathematically.

maximum Phiml <R (7)
Dy e[y h iy €Wl 1]

It can be seen that for the case shown in Fig. 4, the maximum
distance from Dy to the intersection of hp; and hp (i.e., maxi-
mum p}1,-) corresponds to pi1,,,, (i.e., intersection of the lines

h%, and h%,). Also pii, ., is less than R, the radius of O7y. So we
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lllustration of heuristic approach for eliminating dominated designs

can say that Dy, dominates Dy, for the case shown in Fig. 4.

The case shown in Fig. 4 is simple in that any line A that lies
between hL1 and th/ at D7y is not parallel to any line s that lies
between Ay, and hp, at Dpp. But, this might not hold for some
cases in the given range of preferences Sijle[Sf;Tl,Sng] and
Sijn:[Sfjn,ng] at Dy and Dy, respectively, resulting in the
maximum pzll,ﬁ to be infinity.

However, for the case where &y is parallel to /i, it is implied
that VV;, is equal to VV;py, where VVy and VVp, are the gradi-
ents perpendicular to hy and hp, at Dy and Dpy, respectively.
When VVy, is equal to VVyp,, we can find the value of the designs
directly by using Eq. (3) based on a linear approximation of value
function. In such a case, Eq. (8) can be used to check that

Dn:[aln, ...,amm] dominates Dle[alTl, .. ,amTl] (here
lair2s oo rammllairys . a1 ] are deterministic).
m
maximum 2 wir - (@i —am) (<0 (8)

YWr=Vriwirn W lizg

In our heuristic approach, to mathematically check that a trial
design Dy, dominates another trial design Dy, we need to con-
duct two tests. The first test, Eq. (7), is for the case in which any
line hy at Dy is not parallel to any line sy, at Dy». The second
test, Eq. (8), is for the case in which some of the lines at Dy, i.e.,
hy,’s, are parallel to some of the lines at Dpy, i.e., hp»’s. However,
visualizing the range of gradients at Dy and Dp» as shown in Fig.
4 is possible in two attribute space but unrealistic when the num-
ber of attributes is more than two. So, we developed mathematical
formulations, that find the variables (left hand side of the inequal-
ity in Eq. (7) and (8)) needed for the two tests directly without
mapping them to a range of gradient coefficients. These formula-
tions were originally published in [38] and are reproduced in Ap-
pendix A (Eq. (7)) and Appendix B (Eq. (8)) for completeness.

If there are more than two non-eliminated trial designs in the
set Dntp, We apply the heuristic approach between the trial de-
signs pairwise. Also note that the maximum of p,{,l 1 (i.e., perpen-
dicular distance from Dy to the intersection of iy and hz,) might
not be the same as the maximum of pﬁhz (i.e., perpendicular
distance from Dy, to the intersection of Az and hp). If it so
happens that the maximum values of both p,{ll 2 and pﬁhz are less
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Fig. 5 Flow chart of our method for selection with preference and attribute variability

than the given radius R of Og;, it means that R is too large for the
linear approximation to be valid. The designs that are not elimi-
nated after the application of heuristic approach will be denoted as
the potentially optimal designs. Note, however, it is possible that
some dominated designs are not eliminated even after applying
our heuristic approach.

In the next section we extend our selection method with pref-
erence variability to the case when there is variability in the at-
tribute levels also.

4 Selection With Preference and Attribute Variability

Figure 5 shows the flow chart of our method for selection with
preference and attribute variability. The individual components of
the method shown in Fig. 5 are similar to that of the method
shown in Fig. 2 except for the dashed boxes.

In our selection method with preference and attribute variabil-
ity, we assume that the ranges of the attributes (shown by dotted
rectangles in Fig. 5) quantifying the variability in the attribute
levels of the design alternatives are known. The black dot in the
middle of the dashed rectangle we call the nominal attribute levels
of the design alternatives. By nominal attribute levels we mean
the attribute levels that would occur when there is no variability in
the attributes.

With the range of MRS preferences (obtained by querying the
DM at the trial design) and the range of the attribute levels of
design alternatives, we use a modified version of gradient cut for
eliminating some of the dominated designs with respect to the trial
design (see Sec. 4.1 for details). Next, we try to find a new trial
design from the non-eliminated alternatives. If a new trial design
is found, we repeat the above steps (see Fig. 5). Otherwise, we
stop the process and collect the non-eliminated trial designs in a
set, Dytp. Ideally the set Dytp should consist only of the poten-
tially optimal designs. But due to the properties of quasi-concave
function (explained in Sec. 3.1), it is possible that some domi-
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nated designs belong to Dyrp. In Sec. 4.1, we present our ap-
proach for eliminating dominated designs based on the range of
MRS preferences and the range of attribute levels of design alter-
natives.

4.1 Eliminating Dominated Designs Based on the Range of
MRS Preferences and Attribute Levels. Figure 6 illustrates, in
two attribute spaces, our approach for eliminating dominated de-
signs based on the range of MRS preferences and the range of

Shift in range of gradient due

a.
2 to variability in attributes

Range of MRS preference
results in a range of gradient

Range of attributes at Dy

4

Designs whose attribute range
falls in this region are eliminated

Fig. 6 lllustration of approach for eliminating dominated de-
signs based on the range of MRS preferences and the range of
attribute levels of design alternatives
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attribute levels. Let Dy be the current trial design with the solid
rectangle as the range of attributes and the black dot in the middle
as the nominal attribute levels. Because the DM gives a range of
MRS (due to variability) at Dy, the corresponding gradient coef-
ficients at D7, w;, also have a range as shown in Fig. 6. Note that
it is assumed that the DM gives the range of MRS preferences at
Dy keeping in mind the range of attribute levels of D. In other
words, the given range of MRS preferences should be applicable
for any attribute levels belonging to the range of attributes at Dr.

Because of the variability in the MRS preferences and the at-
tribute levels, a number of gradient cuts are possible at Dy, the
union of which is shown by the dotted region in Fig. 6. The
shaded area in Fig. 6 is the intersection of all the gradient cuts
possible at Dy. We eliminate those designs whose range of at-
tribute levels lies completely inside the shaded area of Fig. 6 as
the dominated designs. However, visualizing the range of gradient
corresponding to the range of MRS preferences as shown in Fig. 6
is trivial in two dimensions but is difficult for higher dimensions.
So, we present a mathematical formulation in Eq. (9) for checking
whether or not a design D, is dominated by a trial design D7. In
this formulation, w;z, a;, and a; are the variables.

m

Maximize Z' = 2 wir- (a;, —a;p) (9a)
i=1
m
subject to: E wir=1wr=0 (9b)
=1
w; .
SiLjT <s-T< SI-ZJ/-T; m — 1 such constraints (9¢)
ij
AL <4, <AY: m such constraints (9d)
AL <a;<AY;  m such constraints (9e)

The formulation in Eq. (9) is similar to the formulation in Eq. (4)
except that two new set of constraints are added to account for the
variability in attribute levels. Equation (9d) is to check that the
variable attribute levels of D, a,,, belong to the range of attribute
levels at D,. Equation (9¢) imposes a similar constraint on the
variable attribute levels of Dr, a;7.

If there exists a vector VVp:[wir, ... ,w,,7] in range of gradient
at Dy, and vectors [ay,, ... ,a,,,] and [a,7, ... ,a,,7] in the ranges of
attribute levels at D, and Dy respectively, for which D, does not
lie in the corresponding gradient cut, then the value of Z* in Eq.
(9a) will be non-negative (recall Eq. (2)) otherwise Z* will be
negative. So, if the maximum value of Z" is negative, then we can
conclude that D, lies in the gradient cuts of all the gradients at Dy.
Hence D, is dominated by D7.

The formulation in Eq. (9) has a non-linear objective function
with linear constraints and is simple to solve by any existing com-
mercial software (e.g., the MATLAB® optimization toolbox). Note
that in Eq. (9), we assumed the MRS preferences s;;r are exact
and consistent (recall Eq. (5)). However, if one feels such an
assumption is not appropriate, then additional constraints similar
to Eq. (6) can be added to Eq. (9). Also Eq. (9) can be easily
modified with additional constraints if more than m MRS prefer-
ences are given by the DM.

In the next section, we demonstrate the application of our se-
lection method with preference variability and selection method
with preference and attribute variability in the selection of a pay-
load design.

5 Payload Design Selection Example

This example is for a two-attribute problem and involves the
selection of a payload design for an undersea autonomous vehicle.
Typically, the payload must be effective in several different uses,
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Fig. 7 Dominated designs when g lies between 11 and 18 at
Dry

called “scenarios.” Effectiveness in a scenario is measured by a
probability of success Pg of the payload in that scenario. The
design goal is to simultaneously maximize individual Pg’s for all
scenarios. The payload design is constrained by upper limits on
the weight and radiated noise of the payload. For our example, we
maximized Pg; and Py, for two different scenarios using a multi-
objective genetic algorithm (refer to [39] for details). Figure 7
shows the resulting ten Pareto optimum design alternatives from
which we select, with the Pg;’s being the attributes. Note that in
Fig. 7, some of the design alternatives (namely D, and D,; D5 and
Dy; and D5 and Dy) are located close to each other in the attribute
space and are difficult to distinguish.

In Sec. 5.1, we show the application of our selection method
with preference variability to payload design selection. Next, in
Sec. 5.2 we discuss the application of our selection method with
preference and attribute variability to the same example.

5.1 Payload Design Selection With Preference Variability.
Since it is difficult for a human DM to verify that the potentially
optimal designs found by our method with preference variability
are indeed accurate (i.e., the designs are indeed most preferred for
some subset of original range of preferences), we use a simulated
DM in this example. We constructed the DM’s implicit value
function to be of the form

V=—[(1—P31)B+(1—Ps2)2:|- (10)

In Eq. (10), parameter 3 creates variability in the MRS prefer-
ences between the attributes. We assign a range to £ (note in Eq.
(10), V is quasi-concave, differentiable and non-decreasing for
any B greater than or equal to one). As B varies in its specified
range, the MRS preference between attributes also varies. As the
range of B increases, the variability in the MRS preferences also
increases, and vice versa. We emphasize that the variability con-
struct of Eq. (10) is not a presumed value function. Rather, it
simulates a human DM who is supposedly being queried by our
selection method, providing a range of MRS preferences. The
only reason we use this variability construct is to verify that the
potentially optimal designs obtained by our method are indeed
accurate. Note that Eq. (10) is a simple concave function and we
use it in this example for demonstration. However, we did test our
method with more complex value functions in other examples
[40] (these examples had 26 attributes and up to 50 design
alternatives).

We applied our method to three cases with different ranges for
B in each case. We discuss in detail the case where variability in 8
is large (thus resulting in large variability in MRS preferences) in
Sec. 5.1.1. Next we briefly discuss the results for the other two
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Table 1

Z values for payload designs alternatives at Dy

Attributes of

Z" values at Dy,

Z" values at Dp, Z" values at D,

Design design alternative objective function objective function objective function

alternative No. [Pg,,Ps,] in Eq. (4) in Eq. (4) in Eq. (4)

1 [0.016, 0.695] —0.0812

2 [0.016, 0.693] —0.0814

3 [0.134, 0.684] 0 0.1215 —~0.0001

4 [0.139, 0.675] 0.0018 0.1127 0

5 [0.274, 0.541] 0.0847 0 0.0792

6 [0.275, 0.114] 0.0024 —~0.2866

7 [0.343, 0.093] 0.0532 —~0.2786

8 [0.346, 0.091] 0.0549 ~0.2792

9 [0.355, 0.090] 0.062 ~0.2768

10 [0.357, 0.075] 0.0612 —~0.2858

cases in Sec. 5.1.2. Finally, we present our verification results in
Sec. 5.1.3.

5.1.1 Large Variability in MRS Preferences. For this case, we
fix the range of B to be “11-18.” The range of MRS preferences at
a trial design corresponding to a range of S can be found from Eq.
(10) by solving a simple optimization problem (we do not show
the optimization problem here due to space restrictions).

Following the iterative method discussed in Sec. 3 (recall Fig.
2), we start by picking a trial design from the set of ten design
alternatives. We randomly pick design alternative 3, Ds, as the
trial design for the first iteration, and set it as D: [0.134, 0.684].
Since this is a two attribute problem, we ask the DM to provide
the range of only one MRS preference, i.e., MRS preference be-
tween Pg; (attribute 1) and Py, (attribute 2). Our simulated DM,
Eq. (10), responds by saying: “I would give up between 0.246 and
0.413 in Pg, to gain 0.1 in Pg,” i.e., the range of MRS prefer-
ences at Dpy is, Sjop: [2.46, 4.13].

We then use Eq. (4) with the given MRS range to eliminate
some dominated designs. Table 1 (column 3) shows the Z" values
(objective function in Eq. (4)) at Dy, for the payload design alter-
natives. We can see that Z" is negative for D;, D, (hence domi-
nated by D) and non-negative for the rest of the design alterna-
tives. Z° of D is zero because it is the trial design for this
iteration.

As there are only two attributes in this example, the upper
bound, S%;,, and the lower bound, S%,,,, of MRS preferences

correspond to the extremes, VVIT/1 and VVI;I, of the range of gra-
dient at D7;. So we can visualize the attribute space with the range
of gradients as shown in Fig. 7. From Fig. 7, we can see that only
D, and D, lie in all the possible gradient cuts that belong to the
range of gradient at D7,. Hence, only D and D, are dominated by
D7, and can be eliminated.

Since more than one design is not eliminated, we find a new
trial design using our approach discussed in [35]. Our approach
finds Ds as the new trial design. So we set Ds as Dyy: [0.274,
0.541] and start the second iteration. Our simulated DM, Eq. (10),
gives the range of MRS preferences at Dy as, Sjo7: [0.09, 0.49].
We then use Eq. (4) to eliminate dominated designs based on the
given range of MRS, S,7. Table 1 (column 4) shows the Z*
values at Dy, for the payload design alternatives. We can see that
Z" is negative for Dg, D7, Dg, Do, and D, (hence dominated by
Dy,) and positive forD; and D,. Z* of Ds is zero because it is the
trial design for this iteration. Z" is empty for D, and D, because
they are already eliminated by Dy.

Since more than one design is not eliminated (recall D3, Dy,
and Djs are not eliminated), we find a new trial design. Perforce,
D, is the new trial design because it is the only non-eliminated
design which has not been a trial design. So we set D, as Dys:
[0.139, 0.675] and start the third iteration. Our simulated DM, Eq.
(10), gives the range of MRS preferences at Dy as, Sjp73: [2.18,
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3.79]. We then use Eq. (4) to eliminate dominated designs based
on the given range of MRS, S},73. Table 1 (column 5) shows the
Z" values at Dy for the payload design alternatives. We can see
that Z* is negative for D5 (hence dominated by D;3) and positive
for Ds.

D, and Ds are the only non-eliminated designs at this stage.
Since both of them have already been trial designs we stop the
iterative process and collect the two designs in the set Dyrp (re-
call Fig. 2). We then apply our heuristic approach to see if any of
the two trial designs can be eliminated (recall Sec. 3.2). We fix the
radius of the region, O;(i=2,3), around D;(i=2,3) where the
linear approximation of value function is estimated to be valid as:
R=0.10 (the R value is chosen arbitrarily). Using the formulation
in Appendix A, we then find the maximum I’ng for Dy, as 0.13
and the maximum pgm for Dy3 as 0.14. Since the maximum
values of both pg,ﬁ and pﬁm are greater than R, neither design
dominates the other. So we conclude that D, andDj5 are potentially
optimal for the case when S lies between 11 and 18.

In the next section, we briefly discuss our results for the selec-
tion of payload design when the variability in B (hence the vari-
ability in MRS preferences) is moderate.

5.1.2 Moderate Variability in MRS Preferences. We applied
the selection method with preference variability for different 8
ranges. In the case where B e[11,14.4], the method found Ds as
the singleton potential optimal (hence the most preferred) design.
In the case where 8 € [14.6,18], the method found D, as the most
preferred design. Our results show that when the variability in
MRS preferences is large we obtain a couple of potentially opti-
mal designs and as the variability in MRS preferences decreases
we find a single most preferred design.

In the next section, we verify that the potentially optimal de-
signs obtained for the above-discussed cases (with different
ranges for B in each case) are indeed accurate.

5.1.3  Verification of Results. To verify the results obtained by
our method we use the variability construct shown in Eq. (10).
Substituting different values for B8 in Eq. (10), we can obtain the
values of the design alternatives for that B (see Fig. 8). Note that
the maximum of Eq. (10) (which is zero), for each B, is obtained
when both Pg; and Pg, are equal to one.

From Fig. 8 we can see that when g lies between 11 and 14.5,
D5 has the highest value. When S is equal to 14.5, both D5 and D,
have the highest value. When S lies between 14.5 and 18, D,
alone has the highest value. Even though we showed in Fig. 8, the
values of the design alternatives for only some discrete S in the
range 11-18, it can be verified that Ds has highest value for 8
€[11,14.5) and D, has highest value for 8 e (14.5,18].

Recall that using our method we obtained D, and D5 as the
potentially optimal designs when B e[11,18]. From Fig. 8 this is
expected because D, has the highest value for some part of the 8
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Fig. 8 Value of payload design alternatives for different B’s

range and Ds has the highest value for some other part of the 8
range. When Be[11,14.4], our method obtained a single most
preferred design D5 and when B e[14.6,18], our method again
obtained a single most preferred design Dy, as expected from Fig.
8. This verifies the results of our method.

In the next section we present the application of our selection
method with preference and attribute variability to the payload
design selection example.

5.2 Payload Design Selection With Preference and At-
tribute Variability. Once again we use the simulated DM given
by Eq. (10) for verifying the results obtained by our method.
However, for this example, in Eq. (10), in addition to the param-
eter 3, the attributes Pg; and Pg, have variability quantified by a
range. We applied our method to two cases with different ranges
for B, Pg; and Py, in each case.

For the first case, we fix the range of 8 to be 11-18. Also, we
fix the range of attribute levels Pg; and Pg, to be £5% around the
nominal attribute levels, i.e., if the nominal attribute level of a
design alternative, say D, for the attribute, say Pg;, is 0.016, then
the variability in the attribute Pg; for D; is quantified by the range
[0.015, 0.017]. Note that, the nominal attribute level should not be
confused with the probabilistic mean. The range of MRS prefer-
ences at a trial design for the given ranges of 8, Pg; and Pg, can
be found from Eq. (10) by solving a simple optimization problem
(we do not show the optimization problem here due to space
restrictions).

Following the iterative method shown in Fig. 5, we started with
an initial trial design D5 and our method, in three iterations, found
that the set of non-eliminated trial designs Dytp consists of de-
signs D3, Dy, and Ds. The details of the dominated designs elimi-
nated at each iteration are not shown due to space restrictions.
Also we verified that D3, D4, and D5 are indeed the potential
optimal designs using Eq. (10) for the given ranges of 3, Pg;, and
PSZ.

For the second case, we once again fix the range of 8 to be
11-18. However, we changed the range of attribute levels Pg; and
Py, to be £15% around the nominal attribute levels. Starting with
an initial trial design of D5, our method found designs D, D,, D5,
Dy, and Ds to be the elements of Dytp. However, using Eq. (10),
we found that only Ds, D4, and D5 are the potentially optimal
design for this case also. This verifies our earlier statement that at
present our method for selection with preference and attribute
variability can include some designs that are actually dominated
in the set of non-eliminated trial designs Dytp. However, on the
bright side, the set Dytp found by our method always contains the
actual potentially optimal designs.

Journal of Mechanical Design

6 Summary

In this paper, we presented a method for product design selec-
tion with variability in preferences for an implicit value function
and later extended it to account for variability in attribute levels of
design alternatives. The only assumption we made in our method
was that the DM’s implicit value function is differentiable, quasi-
concave and non-decreasing with respect to the attributes. This
assumption is more general and less restrictive than other popular
assumptions as reported in the literature (e.g., additive value func-
tion) [30-32].

Our method for selection with preference variability is iterative
and requires that the DM gives a range for MRS preference be-
tween attributes at a series of trial designs. We presented an ap-
proach to eliminate dominated designs using the range of MRS
preferences directly. The mathematical formulation of this ap-
proach under certain condition becomes a linear programming
problem and can be solved quickly to obtain the set of non-
eliminated trial designs. We also presented a heuristic to identify
potentially optimal designs from the set of non-eliminated trial
designs. Finally, we demonstrated the applicability of our method
with the help of a payload design selection example. We showed
and verified that when the variability in MRS preferences is large,
we obtain a couple of potentially optimal designs and as the vari-
ability in MRS preferences decreases, we find a single most pre-
ferred design.

In addition to the range of MRS preferences, if the DM can
provide the probability distributions (within the given range) of
the MRS preferences, our method for selection with preference
variability can be extended for finding the preferred designs. Since
the designs not in the set of non-eliminated trial designs Dyrp are
dominated irrespective of the probability distributions for the
given ranges of MRS preferences, Dyrp can be used as the set of
designs from which the selection has to be made. Then a Monte
Carlo simulation of our deterministic selection method [35] can be
used to find the preferred designs from the set Dytp.

Our method for selection with preference and attribute variabil-
ity requires that the range of attribute levels of design alternatives
be known in addition to the range of MRS preferences. We pre-
sented a mathematical formulation for eliminating dominated de-
signs using the ranges of attributes and MRS preferences. Finally,
we demonstrated the applicability of the method with the help of
payload design selection problem.

At present in our method for selection with preference and at-
tribute variability, the non-eliminated designs might not be poten-
tially optimal. We are currently working on developing a heuristic
similar to the one discussed in Sec. 3.2 for identifying potential
optimal designs from the set Dytp when there is variability in
preferences and attribute levels.
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Nomenclature

a; = i" attribute

a,Z = i attribute (variable or fixed) of design D;

Aj; = lower bound of attribute a; for design D; when
there is attribute variability

A,L// = upper bound of attribute a; for design D; when
there is attribute variability

A;; = range of attribute a; for design D; when there

is attribute variability
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VVy = variable gradient of V at the k" trial design
Dy, corresponding to variable MRS s;;7;
VV%,( = extreme of gradient range at the k™ trial design
Dy, in Fig. 4
VVY, = other extreme of gradient range at the k™ trial
design Dyy in Fig. 4
Appendix A

The maximum p}1,, that is required to conduct the test of Eq.
(7) can be calculated using Eq. (Al).

Maximize pj,;» (Ala)
m 2
2 Wit - Wir2
subject to: = ———— <1 (Alb)
(2 W?Tl) (E W?Tl)
i=I i=1
wir1 € WTI and Wi € ‘4/7'27 i=1tom (AIC)
m
> Wi (@ = ) =0 (Ald)
i=1

Eq. (Alb) is a constraint for checking that the angle between
VV; and VVp, is greater than zero (i.e., gy s that are not parallel
to any one of the hpy’s, recall Sec. 3.2). Note that the angle be-
tween the vectors VVy and VVp, is zero only when the cosine of
the angle (given by the square root of the left hand side of Eq.
(A1b)) is one. Equation (Alc) is a short notation for the normal-
ization constraints on w;r; and w;;», and the constraints that
sir1=wir1/wiry and s;im=w;p/w;r, should belong to the range
of MRS preferences given by the DM at Dy and Dy, respectively
(recall Eq. (4b) and Eq. (4c). Equation (Ald) is a constraint for
checking thatVV;, belongs to the range of the gradients that do
not eliminate Dy, by gradient cut (recall Fig. 4).

Appendix B

The formulation required to conduct the test of Eq. (8) is given
by Eq. (B1). As mentioned earlier (recall Sec. 3.2), when VVp is
equal to VVp, (i.e., hp’s that are parallel to some of the hp,’s), we
can find the value of the designs directly by using Eq. (3) based on
a linear approximation of the value function. So, if the maximum
of the difference between the value of Dy and Dy, (i.e., objective
function of Eq. (B1)) is negative we can conclude that Dy, domi-
nates Dy, for the case where some of the h7,’s are parallel to some
of the hp»’s. Equation (B1b) is a constraint for checking that V'V,
is equal to VVp,. Equation (Blc) is similar to Equation (Alc).

m

Maximize E Wity * (aﬂ‘] - al‘Tz) (Bla)
i=1
m 2
2 Wit - Wir2
i=1
subject to: ml - =1 (B1b)
2 2
(E WiTl) (E Wm)
i=1 i=1
wirr € Wpy and  wip € Wpy (Ble)

Note that, it is possible that Eq. (A1) or Eq. (B1) is infeasible.
If Eq. (A1) is infeasible, the test of Eq. (8) alone is enough to
conclude that Dy, dominates Dy;. Similarly, the test of Eq. (7)
alone is enough to conclude that Dy, dominates Dy if Eq. (B1) is
infeasible. Note that Eq. (B1) becomes infeasible only when no
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hry is parallel to any hy, and Eq. (A1) becomes infeasible only
when any kg, is parallel to some hp, (hence Eq. (A1) and (B1)
cannot be infeasible simultaneously).
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