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An important aspect of engineering product design selection is the inevitable presence of
variability in the selection process. There are mainly two types of variability: variability
in the preferences of the decision maker (DM) and variability in attribute levels of the
design alternatives. We address both kinds of variability in this paper. We first present a
method for selection with preference variability alone. Our method is interactive and
iterative and assumes only that the preferences of the DM reflect an implicit value func-
tion that is differentiable, quasi-concave and non-decreasing with respect to attributes.
The DM states his/her preferences with a range (due to the variability) for marginal rate
of substitution (MRS) between attributes at a series of trial designs. The method uses the
range of MRS preferences to eliminate “dominated designs” and then to find a set of
“potentially optimal designs.” We present a payload design selection example to demon-
strate and verify our method. Finally, we extend our method for selection with preference
variability to the case where the attribute levels of design alternatives also have vari-
ability. We assume that the variability in attribute levels can be quantified with a range of
attribute levels. �DOI: 10.1115/1.2216728�

Keywords: multi-attribute decision making, preference variability, attribute variability,
partial information
Introduction
Often in engineering design selection there is no one design

lternative that is better in terms of all attributes, and the preferred
esigns are dependent on the preferences of the decision maker
DM�. In addition, there is always uncontrollable variability,
hich is mainly of two types, that has to be accounted for �1–3�.
he first type, preference variability, is caused due to the DM’s

ack of information on end users’ needs or due to the DM’s own
nherent inability to state the preferences with certainty �4,5�. The
econd type, attribute variability, is caused due to uncontrollable
ngineering design parameters like material properties, manufac-
uring errors, or due to different usage situations of the product
1�. Both types of variability are inevitable in engineering design,
s acknowledged widely �6,7�. If the variability is not accounted
or, the preferred designs found might be erroneous.

Multi-attribute decision making �MADM� is a popular tech-
ique that is used for engineering design selection �1,8�. MADM
ethods for product design selection assume that the DM places a

alue on design alternatives in accordance with an unexpressed
mplicit value function of the attributes �9�. It is a convention to
se the term utility function when there is variability in the at-
ribute levels of alternatives and the term value function otherwise
9�. However, for simplicity �and to avoid confusion�, we only use
he term value function in this paper.

Many of the existing MADM methods make assumptions about
he DM’s value function to simplify the selection problem. The

ost common assumption is that the value function is additive
ith respect to the attributes �10–14�. Significant research has
een reported in the MADM literature for selection with variabil-
ty in preferences alone. Some researchers propose to assume dif-
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ferent probability distributions for preferences and then study the
effect of these distributions on the preferred designs �15,16�. An-
other way �popularly known as selection with partial information�
for accounting preference variability in selection is to ask the DM
to provide some constraints on the preferences �17–24�. Typical
constraints could be some ranges on the preferences, like relative
importance of attribute a1 is between 0.3 and 0.4. The ranges on
preferences are then used in finding the “non-dominated” and “po-
tentially optimal designs” �18,23�. When there is variability in
attributes of alternatives alone, many researchers have proposed to
use lottery techniques and expectations to find the preferred de-
signs �1,9,25�. Some research has also been reported for selection
with variability in both the preferences and the attribute levels of
alternatives. Methods for selection are proposed when the prob-
ability distributions governing the variability in attributes and
some constraints on the preferences are known �26–28�. Recently,
some work has been reported to find non-dominated and poten-
tially optimal designs when the variability in attributes and pref-
erences is expressed in the form of ranges �29–32�.

However, to the best of our knowledge, existing methods for
preference and/or attribute variability in the literature are appli-
cable only when the DM’s value function is presumed known
�e.g., additive, multiplicative�. It is well known that presuming a
form for the value function is restrictive and applicable only to
special cases �33–35�. In this paper, we first present a method for
selection with preference variability alone when the DM’s value
function is implicit and unknown. We then extend this method
further for selection with preference and attribute variability.

Our method for selection with preference variability is iterative
and assumes only that the DM’s value function is differentiable,
quasi-concave and non-decreasing with respect to the attributes.
In this method, we assume that the DM gives a range for the
marginal rate of substitution �MRS� �refer to Sec. 2.3� between the
attributes at a series of trial designs �each a particular design un-

der consideration�. Using the range of MRS preferences and gra-
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ient properties of the value function, we eliminate some design
lternatives as dominated designs with respect to the trial designs.
owever, it is possible that some of the non-eliminated designs

re not potentially optimal. So, we propose an approach that is
ased on some approximations to identify the potentially optimal
esigns from the set of non-eliminated designs. An advantage of
he proposed method is that it does not need the probability dis-
ributions governing the MRS preferences, which are usually dif-
cult to obtain.
In our method for selection with preference and attribute vari-

bility, we assume that the variability in the attribute levels can be
uantified with a known range for each attribute of a design alter-
ative. Using the ranges of attributes and the ranges of MRS
references, we then eliminate some design alternatives as domi-
ated designs.

The organization of this paper is as follows. In Sec. 2 we pro-
ide some definitions for the main terminology used in the paper.
n Sec. 3 we present our method for selection with preference
ariability alone. Next, in Sec. 4 we discuss our method for selec-
ion with preference and attribute variability. Section 5 describes
he application of our selection method with preference variability
nd our selection method with preference and attribute variability
n a payload design selection problem. Finally, we conclude with
summary in Sec. 6.

Definitions
In this section we give definitions and some pertinent properties

or the important terms used throughout the paper.

2.1 Selection Problem. The set of “n” discrete design alter-
atives from which the most preferred is to be selected is
D1 , ... ,Dj , ... ,Dn�. Each alternative Dj is represented by the set
f attributes �a1j , ... ,amj� in the m-dimensional design attribute
pace. Let the value function, V�Dj� be an implicit value function
f attributes �a1j , ... ,amj� that represents the DM’s preferences.
ere, we assume that there is a single DM. Note that, for the

pplication of the method developed in this paper, it is not impor-
ant how the design alternatives for selection are generated.

When there is no variability in attributes, aij would be exact
deterministic or fixed�. However, when there is variability in the
ttributes, we assume that the ranges of attribute levels for each
esign alternative are known. We use the symbol Aij

L to represent
he lower bound, Aij

U to represent the upper bound, and Aij to
epresent the range �Aij

L ,Aij
U� of the ith attribute of design Dj. We

se the symbol aij to represent a variable attribute level that be-
ongs to the range Aij. �Note that aij could be fixed or variable
epending on whether or not the ith attribute level of design Dj is
eterministic.�

2.2 Quasi-Concave Function. A function V defined on a
on-empty convex domain is said to be quasi-concave �36,37� if

V��X1 + �1 − ��X2� � min�V�X1�,V�X2�� �1�

or all X1, X2 that belong to the domain of V and �� �0,1�.

2.3 Marginal Rate of Substitution (MRS). At trial design
T, let �aj be the amount DM will compromise in attribute aj in
rder to gain an amount �ai in attribute ai while maintaining
onstant value �i.e., remain indifferent �9� with respect to DT�. The
RS, sijT, between attributes ai and aj at DT is the ratio

�aj /�ai. Note that the location of the design alternative in the
esign attribute space can influence the DM’s MRS �9�. If the
RS preferences are consistent, it can be shown that sijT
wiT /wjT, where wiT and wjT are the gradient coefficients of the
alue function V at DT with respect to attributes ai and aj, �i.e.,
V /�ai and �V /�aj�, respectively �13,35�.

When there is no variability in preferences, both �aj and sijT
ould be exact �or deterministic�. However, if there is variability
n preferences, the DM would give a range for �aj �for a fixed
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�ai� thus leading to a range of MRS. We use the symbol SijT
L to

represent the lower bound, the symbol SijT
U to represent the upper

bound, and the symbol SijT to represent the range �SijT
L ,SijT

U � of
MRS preferences between two attributes ai and aj, at trial design
DT. We use the symbol sijT to represent a variable MRS that
belongs to the range SijT. �Note that sijT could be fixed or variable
depending on whether or not MRS is deterministic.�

2.4 Gradient Cut. The gradient cut �33� is the half space CG
bounded by the normal to the gradient of a value function V at a
point DT, �VT, with the gradient pointing in the outward direction
from CG; see Fig. 1. CG does not include the boundary line hT in
Fig. 1.

If the value function, V, is differentiable and quasi-concave,
then it can be shown that for all D�CG, V�D��V�DT� �33,35,37�.
That is, any design alternative in CG has lower value than DT, and
can be eliminated. If the gradient of V at DT is
�VT : �w1T , ... ,wmT�, then a design D+ : �a1+ , ... ,am+� is in CG of
DT : �a1T , ... ,amT� if �37�

�
i=1

m

wiT · �ai+ − aiT� � 0 �2�

�Here �w1T , ... ,wmT�, �a1+ , ... ,am+�, �a1T , ... ,amT� are determin-
istic�. Note that design alternatives that are not in CG might have
either higher value or lower value than DT �37�. The gradient of
the value function at DT can be obtained from the deterministic
MRS preferences by solving an optimization problem. The details
of the formulation for that optimization problem are not presented
here and the interested reader can refer to the literature �35�.

2.5 Dominated Design. When there is no variability in the
attribute levels, but there is variability in MRS preferences, a de-
sign D+ is said to be dominated by another design DT, if D+ has
lower value than DT �i.e., V�D+��V�DT�� for the whole range of
MRS preferences, SijT, at DT. If the attribute levels also have
variability, then D+ is said to be dominated by DT if V�D+�
�V�DT� for the whole range of SijT and the whole range of at-
tribute levels Ai+ and AiT �where i=1 to m�.

2.6 Potentially Optimal Design. When there is no variability
in the attribute levels, but there is variability in MRS preferences,
a design D+ is said to be potentially optimal if D+ has the highest
value among all design alternatives for some subset of SijT. If the
attribute levels also have variability, then D+ is potentially optimal
if D+ is the highest valued design alternative for some subsets of
SijT, Ai+ and Aid �where d=1 to n�.

Note that, from the above definition, a design which is not
potentially optimal cannot be most preferred for any realization of

Fig. 1 Illustration of gradient cut
MRS that belongs to the range of preferences and/or for any re-
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lization of attribute levels that belongs to the range of attributes.
um et al. �30� gave similar definitions for dominated design and
otentially optimal design when the value function is assumed to
e additive. Here we have extended their definitions for the more
eneral case of an implicit value function.

Selection with Preference Variability
Figure 2 shows the flow chart of our method for selection with

reference variability. Since we assume the DM’s value function
o be non-decreasing with respect to attributes, for selection, it is
nough to consider only those designs that are Pareto optimal
rom the original set of design alternatives �33�.

In this method �see Fig. 2�, we start by picking an initial trial
esign, DT, from the set of design alternatives. We choose trial
esign DT either as an alternative that would have maximum value
f the value function were linear with equal importance to the
ttributes, or as a random pick. In a small region OT around DT we
hen approximate the value function to be linear with respect to
he attributes. The gradient of V at DT is �VT= �w1T , ... ,wmT�. The
eneral form for a linear approximation of V�Dj� in OT would be
considering only the differences between V for design alterna-
ives near DT�:

V�Dj� = �
i=1

m

wiT · aij �3�

ote that our method does not do a “piecewise linear approxima-
ion” of the value function at a trial design. The linear approxima-
ion is only used to obtain the gradient of the value function at a
rial design, which is then used to eliminate dominated designs
ith respect to the trial design.
To obtain the gradient coefficients, wiT, we query the DM for

he MRS preferences at the trial design. We ask the DM to provide
he MRS between attributes ai and ai+1 �i=1, ... ,�m−1� and the

RS between attribute am and attribute a1 �if m�2�. As men-

Fig. 2 Flow chart of our method fo
ioned earlier, when there is variability in preferences, the DM

ournal of Mechanical Design
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gives a range for MRS preferences, SijT. For example, in the se-
lection of a cordless power tool, the DM might say: “I would give
up 40–50 operations per battery to reduce the weight by 0.1
pounds.”

When the DM gives a range for MRS preferences, the gradient
coefficients �which are a function of MRS preferences �9,35��,
wiT, will also have a range. Because of this, the gradient cut
shown in Fig. 1 is not applicable for eliminating dominated de-
signs. So, we use a modified version of gradient cut for eliminat-
ing dominated designs based on the range of MRS preferences
�see Sec. 3.1 for details�.

Next, we try to find a new trial design from the non-eliminated
design alternatives. If a new trial design is found, we repeat the
above steps �recall Fig. 2�, referred to as an “iteration” from here
on. Otherwise, we stop the process and collect the non-eliminated
trial designs in a set, DNTD. All the designs that are not in DNTD
are dominated by at least one design in the original set of design
alternatives as per our definition in Sec. 2.5.

However, it is possible that the elements of the set DNTD are not
all potentially optimal �i.e., they might be dominated by some
designs belonging to DNTD, see Sec. 3.1 for a detailed explana-
tion�. So, we present a heuristic approach to test whether or not
the elements of DNTD are potentially optimal. This heuristic ap-
proach is based on a linear approximation and the gradient prop-
erties of the quasi-concave value function �see Sec. 3.2 for de-
tails�.

In the next two sections, we discuss the individual components
of our method for selection with preference variability. In Sec.
3.1, we present our approach for eliminating dominated designs
based on a range of MRS preferences. In Sec. 3.2, we present the
heuristic approach to find potentially optimal designs from the set
of non-eliminated trial designs DNTD. Our approach for finding a
new trial design is not presented here due to space restrictions and

election with preference variability
the interested reader can refer to �35�.
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3.1 Eliminating Dominated Designs Based on a Range of
RS Preferences. As mentioned earlier, when the DM gives a

ange of MRS at a trial design DT, the corresponding gradient
oefficients at DT, wiT, also have a range. Due to this, some de-
igns might lie only in the gradient cuts of some part of the range
nd not in the gradient cuts of some other part of the range, e.g.,
* in Fig. 3. I.e., D* is guaranteed to have a lower value than DT
nly for some part of the range of MRS preferences. So, we adopt
conservative approach and eliminate, as dominated designs,

hose designs that lie in all possible gradient cuts for the entire
ange of wiT �e.g., D0 in Fig. 3�.

Note that, the ranges of gradient coefficients at DT, wiT, in fact
esult in a hyper-cone of gradients with DT as the apex. In two
ttribute space, the gradients corresponding to the extremes of
RS range �i.e., SijT

U and SijT
L � define this hyper-cone. Hence, in a

wo attribute space, the hyper-cone can be viewed as a range of
radient and a design is said to be dominated by DT if and only if
q. �2� is satisfied for both extremes of the range of the gradient

recall Fig. 3�. But, when the number of attributes is more than
wo, there is no easy �general� way to define the hyper-cone using
he gradients corresponding to the extremes of MRS range and a
imple check of Eq. �2� is not enough to determine whether or not
design is dominated. �For simplicity, we continue to use the term

ange of gradient in the rest of the paper for referring to the hyper-
one of gradients.�

Below, we present a formulation that uses the range of MRS
references, SijT, directly �i.e., without mapping them to a range
f gradient coefficients� for checking whether or not a design
+: �a1+ , ... ,am+� is dominated by DT : �a1T , ... ,amT�. This linear
rogramming �LP� problem is simple to solve by any LP solver
e.g., “linprog” from the MATLAB® optimization toolbox�. In this
ormulation, wiT are the variables and �a1+ , ... ,am+�, �a1T , ... ,amT�
re deterministic.

aximize Z* = �
i=1

m

wiT · �ai+ − aiT� �4a�

ubject to:�
i=1

m

wiT = 1; wiT � 0 �4b�

ijT
L �

wiT

wjT
� SijT

U ;“m − 1” such constraints �4c�

he objective function Z* in the above formulation, Eq. �4a�, is

ig. 3 Illustration of approach for eliminating dominated de-
igns based on range of MRS preferences
sed to check whether or not D+ is dominated by DT �recall Fig.

030 / Vol. 128, SEPTEMBER 2006
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3�. If there exists a vector �VT : �w1T , ... ,wmT� from the possible
range of gradient at DT for which D+ does not lie in the corre-
sponding gradient cut, then the value of Z* in Eq. �4a� will be
non-negative �recall Eq. �2�� otherwise Z* will be negative. So, if
the maximum value of Z* is negative then we can conclude that
D+ lies in the gradient cuts of all the gradients for the given range
of MRS preferences at DT. Hence D+ is dominated by DT.

Equation �4b� is a normalization constraint on the gradient co-
efficients, wiT. We impose the constraint that the gradient coeffi-
cients, wiT, are non-negative because we assume that the value
function is non-decreasing with respect to the attributes.

Equation �4c� imposes the constraint that the MRS preferences
sijT=wiT /wjT should belong to the range of MRS SijT : �SijT

L ,SijT
U �

given by the DM at DT. Note that the condition sijT=wiT /wjT
holds when the MRS preferences are assumed to be exact and
consistent, i.e., Eq. �5� is satisfied �13�.

sijT =
wiT

wjT
and sijT · sjkT =

wiT

wkT
�5�

Since m−1 MRS values are independent when they are consistent,
we use only m−1 constraints for the bounds on sijT=wiT /wjT �re-
call Eq. �4c��. However, if one feels that the exactness and con-
sistency assumption is not appropriate, then Eq. �4� can be easily
modified by adding two more constraints as given by Eq. �6�.

�
i,j
�sijT −

wiT

wjT
	2

� �, where � is arbitrarily small �6a�

�
i,j,k

�sijT · sjkT −
wiT

wkT
	2

� � �6b�

Equation �6a� would be used to check how close the si5j
T ’s are to

the wiT’s and Eq. �6b� would be used to check that sijT are con-
sistent. However, note that adding the constraints in Eq. �6�
�which are non-linear and non-convex� to the formulation in Eq.
�4� would increase the computational burden in eliminating the
dominated designs. Also we obtain only m MRS preferences �in-
stead of the possible m · �m−1� /2� in our method to reduce the
question burden on the DM. Note, however, that Eqs. �4� and �6�
can be easily modified if the DM provides more than m MRS
preferences.

Note that Eq. �4� should be applied to each design D+ �that
belongs to the original set of design alternatives� to check whether
or not that design is dominated by DT. Based on the definition of
Sec. 2.5, for a design D+, if Z* in Eq. �4� is negative then it is
guaranteed that D+ is dominated by the trial design DT. However,
it is possible that D+ might be dominated by DT even if Z* is
positive. This is because of the property of the quasi-concave
value function. Recall that design alternatives not in the gradient
cut CG, i.e., above the hyper-plane, hT, �recall Fig. 1� might have
either higher or lower value than DT, i.e., gradient cut does not
eliminate all designs that have lower value than DT. Added to that,
for eliminating dominated designs when the MRS preferences
have a range, we use a worst case �i.e., conservative� approach
and eliminate only those designs that are in all possible gradient
cuts �recall Fig. 3�.

Because Eq. �4� cannot guarantee that all dominated designs
with respect to a trial design are eliminated, it is possible that
some designs in the set of non-eliminated designs DNTD are domi-
nated. We present, in the next section, a heuristic to identify domi-
nated designs from DNTD, and hence find the set of potentially
optimal designs.

3.2 Heuristic Approach to Find Potentially Optimal
Designs. Figure 4 illustrates our heuristic approach in a two at-
tribute space. Let DT1 and DT2 be two non-eliminated trial designs
�i.e., they belong to DNTD�. Let SijT1 : �SijT1

L ,SijT1
U � and

L U
SijT2 : �SijT2 ,SijT2� be the range of MRS preferences between at-
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ributes ai and aj at DT1 and DT2, respectively. Recall that for a
wo attribute space the range of gradient corresponding to the
ange of the MRS preferences at the trial designs can be repre-
ented using the extremes of gradient. Let �VT1

L and �VT1
U be the

xtremes of the range of gradient at DT1 and �VT2
L and �VT2

U be
he extremes of the range of gradient at DT2.

Lines hT1
L and hT1

U pass through DT1 and are perpendicular to the
xtremes of the range of gradient, �VT1

L and �VT1
U , respectively.

ines hT2
L and hT2

U pass through DT2 and are perpendicular to the
xtremes of the range of gradient, �VT2

L and �VT2
U , respectively.

T1 is the region around DT1 in which we approximate the value
unction to be linear �recall Fig. 2�, i.e., at every point inside OT1,
he range of MRS preferences is the same as the range of MRS
references given by the DM at DT1 �35,37�. Note that neither of
he two trial designs DT1or DT2 is dominated by the other �recall
ig. 3�.
As shown in Fig. 4, all points in the shaded region of OT1 have
higher value than DT1 for the entire range of gradient at DT1

i.e., those points dominate DT1�. For the case shown in Fig. 4, all
he lines that lie between the extremes hT2

L and hT2
U at DT2 pass

hrough the shaded region of OT1. Hence DT2 dominates some
oints �recall Fig. 3� in the shaded region of OT1 that have higher
alue than DT1. Hence DT2 dominates DT1.
Note that in Fig. 4, DT1 lies in the gradient cuts of the gradients

erpendicular to the lines in the range hT2
M and hT2

U . So it is enough
o check that DT2 dominates DT1 for the other part of the range,
.e., hT2

L and hT2
M . Let hT1 be a line that lies between hT1

L and hT1
U at

T1. Let hT2 be a line that lies between hT2
L and hT2

M at DT2. Also,
et ph1h2

T1 be the perpendicular distance from DT1to the intersection
f hT1 and hT2. If the maximum ph1h2

T1 is less than R �i.e., radius of

T1, typical value of R is 0.1� then all lines between hT2
L and hT2

M

ass through the shaded region of OT1 and hence DT2 dominates
T1. Equation �7� states the condition mathematically.


 maximum
hT1��hT1

L ,hT1
U �,hT2��hT2

L ,hT2
M �

ph1h2
T1 � � R �7�

t can be seen that for the case shown in Fig. 4, the maximum
istance from DT1 to the intersection of hT1 and hT2 �i.e., maxi-
um ph1h2

T1 � corresponds to ph1Lh2L
T1 �i.e., intersection of the lines

L L T1

Fig. 4 Illustration of heuristic appro
T1 and hT2�. Also ph1Lh2L is less than R, the radius of OT1. So we

ournal of Mechanical Design
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can say that DT2 dominates DT1 for the case shown in Fig. 4.
The case shown in Fig. 4 is simple in that any line hT1 that lies

between hT1
L and hT1

U at DT1 is not parallel to any line hT2 that lies
between hT2

L and hT2
U at DT2. But, this might not hold for some

cases in the given range of preferences SijT1 : �SijT1
L ,SijT1

U � and
SijT2 : �SijT2

L ,SijT2
U � at DT1 and DT2, respectively, resulting in the

maximum ph1h2
T1 to be infinity.

However, for the case where hT1 is parallel to hT2, it is implied
that �VT1 is equal to �VT2, where �VT1 and �VT2 are the gradi-
ents perpendicular to hT1 and hT2 at DT1 and DT2, respectively.
When �VT1 is equal to �VT2, we can find the value of the designs
directly by using Eq. �3� based on a linear approximation of value
function. In such a case, Eq. �8� can be used to check that
DT2 : �a1T2 , ... ,amT2� dominates DT1 : �a1T1 , ... ,amT1� �here
�a1T2 , ... ,amT2�,�a1T1 , ... ,amT1� are deterministic�.


 maximum
�VT2=�T1:�w1T1,. . .,wmT1�

�
i=1

m

wiT1 · �aiT1 − aiT2�� � 0 �8�

In our heuristic approach, to mathematically check that a trial
design DT2 dominates another trial design DT1, we need to con-
duct two tests. The first test, Eq. �7�, is for the case in which any
line hT1 at DT1 is not parallel to any line hT2 at DT2. The second
test, Eq. �8�, is for the case in which some of the lines at DT1, i.e.,
hT1’s, are parallel to some of the lines at DT2, i.e., hT2’s. However,
visualizing the range of gradients at DT1 and DT2 as shown in Fig.
4 is possible in two attribute space but unrealistic when the num-
ber of attributes is more than two. So, we developed mathematical
formulations, that find the variables �left hand side of the inequal-
ity in Eq. �7� and �8�� needed for the two tests directly without
mapping them to a range of gradient coefficients. These formula-
tions were originally published in �38� and are reproduced in Ap-
pendix A �Eq. �7�� and Appendix B �Eq. �8�� for completeness.

If there are more than two non-eliminated trial designs in the
set DNTD, we apply the heuristic approach between the trial de-
signs pairwise. Also note that the maximum of ph1h2

T1 �i.e., perpen-
dicular distance from DT1 to the intersection of hT1 and hT2� might
not be the same as the maximum of ph1h2

T2 �i.e., perpendicular
distance from DT2 to the intersection of hT1 and hT2�. If it so

T1 T2

for eliminating dominated designs
happens that the maximum values of both ph1h2 and ph1h2 are less
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han the given radius R of OTi, it means that R is too large for the
inear approximation to be valid. The designs that are not elimi-
ated after the application of heuristic approach will be denoted as
he potentially optimal designs. Note, however, it is possible that
ome dominated designs are not eliminated even after applying
ur heuristic approach.

In the next section we extend our selection method with pref-
rence variability to the case when there is variability in the at-
ribute levels also.

Selection With Preference and Attribute Variability
Figure 5 shows the flow chart of our method for selection with

reference and attribute variability. The individual components of
he method shown in Fig. 5 are similar to that of the method
hown in Fig. 2 except for the dashed boxes.

In our selection method with preference and attribute variabil-
ty, we assume that the ranges of the attributes �shown by dotted
ectangles in Fig. 5� quantifying the variability in the attribute
evels of the design alternatives are known. The black dot in the

iddle of the dashed rectangle we call the nominal attribute levels
f the design alternatives. By nominal attribute levels we mean
he attribute levels that would occur when there is no variability in
he attributes.

With the range of MRS preferences �obtained by querying the
M at the trial design� and the range of the attribute levels of
esign alternatives, we use a modified version of gradient cut for
liminating some of the dominated designs with respect to the trial
esign �see Sec. 4.1 for details�. Next, we try to find a new trial
esign from the non-eliminated alternatives. If a new trial design
s found, we repeat the above steps �see Fig. 5�. Otherwise, we
top the process and collect the non-eliminated trial designs in a
et, DNTD. Ideally the set DNTD should consist only of the poten-
ially optimal designs. But due to the properties of quasi-concave

Fig. 5 Flow chart of our method for selec
unction �explained in Sec. 3.1�, it is possible that some domi-

032 / Vol. 128, SEPTEMBER 2006
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nated designs belong to DNTD. In Sec. 4.1, we present our ap-
proach for eliminating dominated designs based on the range of
MRS preferences and the range of attribute levels of design alter-
natives.

4.1 Eliminating Dominated Designs Based on the Range of
MRS Preferences and Attribute Levels. Figure 6 illustrates, in
two attribute spaces, our approach for eliminating dominated de-
signs based on the range of MRS preferences and the range of

n with preference and attribute variability

Fig. 6 Illustration of approach for eliminating dominated de-
signs based on the range of MRS preferences and the range of
tio
attribute levels of design alternatives
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ttribute levels. Let DT be the current trial design with the solid
ectangle as the range of attributes and the black dot in the middle
s the nominal attribute levels. Because the DM gives a range of
RS �due to variability� at DT, the corresponding gradient coef-

cients at DT, wiT, also have a range as shown in Fig. 6. Note that
t is assumed that the DM gives the range of MRS preferences at

T keeping in mind the range of attribute levels of DT. In other
ords, the given range of MRS preferences should be applicable

or any attribute levels belonging to the range of attributes at DT.
Because of the variability in the MRS preferences and the at-

ribute levels, a number of gradient cuts are possible at DT, the
nion of which is shown by the dotted region in Fig. 6. The
haded area in Fig. 6 is the intersection of all the gradient cuts
ossible at DT. We eliminate those designs whose range of at-
ribute levels lies completely inside the shaded area of Fig. 6 as
he dominated designs. However, visualizing the range of gradient
orresponding to the range of MRS preferences as shown in Fig. 6
s trivial in two dimensions but is difficult for higher dimensions.
o, we present a mathematical formulation in Eq. �9� for checking
hether or not a design D+ is dominated by a trial design DT. In

his formulation, wiT, ai+ and aiT are the variables.

Maximize Z* = �
i=1

m

wiT · �ai+ − aiT� �9a�

subject to: �
i=1

m

wiT = 1;wiT � 0 �9b�

SijT
L �

wiT

wjT
� SijT

U ; m − 1 such constraints �9c�

Ai+
L � ai+ � Ai+

U ; m such constraints �9d�

AiT
L � aiT � AiT

U ; m such constraints �9e�
he formulation in Eq. �9� is similar to the formulation in Eq. �4�
xcept that two new set of constraints are added to account for the
ariability in attribute levels. Equation �9d� is to check that the
ariable attribute levels of D+, ai+, belong to the range of attribute
evels at D+. Equation �9e� imposes a similar constraint on the
ariable attribute levels of DT, aiT.
If there exists a vector �VT : �wiT , ... ,wmT� in range of gradient

t DT, and vectors �a1+ , ... ,am+� and �a1T , ... ,amT� in the ranges of
ttribute levels at D+ and DT respectively, for which D+ does not
ie in the corresponding gradient cut, then the value of Z* in Eq.
9a� will be non-negative �recall Eq. �2�� otherwise Z* will be
egative. So, if the maximum value of Z* is negative, then we can
onclude that D+ lies in the gradient cuts of all the gradients at DT.
ence D+ is dominated by DT.
The formulation in Eq. �9� has a non-linear objective function

ith linear constraints and is simple to solve by any existing com-
ercial software �e.g., the MATLAB® optimization toolbox�. Note

hat in Eq. �9�, we assumed the MRS preferences sijT are exact
nd consistent �recall Eq. �5��. However, if one feels such an
ssumption is not appropriate, then additional constraints similar
o Eq. �6� can be added to Eq. �9�. Also Eq. �9� can be easily

odified with additional constraints if more than m MRS prefer-
nces are given by the DM.

In the next section, we demonstrate the application of our se-
ection method with preference variability and selection method
ith preference and attribute variability in the selection of a pay-

oad design.

Payload Design Selection Example
This example is for a two-attribute problem and involves the

election of a payload design for an undersea autonomous vehicle.

ypically, the payload must be effective in several different uses,

ournal of Mechanical Design
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called “scenarios.” Effectiveness in a scenario is measured by a
probability of success PS of the payload in that scenario. The
design goal is to simultaneously maximize individual PS’s for all
scenarios. The payload design is constrained by upper limits on
the weight and radiated noise of the payload. For our example, we
maximized PS1 and PS2 for two different scenarios using a multi-
objective genetic algorithm �refer to �39� for details�. Figure 7
shows the resulting ten Pareto optimum design alternatives from
which we select, with the PSi’s being the attributes. Note that in
Fig. 7, some of the design alternatives �namely D1 and D2; D3 and
D4; and D7 and D8� are located close to each other in the attribute
space and are difficult to distinguish.

In Sec. 5.1, we show the application of our selection method
with preference variability to payload design selection. Next, in
Sec. 5.2 we discuss the application of our selection method with
preference and attribute variability to the same example.

5.1 Payload Design Selection With Preference Variability.
Since it is difficult for a human DM to verify that the potentially
optimal designs found by our method with preference variability
are indeed accurate �i.e., the designs are indeed most preferred for
some subset of original range of preferences�, we use a simulated
DM in this example. We constructed the DM’s implicit value
function to be of the form

V = − ��1 − PS1�� + �1 − PS2�2� . �10�

In Eq. �10�, parameter � creates variability in the MRS prefer-
ences between the attributes. We assign a range to � �note in Eq.
�10�, V is quasi-concave, differentiable and non-decreasing for
any � greater than or equal to one�. As � varies in its specified
range, the MRS preference between attributes also varies. As the
range of � increases, the variability in the MRS preferences also
increases, and vice versa. We emphasize that the variability con-
struct of Eq. �10� is not a presumed value function. Rather, it
simulates a human DM who is supposedly being queried by our
selection method, providing a range of MRS preferences. The
only reason we use this variability construct is to verify that the
potentially optimal designs obtained by our method are indeed
accurate. Note that Eq. �10� is a simple concave function and we
use it in this example for demonstration. However, we did test our
method with more complex value functions in other examples
�40� �these examples had 2–6 attributes and up to 50 design
alternatives�.

We applied our method to three cases with different ranges for
� in each case. We discuss in detail the case where variability in �
is large �thus resulting in large variability in MRS preferences� in

Fig. 7 Dominated designs when � lies between 11 and 18 at
DT1
Sec. 5.1.1. Next we briefly discuss the results for the other two
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ases in Sec. 5.1.2. Finally, we present our verification results in
ec. 5.1.3.

5.1.1 Large Variability in MRS Preferences. For this case, we
x the range of � to be “11–18.” The range of MRS preferences at
trial design corresponding to a range of � can be found from Eq.

10� by solving a simple optimization problem �we do not show
he optimization problem here due to space restrictions�.

Following the iterative method discussed in Sec. 3 �recall Fig.
�, we start by picking a trial design from the set of ten design
lternatives. We randomly pick design alternative 3, D3, as the
rial design for the first iteration, and set it as DT1: �0.134, 0.684�.
ince this is a two attribute problem, we ask the DM to provide

he range of only one MRS preference, i.e., MRS preference be-
ween PS1 �attribute 1� and PS2 �attribute 2�. Our simulated DM,
q. �10�, responds by saying: “I would give up between 0.246 and
.413 in PS2 to gain 0.1 in PS1,” i.e., the range of MRS prefer-
nces at DT1 is, S12T1: �2.46, 4.13�.

We then use Eq. �4� with the given MRS range to eliminate
ome dominated designs. Table 1 �column 3� shows the Z* values
objective function in Eq. �4�� at DT1 for the payload design alter-
atives. We can see that Z* is negative for D1, D2 �hence domi-
ated by DT1� and non-negative for the rest of the design alterna-
ives. Z* of D3 is zero because it is the trial design for this
teration.

As there are only two attributes in this example, the upper
ound, S12T1

U , and the lower bound, S12T1
L , of MRS preferences

orrespond to the extremes, �VT1
U and �VT1

L , of the range of gra-
ient at DT1. So we can visualize the attribute space with the range
f gradients as shown in Fig. 7. From Fig. 7, we can see that only
1 and D2 lie in all the possible gradient cuts that belong to the

ange of gradient at DT1. Hence, only D1 and D2 are dominated by
T1 and can be eliminated.
Since more than one design is not eliminated, we find a new

rial design using our approach discussed in �35�. Our approach
nds D5 as the new trial design. So we set D5 as DT2: �0.274,
.541� and start the second iteration. Our simulated DM, Eq. �10�,
ives the range of MRS preferences at DT2 as, S12T2: �0.09, 0.49�.
e then use Eq. �4� to eliminate dominated designs based on the

iven range of MRS, S12T2. Table 1 �column 4� shows the Z*

alues at DT2 for the payload design alternatives. We can see that
* is negative for D6, D7, D8, D9, and D10 �hence dominated by
T2� and positive forD3 and D4. Z* of D5 is zero because it is the

rial design for this iteration. Z* is empty for D1 and D2 because
hey are already eliminated by DT1.

Since more than one design is not eliminated �recall D3, D4,
nd D5 are not eliminated�, we find a new trial design. Perforce,
4 is the new trial design because it is the only non-eliminated
esign which has not been a trial design. So we set D4 as DT3:
0.139, 0.675� and start the third iteration. Our simulated DM, Eq.

Table 1 Z* values for paylo

Design
alternative No.

Attributes of
design alternative

�PS1 , PS2�

Z* values
objective

in Eq

1 �0.016, 0.695� −0.0
2 �0.016, 0.693� −0.0
3 �0.134, 0.684� 0
4 �0.139, 0.675� 0.0
5 �0.274, 0.541� 0.0
6 �0.275, 0.114� 0.0
7 �0.343, 0.093� 0.0
8 �0.346, 0.091� 0.0
9 �0.355, 0.090� 0.0
10 �0.357, 0.075� 0.0
10�, gives the range of MRS preferences at DT3 as, S12T3: �2.18,
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3.79�. We then use Eq. �4� to eliminate dominated designs based
on the given range of MRS, S12T3. Table 1 �column 5� shows the
Z* values at DT3 for the payload design alternatives. We can see
that Z* is negative for D3 �hence dominated by DT3� and positive
for D5.

D4 and D5 are the only non-eliminated designs at this stage.
Since both of them have already been trial designs we stop the
iterative process and collect the two designs in the set DNTD �re-
call Fig. 2�. We then apply our heuristic approach to see if any of
the two trial designs can be eliminated �recall Sec. 3.2�. We fix the
radius of the region, OTi�i=2,3�, around DTi�i=2,3� where the
linear approximation of value function is estimated to be valid as:
R=0.10 �the R value is chosen arbitrarily�. Using the formulation
in Appendix A, we then find the maximum ph2h3

T2 for DT2 as 0.13
and the maximum ph2h3

T3 for DT3 as 0.14. Since the maximum
values of both ph2h3

T2 and ph2h3
T3 are greater than R, neither design

dominates the other. So we conclude that D4 andD5 are potentially
optimal for the case when � lies between 11 and 18.

In the next section, we briefly discuss our results for the selec-
tion of payload design when the variability in � �hence the vari-
ability in MRS preferences� is moderate.

5.1.2 Moderate Variability in MRS Preferences. We applied
the selection method with preference variability for different �
ranges. In the case where �� �11,14.4�, the method found D5 as
the singleton potential optimal �hence the most preferred� design.
In the case where �� �14.6,18�, the method found D4 as the most
preferred design. Our results show that when the variability in
MRS preferences is large we obtain a couple of potentially opti-
mal designs and as the variability in MRS preferences decreases
we find a single most preferred design.

In the next section, we verify that the potentially optimal de-
signs obtained for the above-discussed cases �with different
ranges for � in each case� are indeed accurate.

5.1.3 Verification of Results. To verify the results obtained by
our method we use the variability construct shown in Eq. �10�.
Substituting different values for � in Eq. �10�, we can obtain the
values of the design alternatives for that � �see Fig. 8�. Note that
the maximum of Eq. �10� �which is zero�, for each �, is obtained
when both PS1 and PS2 are equal to one.

From Fig. 8 we can see that when � lies between 11 and 14.5,
D5 has the highest value. When � is equal to 14.5, both D5 and D4
have the highest value. When � lies between 14.5 and 18, D4
alone has the highest value. Even though we showed in Fig. 8, the
values of the design alternatives for only some discrete � in the
range 11–18, it can be verified that D5 has highest value for �
� �11,14.5� and D4 has highest value for �� �14.5,18�.

Recall that using our method we obtained D4 and D5 as the
potentially optimal designs when �� �11,18�. From Fig. 8 this is

designs alternatives at DT1

DT1,
ction
�

Z* values at DT2,
objective function

in Eq. �4�

Z* values at DT3,
objective function

in Eq. �4�

0.1215 −0.0001
0.1127 0
0 0.0792

−0.2866
−0.2786
−0.2792
−0.2768
−0.2858
ad

at
fun
. �4

812
814

018
847
024
532
549
62
612
expected because D4 has the highest value for some part of the �
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ange and D5 has the highest value for some other part of the �
ange. When �� �11,14.4�, our method obtained a single most
referred design D5 and when �� �14.6,18�, our method again
btained a single most preferred design D4, as expected from Fig.
. This verifies the results of our method.

In the next section we present the application of our selection
ethod with preference and attribute variability to the payload

esign selection example.

5.2 Payload Design Selection With Preference and At-
ribute Variability. Once again we use the simulated DM given
y Eq. �10� for verifying the results obtained by our method.
owever, for this example, in Eq. �10�, in addition to the param-

ter �, the attributes PS1 and PS2 have variability quantified by a
ange. We applied our method to two cases with different ranges
or �, PS1 and PS2 in each case.

For the first case, we fix the range of � to be 11–18. Also, we
x the range of attribute levels PS1 and PS2 to be ±5% around the
ominal attribute levels, i.e., if the nominal attribute level of a
esign alternative, say D1, for the attribute, say PS1, is 0.016, then
he variability in the attribute PS1 for D1 is quantified by the range
0.015, 0.017�. Note that, the nominal attribute level should not be
onfused with the probabilistic mean. The range of MRS prefer-
nces at a trial design for the given ranges of �, PS1 and PS2 can
e found from Eq. �10� by solving a simple optimization problem
we do not show the optimization problem here due to space
estrictions�.

Following the iterative method shown in Fig. 5, we started with
n initial trial design D3 and our method, in three iterations, found
hat the set of non-eliminated trial designs DNTD consists of de-
igns D3, D4, and D5. The details of the dominated designs elimi-
ated at each iteration are not shown due to space restrictions.
lso we verified that D3, D4, and D5 are indeed the potential
ptimal designs using Eq. �10� for the given ranges of �, PS1, and
S2.
For the second case, we once again fix the range of � to be

1–18. However, we changed the range of attribute levels PS1 and
S2 to be ±15% around the nominal attribute levels. Starting with
n initial trial design of D3, our method found designs D1, D2, D3,
4, and D5 to be the elements of DNTD. However, using Eq. �10�,
e found that only D3, D4, and D5 are the potentially optimal
esign for this case also. This verifies our earlier statement that at
resent our method for selection with preference and attribute
ariability can include some designs that are actually dominated
n the set of non-eliminated trial designs DNTD. However, on the
right side, the set DNTD found by our method always contains the

Fig. 8 Value of payload design alternatives for different �’s
ctual potentially optimal designs.
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6 Summary
In this paper, we presented a method for product design selec-

tion with variability in preferences for an implicit value function
and later extended it to account for variability in attribute levels of
design alternatives. The only assumption we made in our method
was that the DM’s implicit value function is differentiable, quasi-
concave and non-decreasing with respect to the attributes. This
assumption is more general and less restrictive than other popular
assumptions as reported in the literature �e.g., additive value func-
tion� �30–32�.

Our method for selection with preference variability is iterative
and requires that the DM gives a range for MRS preference be-
tween attributes at a series of trial designs. We presented an ap-
proach to eliminate dominated designs using the range of MRS
preferences directly. The mathematical formulation of this ap-
proach under certain condition becomes a linear programming
problem and can be solved quickly to obtain the set of non-
eliminated trial designs. We also presented a heuristic to identify
potentially optimal designs from the set of non-eliminated trial
designs. Finally, we demonstrated the applicability of our method
with the help of a payload design selection example. We showed
and verified that when the variability in MRS preferences is large,
we obtain a couple of potentially optimal designs and as the vari-
ability in MRS preferences decreases, we find a single most pre-
ferred design.

In addition to the range of MRS preferences, if the DM can
provide the probability distributions �within the given range� of
the MRS preferences, our method for selection with preference
variability can be extended for finding the preferred designs. Since
the designs not in the set of non-eliminated trial designs DNTD are
dominated irrespective of the probability distributions for the
given ranges of MRS preferences, DNTD can be used as the set of
designs from which the selection has to be made. Then a Monte
Carlo simulation of our deterministic selection method �35� can be
used to find the preferred designs from the set DNTD.

Our method for selection with preference and attribute variabil-
ity requires that the range of attribute levels of design alternatives
be known in addition to the range of MRS preferences. We pre-
sented a mathematical formulation for eliminating dominated de-
signs using the ranges of attributes and MRS preferences. Finally,
we demonstrated the applicability of the method with the help of
payload design selection problem.

At present in our method for selection with preference and at-
tribute variability, the non-eliminated designs might not be poten-
tially optimal. We are currently working on developing a heuristic
similar to the one discussed in Sec. 3.2 for identifying potential
optimal designs from the set DNTD when there is variability in
preferences and attribute levels.
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Nomenclature
ai 	 ith attribute

aij 	 ith attribute �variable or fixed� of design Dj

Aij
L 	 lower bound of attribute ai for design Dj when

there is attribute variability
Aij

U 	 upper bound of attribute ai for design Dj when
there is attribute variability

Aij 	 range of attribute ai for design Dj when there

is attribute variability
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AiT 	 range of attribute ai for design DT when there
is attribute variability

CG 	 gradient cut at a trial design
D+ 	 arbitrary design �other than trial design� that

belongs to the original set of designs
Di 	 ith design alternative

DNTD 	 set of non-eliminated trial designs
DT 	 trial design
DTi 	 ith trial design
hT 	 hyper-plane perpendicular to �VT �fixed or

variable� at a trial design DT
hTk 	 hyper-plane perpendicular to �VTk �fixed or

variable� at the kth trial design DTk

hTk
L

	 hyper-plane perpendicular to �VTk
L at the kth

trial design DTk in Fig. 4
hTk

U
	 hyper-plane perpendicular to �VTk

L at the kth

trial design DTk in Fig. 4
hT2

M
	 hyper-plane in between �hT2

L ,hT2
U � such that

DT1 does not lie in the gradient cut corre-
sponding to the gradients perpendicular to
�hT2

L ,hT2
M � in Fig. 4

m 	 number of attributes
n 	 number of designs

OT 	 region around DT where linear approximation
of value function is valid

OTi 	 region around DTi where linear approximation
of value function is valid

phjhk
Tj 	 perpendicular distance from the jth trial design

DTj to intersection of hTj and hTk

phjhk
Tk 	 perpendicular distance from the kth trial design

DTk to intersection of hTj and hTk

ph1Lh2L
T1 	 perpendicular distance from DT1 to intersection

of hT1
L and hT2

L in Fig. 4
ph1Uh2L

T1 	 perpendicular distance from DT1 to intersection
of hT1

U and hT2
L in Fig. 4

PS 	 probability of success of a payload in a given
scenario

PSi 	 probability of success of a payload in the ith

scenario
R 	 radius of OTi

sijT 	 MRS between attributes ai and aj �variable or
fixed� at a trial design DT

sijTk 	 MRS between attributes ai and aj �variable or
fixed� at the kth trial design DTk

SijT
L 	 lower bound of MRS between attributes ai and

aj at a trial design DT

SijT
U 	 upper bound of MRS between attributes ai and

aj at a trial design DT

SijTk
L 	 lower bound of MRS between attributes ai and

aj at the kth trial design DTk

SijTk
U 	 upper bound of MRS between attributes ai and

aj at the kth trial design DTk
SijT 	 range of MRS between attributes ai and aj at a

trial design DT
SijTk 	 range of MRS between attributes ai and aj at

kth trial design DTk
V 	 value function

wiT 	 coefficient of �VT with respect to attribute ai
at a trial design DT

wiTk 	 coefficient of �VTk with respect to attribute ai
at the kth trial design DTk

Z* 	 objective function value in the formulations to
identify dominated design

� 	 parameter to induce variability in the value
function of simulated DM

�VT 	 variable gradient of V at a trial design DT cor-

responding to variable MRS sijT
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�VTk 	 variable gradient of V at the kth trial design
DTk corresponding to variable MRS sijTk

�VTk
L 	 extreme of gradient range at the kth trial design

DTk in Fig. 4
�VTk

U 	 other extreme of gradient range at the kth trial
design DTk in Fig. 4

Appendix A

The maximum ph1h2
T1 that is required to conduct the test of Eq.

�7� can be calculated using Eq. �A1�.

Maximize ph1h2
T1 �A1a�

subject to:

��
i=1

m

wiT1 · wiT2	2

��
i=1

m

wiT1
2 ��

i=1

m

wiT1
2  � 1 �A1b�

wiT1 � WT1 and wiT2 � WT2; i = 1 to m �A1c�

�
i=1

m

wiT2 · �aiT1 − aiT2� � 0 �A1d�

Eq. �A1b� is a constraint for checking that the angle between
�VT1 and �VT2 is greater than zero �i.e., hT1’s that are not parallel
to any one of the hT2’s, recall Sec. 3.2�. Note that the angle be-
tween the vectors �VT1 and �VT2 is zero only when the cosine of
the angle �given by the square root of the left hand side of Eq.
�A1b�� is one. Equation �A1c� is a short notation for the normal-
ization constraints on wiT1 and wiT2, and the constraints that
sijT1=wiT1 /wjT1 and sijT2=wiT2 /wjT2, should belong to the range
of MRS preferences given by the DM at DT1 and DT2, respectively
�recall Eq. �4b� and Eq. �4c�. Equation �A1d� is a constraint for
checking that�VT2 belongs to the range of the gradients that do
not eliminate DT1 by gradient cut �recall Fig. 4�.

Appendix B
The formulation required to conduct the test of Eq. �8� is given

by Eq. �B1�. As mentioned earlier �recall Sec. 3.2�, when �VT1 is
equal to �VT2 �i.e., hT1’s that are parallel to some of the hT2’s�, we
can find the value of the designs directly by using Eq. �3� based on
a linear approximation of the value function. So, if the maximum
of the difference between the value of DT1 and DT2 �i.e., objective
function of Eq. �B1�� is negative we can conclude that DT2 domi-
nates DT1 for the case where some of the hT1’s are parallel to some
of the hT2’s. Equation �B1b� is a constraint for checking that �VT1
is equal to �VT2. Equation �B1c� is similar to Equation �A1c�.

Maximize �
i=1

m

wiT1 · �aiT1 − aiT2� �B1a�

subject to:

��
i=1

m

wiT1 · wiT2	2

��
i=1

m

wiT1
2 ��

i=1

m

wiT1
2  = 1 �B1b�

wiT1 � WT1 and wiT2 � WT2 �B1c�
Note that, it is possible that Eq. �A1� or Eq. �B1� is infeasible.

If Eq. �A1� is infeasible, the test of Eq. �8� alone is enough to
conclude that DT2 dominates DT1. Similarly, the test of Eq. �7�
alone is enough to conclude that DT2 dominates DT1 if Eq. �B1� is

infeasible. Note that Eq. �B1� becomes infeasible only when no
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T1 is parallel to any hT2 and Eq. �A1� becomes infeasible only
hen any hT1 is parallel to some hT2 �hence Eq. �A1� and �B1�

annot be infeasible simultaneously�.
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