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Abstract 
In this paper, a nanostructured modified electrode was fabricated by 
incorporating of 2,2′-[1,9-nonanediylbis(nitriloethylidyne)]-bis-
hydroquinone (NNH) as a newly synthesized modifier and TiO2 
nanoparticles to the carbon paste (MTCPE) and then was used for the 
electroanalysis of epinephrine (EP). The electrochemical studies were 
carried out by using cyclic voltammetry, chronoamperometry and 
differential pulse voltammetry (DPV) techniques. It has been found 
that the oxidation of EP at the surface of this electrode occurs at a 
potential about 235 mV less positive than that of an unmodified 
carbon paste electrode. A dynamic range of 1.0–2000.0 µM, with a 
detection limit of 0.37 µM for EP, was obtained using DPV. Also, 
this modified electrode exhibits well separated oxidation peaks for 
EP and acetaminophen (AC) using DPV. 
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1. Introduction 
 

Chemically modified electrodes can be used as 
successful chemical sensors due to the electrode 
surfaces can be customized to achieve the needed 
selectivity or sensitivity [1]. Chemical modifiers 
incorporated in the carbon paste electrodes give 

smart properties such as ease of modification, 
renewable surface and low cost [2, 3]. 

Recent researches have focused on the growth of 
nanomaterials applied in analytical chemistry for its 
special physicochemical properties [4]. Many kinds 
of nanomaterials, including nanoparticles, have been 
widely used in electrochemical sensors and 
biosensors. These nanomaterials play different roles 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357539493?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 
146 M. Mazloum-Ardakani et al./ JNS 2 (2012) 145-152 

in different electrochemical sensing systems based 
on their unique properties [5-7]. 

Epinephrine (EP, 1-(3,4-dihydroxyphenyl)-2-
methyloaminoethanol), a hormone secreted by the 
medulla of adrenal glands, is an important 
catecholamine neurotransmitter in the mammalian 
central nerves system. The changes in its 
concentration may result in many diseases [8, 9]. 
Therefore, the quantitative determination of EP is 
important in different human fluids. The analytical 
methods employed for the determination of EP are 
based on chromatographic techniques using different 
detection systems [10, 11]. These methods often 
require several previous sample preparation steps to 
obtain a final extract completely compatible with 
chromatographic determination which makes the 
procedure more complicated and more expensive. 
Electrochemical methods have a number of 
advantages as: low cost, high sensitivity, easy 
operation and on-site monitoring [12]. Therefore the 
electrochemical analysis of EP has developed in 
recent years [13]. 

Acetaminophen (AC, N-acetyl-p-aminophenol), 
is an antipyretic and minor analgesic drug which 
practically has no anti-inflammatory action. It is an 
effective and safe analgesic agent used worldwide 
for the relief of mild to moderate pain associated 
with headaches, backaches, arthritis, and 
postoperative pains [14]. Unfortunately, owing to its 
easy accessibility, the use of AC in suicide attempts 
and overdoses has been increased. It is known that 
overdoses will cause serious or fatal liver and kidney 
damage [15]. So a quantitative determination of AC 
concentration is useful for nerve physiology, 
pharmacological research and life science. Current 
methods for the analysis of acetaminophen include 
titrimetry [16], spectrophotometry [17], 
chromatography [18], and electrochemical 
approaches [19]. However, the development of a 

simple, specific, sensitive, and inexpensive method 
for determination of EP and AC is yet highly 
desirable. 

In continuation of our previous studies on the 
preparation of modified electrodes [20, 21], and on 
the simultaneous determination of EP and AC [22, 
23], we described in the present work, initially the 
use of NNH as a new mediator and TiO2 
nanoparticles as an effective material for preparation 
of MTCPE and then the electrocatalysis of EP in the 
presence of AC. 
 
2. Experimental  
2.1 Materials and apparatus 

 
All solutions were freshly prepared with doubly 

distilled water. Buffer solutions were prepared from 
ortho-phosphoric acid and its salts in pH range of 
2.0 – 12.0 in concentration of 0.1 M. EP, AC and 
other reagents were analytical grade (Merck, 
Darmstadt). TiO2 nanoparticles and (NNH) were 
synthesized in laboratory. 

A potentiostat/galvanostat (SAMA 500, 
electroanalyzer system, I.R. Iran) was used for 
carrying out the electrochemical experiments. A 
three electrode cell was used at 25 ± 1°C. A 
saturated calomel electrode, platinum wire, and 
MTCPE were used as reference, auxiliary and 
working electrodes, respectively. A Metrohm model 
691 pH/mV meter was also used for pH 
measurements. 

 
2.2. Synthesis of TiO2 nanoparticles 

 
Colloidal suspension of TiO2 nanoparticles was 

synthesized by mixing titaniumtetraisopropoxide 
(Merck), H2O2 (Merck), and H2O, with volume 
proportions of 12:90:200, respectively. The resulting 
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solution was refluxed for 10 h to promote the 
crystallinity (surface area = 84 m2 g-1).  

 
Fig. 1.TEM image of TiO2 nanoparticles. 
 

Fig. 1 shows typical TEM images of 
nanoparticles. The particles are elongated with 
average long and short axis sizes of 54 and 15 nm. 
The crystalline phase has been verified as pure 
anatase using X-ray diffraction. Anatase is the 
photocatalytically most active crystalline phase of 
TiO2. 

 
2.3. Preparation of the electrode 
 

MTCPE were prepared by mixing 0.01 g of NNH 
and hand mixing with 95 times its weight of graphite 
powder and 4 times its weight of TiO2 nanoparticles 
using a mortar and pestle. Paraffin was added to the 
above mixture and mixed for 20 min until a 
uniformly wetted paste was obtained. This paste was 
then packed into the end of a glass tube (ca. 3.6 mm 
i.d. and 10 cm long). A copper wire inserted into the 
modified carbon paste provided an electrical contact. 
The NNH-modified CPE (MCPE), TiO2 
nanoparticles CPE (TCPE) and unmodified carbon 
paste (CPE) were prepared in the same way but 
without adding TiO2 nanoparticles, NNH and both of 
them respectively. 

 

 
3. Results and discussion 

Study on the electrochemical properties of NNH 
in aqueous media was investigated by cyclic 
voltammetry. This compound is insoluble in aqueous 
media; therefore, we prepared MTCPE by 
incorporating NNH together TiO2 nanoparticles into 
CPE and studied its electrochemical properties in a 
buffered aqueous solution (pH 7.0) using cyclic 
voltammetry. Cyclic voltammograms of MTCPE 
exhibited an anodic peak and corresponding cathodic 
peak (Epa = 0.210 V, Epc = 0.140 V, E1/2 = 0.175 V 
versus SCE and ∆Ep = 0.07 V). The peak separation 
potential, ∆Ep = (Epa - Epc), was greater than the 59/n 
mV expected for a reversible system. This result 
suggests that redox couple in MTCPE shows quasi-
reversible behavior in an aqueous medium. 

The effect of the potential scan rate on 
electrochemical properties of the MTCPE was 
studied in an aqueous solution with cyclic 
voltammetry (Fig. 1a). Plots of the anodic peak 
currents (Ip) were linearly dependent on ν at scan 
rates from 10 to 1800 mV s-1. A linear correlation 
was obtained between peak currents and the scan 
rate indicates that the nature of redox process was 
controlled in a surface-confined manner (Fig. 1b). 

The charge transfer coefficient, α, of a surface-
confined redox couple can be evaluated from cyclic 
voltammetric experiments and by using the variation 
of anodic peak potentials with logarithm of scan 
rate, according to the procedure of Laviron [24]. 

The Epa values are proportional to the logarithm 
of the potential scan rate, for scan rates higher than 
300 mV s–1 (Fig. 1c). The slope of the linear 
segment is equal to 2.303RT/(1 – α)nFfor the anodic 
peak. The evaluated value for the anodic transfer 
coefficients (αa) is 0.36. 
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